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1 Supplementary information

1.1 The Petrov-Galerkin projection

Methods of model reduction can be considered as a projection of the state-variables to a lower dimensional
subspace V : dim (V) = n̂ of the original phase-space, within which some relevant set of the system’s
trajectories can be adequately approximated. Mathematically, applying such a projection to obtain a
reduced dynamical system is underpinned by the Petrov-Galerkin projection [1] which will be detailed here.

Consider a basis B of the subspace V such that B = [b1, . . . , bn̂] ∈ Rn×n̂. Assuming B has been selected
such that it provides an adequately accurate approximation of the original states x(t) within the subspace
V, then

x(t) ≈ Bx̃(t) (1)

with x̃(t) ∈ Rn̂ representing the reduced set of state-variables. Substituting this approximation into the
stoichiometric model form yields

Bẋ(t) = f(Bx̃(t)) + g(Bx̃(t))u(t) + ρ(t) (2)

where it is assumed that B is time-invariant. Additionally, ρ(t) ∈ Rn is termed the residual and addresses
the discrepancy emerging from the fact that Bx̃ is typically not an exact solution of the system for all
times.



2

Now letW represent a subspace that is orthogonal to the residual ρ(t) with a basis C ∈ Rn×n̂ such that
Cᵀρ(t) = 0. Hence, left multiplying equation (2) by Cᵀ produces

CᵀBẋ(t) = Cᵀf(Bx̃(t)) +Cᵀg(Bx̃(t))u(t) (3)

Assuming CᵀB is non-singular, this finally leads to a reduced dynamical system of the form

˙̃x(t) = (CᵀB)
−1
Cᵀf(Bx̃(t)) + (CᵀB)

−1
Cᵀg(Bx̃(t))u(t). (4)

This simplification of a dynamical system to a lower dimensional subspace is known as the Petrov-Galerkin
projection. In the special case where B = C it is known simply as the Galerkin projection. In that case

(BᵀB)
−1
Bᵀ = B̄ (5)

Such that B̄ is a generalised left-inverse of B and B̄B = In̂ (the n̂ dimensional identity matrix).
Whilst the explanation given above provides an explanation of how to apply a Petrov-Galerkin projection,

it does not provide a methodology for finding suitable bases B and C for a given model. It is methodologies
of this kind that comprise the majority of the model reduction literature.

1.2 The zero-derivative principle

The zero-derivative principle (ZDP) method of model reduction essentially provides a computational ap-
proach for extending the QSSA to a higher order approximation. To understand the derivation of this
method observe that a model of a biochemical reaction network can be expressed in the form

ẋ(t) = f(x(t)), (6)

where f(x(t)) =
∑m

i=1 scivi(x(t)) with sci referring to the ith column of the stoichiometry matrix S.
If it is now assumed that the species x(t) can be partitioned into a slow group xs(t) and a fast group

xf (t), as in the case of the generalised QSSA described above, then the ν-th order ZDP employs the set of
algebraic conditions

dixf

dti
= 0, i = 1, . . . , ν. (7)

Consider, for example, the first order ZDP; here equation (7) yields the algebraic equations

0 =
dxf

dt
= ff (8a)

0 =
d2xf

dt2
=
∂ff
∂xs

fs +
∂ff
∂xf

ff (8b)

and can be similarly extended for higher orders of the ZDP. Clearly, from equation (8a) the zeroth order
ZDP is equivalent to the QSSA.

To achieve a reduction the aim is to solve equations (7) for the fast species xf and substitute the solutions
into the slow dynamics ẋs(t) = fs, hence decoupling the system. Unfortunately, the first order and higher
ZDP approximations cannot often be solved analytically. As a result, reductions of this type often employ
numerical solutions of equations (7) to achieve a simplification. As a result, this form of reduction often
comes at the cost of obscuring the intuitiveness of the reduced model.
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1.3 The intrinsic low dimensional manifold method

The intrinsic low dimensional manifold method (ILDM) method offers an approach for obtain an eigenba-
sis decomposition of the system, whilst avoiding the potential numerical issues typically associated with
tightly clustered or repeated eigenvalues. The method takes a linearised system in and applies a Schur
decomposition to the Jacobian J to obtain an upper triangular matrix U , such that

U = Q−1JQ =

[
Us Uc

0 Uf

]
. (9)

Here, Givens rotations have been applied to reorder U in terms of the descending eigenvalues of J , and
hence in terms of the slow and fast timescales. Additionally it has been assumed that the slow (λs) and
fast (λs) eigenvalues are divided by a substantial eigengap (such that 0 > min {Re(λs)} � max {Re(λf )}),
and hence that a meaningful timescale decomposition is attainable.

Here the block upper triangular form Uf corresponds to the fast eigenvalues, Us to the slow eigenvalues,
and the Uc block couples the fast and slow dynamics of the system under a Schur basis [2]. The method
then aims to decouple the matrix (i.e. eliminate the Uc terms) by finding the solution Y of the Sylvester
equation

UslowY − Y Ufast = Ucoup. (10)

By defining

T = Q

(
I +

[
0 Y
0 0

])
and T−1 =

(
I −

[
0 Y
0 0

])
Q−1, (11)

it is therefore possible to obtain

T−1JxcT =

[
Uslow 0

0 Ufast

]
. (12)

The transformation T can be then be applied to the original set of state-variables x(t) such that

x→ x̄ : x̄ = T−1x =

(
x̄slow

x̄fast

)
, (13)

and hence, via the Petrov-Galerkin projection as previously introduced, this transformation of the linearised
system can be applied for the reduction of the original nonlinear model, yielding

˙̄x(t) = T−1Sv (T x̄(t),k) . (14)

As in other examples of timescale exploitation, it is now possible to truncate the fast state-variables from
this transformed system leaving only a reduced, approximate model for the slow dynamics of the system.

1.4 Computational singular perturbation

To understand the application of the CSP method, begin with a system of the form

ẋ(t) = f(x(t)) (15)

which is related to the stoichiometric model formulation via

f(x(t)) =

m∑
i=1

scivi(x(t)), (16)

with sci referring to the ith column of the stoichiometry matrix S. The goal of CSP is then to search for a
change of basis for the vector field f .
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For example, let A(t) be an n× n matrix whose columns (ai(t) for i = 1, . . . , n ) form a basis for Rn at
any given time point t, such that f can be represented as

f = A(t)g (17)

with g the new coordinates for the transformed vector field. Define B(t) = A(t)−1 and let bj(t) for
j = 1, . . . , n represent the rows of B, such that

g = B(t)f . (18)

Upon differentiating equation (18) with respect to time, this yields

dg

dt
= B

df

dt
+

dB

dt
f (19)

To proceed further now note that

df

dt
=
∂f

∂x

dx

dt
= Jf = JAg, (20)

with J representing the previously defined Jacobian of the system. Additionally, note that BA = I, such
that

dB

dt
A+B

dA

dt
= 0. (21)

Substituting the results from equations (20), (17), and (21) into (19) yields

ġ =

(
BJA−B dA

dt

)
g = Λg, (22)

providing a system of ODEs for g.
If it is assumed that a basis A was selected such that Λ is in a block diagonal form such that the ODEs

from equation (22) decouple into a system of n̂ slow ODEs and n− n̂ fast ODEs(
ġf
ġs

)
=

(
Λf 0
0 Λs

)(
gf
gs

)
. (23)

Corresponding to the slow/fast groupings, the basis A and its inverse B can also be partitioned into fast
and slow parts, such that

A =
(
Af As

)
, and B =

(
Bf

Bs

)
. (24)

Hence, under this change of basis the system is now partitioned as

ẋ(t) = Afgf +Asgs = ff + fs (25)

and taking the assumption ff → 0 on the timescale of interest allows the use of the simplified system of
DAEs

ẋ(t) ≈ fs,
ff ≈ 0.

Whilst the above derivation demonstrates how a model reduction can be applied for a given basis A(t), it
does not provide any instruction on how to select an appropriate choice of this basis for the reduction of the
system. To obtain an approximation of the ideal such basis, CSP proposes an iterative process. Beginning
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with some initial guess basis A0 and its associated inverse B0, each iteration Aq for q = 1, 2, . . . brings the
system described by the nullclines of the fast ODEs closer to the slow manifold of the model. To obtain
this approximation, first note that at the qth iterate the matrix Λq is decomposed as

Λq = BqJAq −Bq
dAq

dt
=

(
Λ11q Λ12q

Λ21q Λ22q

)
. (26)

The following can be used as update criteria for the basis

Aq+1 = Aq (I −Uq) (I +Lq)

Bq+1 = (I −Lq) (I +Uq)Bq

where Uq and Lq represent the matrices given by

Uq =

(
0 (Λ11q)

−1
Λ12q

0 0

)
, Lq =

(
0 0

Λ21q (Λ11q)
−1

0

)
. (27)

In the linear case the ideal basis would be the ordered eigenbasis. In the nonlinear case the ideal basis will
be time-varying, however the eigenbasis serves as a common choice for the trial basis A0.

The ‘ideal’ basis obtained iteratively by CSP can also be used to obtain ‘CSP output data’ - this is a set
of information on the system’s species and reactions that is significant for model analysis and can, possibly,
be used to guide the more traditional coordinate preserving methods based upon singular perturbation. In
particular the method provides three indices - the radical pointer which can be used to identify whether
any species are potentially in QSSA, the participation index which provides a means to determine if any
reactions are potentially in rapid equilibrium, and the importance index which is strongly related to the
sensitivity indices that are discussed in the sensitivity analysis section.

1.5 Local sensitivity analysis

Recall from the main text that the aim of local sensitivity analysis is to construct a sensitivity matrix R(t)
such that the entries rij(t) describe the normalised effect of perturbing the jth rate parameter on the ith
state-variable, this can hence be defined as

R(t) =

{
rij(t) =

∂log (xi(p, t))

∂log (pj)

∣∣∣∣
p=p∗

}
. (28)

Note that this can be rewritten as

rij(t) =
∂xi(p, t)

∂pj

pj
xi(p, t)

∣∣∣∣
p=p∗

=
∂xi(p, t)

∂pj

∣∣∣∣
p=p∗

p∗j
xi(p∗, t)

. (29)

There exist a number of numerical approaches for computing numerical values for the partial derivative
defined in equation (29) — the most simple approach is through a finite difference approximation of the
form

∂xi(p)

∂pj
≈
xi(p

∗
j + ∆pj)− xi(p∗j )

∆pj
. (30)

The accuracy of this approximation will depend upon the size of the perturbation ∆pj employed and
the points x(t,p) at which this difference is evaluated. It is common to take repeated perturbations at
multiple trajectory points and average the estimated sensitivity coefficients so as to obtain more robust
approximations.
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Alternatively, the sensitivity coefficients can be estimated by solving a system of associated sensitivity
ODEs. These ODEs can be obtained by noting that

d

dt

∂x(t)

∂p
=

∂

∂p

[
dx(t)

dt

]
,

=
d

dp
[Sv(x,p)] ,

= S

(
∂v(x,p)

∂x

∂x

∂p
+
∂v(x,p)

∂p

)
.

Hence, defining z(t) = ∂x(t)
∂p and recalling equations (48) and (49) yields the system of ODEs

dz(t)

dt
= Jz(t) + S

∂v(x,p)

∂p
(31)

which is typically numerically simulated under the initial conditions z(0) = 0. Unlike the finite difference
approach, approximations obtained via the solution of these ODEs are not dependent on the perturbation
sizes sampled. They remain dependent, however, on the point xc = x(t) and p∗ = p at which the Jacobian

J and the partial derivative ∂v(x,p)
∂p are evaluated. Solving this system of ODEs can also be made more

computational efficient by employing Green’s function matrix [3].

2 A nonlinear example system

Consider the nonlinear example defined by the set of chemical equations

A+B
k1

�
k2

AB
k3→ C +B,

C +D
k4

�
k5

CD,

C + E
k6

�
k7

CE
k8→ A+ E,

A+ U
k9→ U + F,

F
k10→ A,

This system possesses 9 species, 6 reactions, 10 kinetic rate constants, and 1 input U . Whilst this is only
a contrived example, it could be considered to represent the enzyme B catalysing the transformation of a
substrate A to the form C. Here, C in turn can bind with E to revert to form A or can bind with D to
undergo degradation, and U represents an input molecule that catalyzes the transformation of species A
to species F — hence sequestering the substrate from performing the autonomous process described above.
This system is depicted schematically in Figure 1.

This set of chemical equations can be modelled as dynamical system of ODEs via the Law of Mass
Action, such that

ẋ(t) = Sv (x(t),k) , (32a)
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Figure 1. A nonlinear, toy-example system for the demonstration of model reduction methodologies.
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with

S =



1 0 0 0 1 −1 1
1 1 0 0 0 0 0
−1 −1 0 0 0 0 0
0 1 1 1 0 0 0
0 0 −1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 −1 −1 0 0
0 0 0 0 0 1 −1


, v =



k1x3− k2x1x2
k3x3

k5x5− k4x4x6
k7x8− k6x4x7

k8x8
U k9x1
k10x9


. (32b)

where the state-variables have been defined as [A] = x1(t), [B] = x2(t), [AB] = x3(t), [C] = x4(t),
[CD] = x5(t), [D] = x6(t), [E] = x7(t), [CE] = x8(t), and [F ] = x9(t). Additionally, u is defined as the
concentration of the input molecule U , such that [U ] = u which is assumed here to be time invariant.

For the sake of our examples, let us define a single output y = x6(t) = [CD]. This system can then
clearly be expressed in a state-space representation form

ẋ(t) = f (x, t) + g (x, t)u,

y = x6(t).

As discussed in the main text, many methods of model reduction require full model parameterisation. For
the model here a highly simplified parameterisation is selected and is represented in Table 1. Additionally,
the initial conditions are selected such that x1(0) = x4(0) = 1.54, x2(0) = x7(0) = 0.566, x3(0) = x8(0) =
0.435, x4(0) = 1.54, x5(0) = 6.06, x6(0) = 3.94, and x9(0) = 0, which represents the steady-state of the
system under the condition U = 0.

2.1 Conservation analysis

Now turning to conservation analysis and following the ideas outlined by Reder [4], the existence of conser-
vation relations in a model implies that

Γẋ(t) = 0 (33)

where Γ is the h × n conservation matrix – the rows represent the linear combinations of species that are
constant in time. By integration,

Γx(t) = c, (34)

the h individual elements of which are known as conservation relations, with c ∈ Rh representing a set of
constants known as conserved values.

Solving these conservation relations for specific species and substituting into the original model, yields
a system of differential algebraic equations (DAEs). To achieve this partition x into two subsets: xd an h
dimensional subset of the species with each element corresponding to a single species involved in a given
conservation relation termed the dependent species. And xi an n − h dimensional subset accommodating
all remaining state-variables, termed the independent species, such that

x(t) =

 xd(t)

xi(t)

 . (35)

Then from equation (34)

Γ

 xd(t)

xi(t)

 = c. (36)
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Table 1. The set of parameter values associated with the nonlinear example model as
defined by equation (32).

Parameter Value Units

k1 1 (µM ·s)−1

k2 1 s−1

k3 1 s−1

k4 1 (µM ·s)−1

k5 1 s−1

k6 1 (µM ·s)−1

k7 1 s−1

k8 1 s−1

k9 100 (µM ·s)−1

k10 1 s−1

BT 1 µM

DT 10 µM

ET 1 µM

ST 10 µM
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This is a system of linear equations and hence if Γ is expressed in reduced row echelon form, such that

Γ = [Ih N0] , (37)

with Ih representing the h dimensional identity matrix and N0 a h × (n − h) matrix, it becomes apparent
that

xd(t) = c−N0xi(t). (38)

This implies that the subset of dependent species xd can be eliminated from the governing system of ODEs
by substituting in the appropriate element of equation (38). Hence, given the stoichiometric model form,
a system exhibiting conservation relations can be expressed in the form of a semi-explicit system of DAEs,
such that

ẋi = Siv(xi(t)), (39a)

xd(t) = N0xi(t)− c, (39b)

where equation (39b) has been exploited in equation (39a) to obtain a system of ODEs such that state-
variables xd are no longer explicitly given. Additionally, Si here represents the rows of the stoichiometric
matrix corresponding to the independent state-variables xi.

Obtaining the conservation matrix Γ, particularly for large systems, is often not feasible from simple
inspection. To understand a more algorithmic approach for obtaining this matrix, begin by recalling the
stoichiometric form of a model. Decomposing the stoichiometric matrix via the same partition as the set of
species leads to the system  ẋd(t)

ẋi(t)

 =

 Sd

Si

v(xd(t),xi(t)). (40)

However, via differentiation of equation (38)

ẋd(t) = −N0ẋi(t) = −N0Siv(xd(t),xi(t)). (41)

Hence, Sd = −N0Si and therefore each conservation relation can be seen as corresponding to a linear
dependency in the stoichiometry matrix. As such, conservation relations can be found by seeking the left
null space Zn of S (i.e. via finding the null space of ST ) such that

Zn = {z ∈ Rn|Sᵀz = 0} , (42)

and hence Zᵀ
nS = 0. This implies that

Zᵀ
nSv (ẋ(t)) = 0 = Zᵀ

nẋ(t) (43)

and therefore via comparison to equation (33) it is clear that

Zᵀ
n = Γ, (44)

such that the conservation matrix is equal to the transpose of the left null space of the stoichiometry matrix.
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In the case of our example system represented by equation (32), calculation of the left null-space yields

Zn =



0 0 0 1

1 0 0 0

1 0 0 1

0 0 0 1

0 1 0 1

0 1 0 0

0 0 1 0

0 0 1 1

0 0 0 1



, (45)

implying that we have the conservation relations

BT = x2(t) + x3(t), (46a)

DT = x5(t) + x6(t), (46b)

ET = x7(t) + x8(t), (46c)

ST = x1(t) + x3(t) + x4(t) + x5(t) + x8(t) + x9(t) (46d)

Finally, substituting these conservation relations into the system yields the simplified realisation,

dx1(t)

dt
= k1x3(t)− k10 (x1(t)− ST − CT + x3(t) + x4(t) + x5(t) + x8(t))

+ k8x8(t)− U k9x1(t)− k2x1(t) (BT − x3(t)) , (47a)

dx3(t)

dt
= k2x1(t) (BT − x3(t))− k3x3(t)− k1x3(t), (47b)

dx4(t)

dt
= k3x3(t) + k5x5(t) + k7x8(t)− k4x4(t) (CT − x5(t))− k6x4(t) (ET − x8(t)) , (47c)

dx5(t)

dt
= k4x4(t) (CT − x5(t))− k5x5(t), (47d)

dx8(t)

dt
= k6x4(t) (ET − x8(t))− k8x8(t)− k7x8(t). (47e)

2.2 Model Linearisation

Certain methods also require that the system they are applied to is linear. For nonlinear systems we
therefore require the system to first be linearised for the application of such methods. As discussed in the
main text, systems of ODEs can be linearised around a given state xc by calculating the Jacobian matrix

Jxc
= SE|x(t)=xc

. (48)

Here, the matrix E is referred to as the elasticity matrix, with entries

E =

{
eij =

∂vi (x,p)

∂xj

}
. (49)
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Then, via a first order Taylor expansion, the system can be approximated in the neighbourhood of xc by

ẋ(t) ≈ Sv (xc,p) + Jxc
(x(t)− xc) . (50)

Evaluated at the system’s previously defined initial condition, calculating the Jacobian for this system
yields

Jx0 =



−1.57− 100U 1.54 −1 −1 0

0.566 −3.54 0 0 0

0 1 −4.51 2.54 2.54

0 0 3.94 −2.54 0

0 0 0.566 0 −3.54


. (51)

2.3 Coordinate Preserving Timescale Exploitation

Here we seek to apply the QSSA for the reduction of the nonlinear example model previously introduced.
Whilst in the main paper we review a number of published methods for ascertaining the species that can be
eliminated through application of the QSSA, in this instance it is a reasonable that the complex species AB
and CE are likely to evolve on a fast timescale for a large range of biologically reasonable parameterisations.
Often, in realistic systems, these complexes will be transitional steps in reactions where enzymes B and E
are catalyzing some substrate protein.

Mathematically, the QSSA is then equivalent to assuming that Equations (47b) and (47e) are approxi-
mately at zero after a very short initial transient period, such that

k2x1(t) (BT − x3(t))− k3x3(t)− k1x3(t) ≈ 0,

k6x4(t) (ET − x8(t))− k8x8(t)− k7x8(t) ≈ 0,

which implies we can take the approximations

x3(t) ≈ k2x1(t)BT

k1 + k2x1(t) + k3
,

x8(t) ≈ k6x4(t)ET

k6x4 + k7 + k8
.

Finally, substituting these approximations into system represented by Equation (47) yields the reduced, 3
dimensional system

dx1(t)

dt
=

k1k2x1(t)BT

k1 + k2x1(t) + k3

− k10
(
x1(t)− ST − CT +

k2x1(t)BT

k1 + k2x1(t) + k3
+ x4(t) + x5(t) +

k6x4(t)ET

k6x4 + k7 + k8

)
+

k8k6x4(t)ET

k6x4 + k7 + k8
− U k9x1(t)− k2x1(t)

(
BT −

k2x1(t)BT

k1 + k2x1(t) + k3

)
, (52a)

dx4(t)

dt
=

k3k2x1(t)BT

k1 + k2x1(t) + k3
+ k5x5(t) +

k7k6x4(t)ET

k6x4 + k7 + k8

− k4x4(t) (CT − x5(t))− k6x4(t)

(
ET −

k6x4(t)ET

k6x4 + k7 + k8

)
, (52b)

dx5(t)

dt
= k4x4(t) (CT − x5(t))− k5x5(t). (52c)
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Figure 2. Model reduction via quasi steady-state analysis. Comparison of result for the output variable
[CD] for the reduced 3 dimensional model, vs the original 9 dimensional system.

Using the previously defined model parameterisation and initial condition, and setting U = 1, it is
possible to simulate this reduced model. Figure 2 shows how the reduced model compares to the original
system for the simulation of our assigned output – the concentration of the complex CD.

2.4 Coordinate Transforming Timescale Exploitation

In this section we seek to apply the intrinsic low dimensional manifold (ILDM) method introduced in the
main text for the reduction of the nonlinear example model outlined above. Here we begin with the Jacobian
Jx0

defined by equation (51) and set the input U = 1. We then seek to apply a Schur decomposition to
yield

V = Q−1Jx0Q =

 Vs Vc

0 Vf

 . (53)
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In our case, this gives

V =



−102 −0.0633 −1.40 0.0815 −0.875

0 −11.2 −7.96 −0.257 0.667

0 0 −0.05037 −0.787 0.607

0 0 0 −2.04 −0.0465

0 0 0 0 −2.09


, (54)

Q =



0.00959 −0.0000757 0.00636 0.103 −0.995

−1 0.0000829 0.000124 0.000980 −0.00954

−0.000104 −0.739 −0.671 0.0513 0.00107

0.00000941 0.669 −0.741 −0.0586 −0.0108

0.000000996 0.0778 −0.00971 0.992 0.102


(55)

We note that there is an eigengap between the 2nd and 3rd ordered eigenvalues of this system. As a result
we choose to construct a 3 dimensional reduced system.

These matrices can be reordered in terms of their eigenvalues to yield a system of the form of represented
by equation (53) via the use of Givens rotations. If we let the block upper triangular form Uf corresponds
to the fast eigenvalues, Us to the slow eigenvalues, and Uc refers to the block coupling the fast and slow
dynamics of the system under the Schur basis, we have

Vf =

 −102 −0.694

0 −11.2

 (56)

Vs =


−0.0503 −1.07 0.876

0 −2.04 −0.0468

0 0 −2.09

 (57)

Vc =


−1.11 −7.86

0.134 −0.674

−0.945 0.883

 . (58)

If we now seek to decouple the slow and fast terms of the Jacobian (i.e. eliminate the Uc terms), then we
seek to compute the solution Y of the Sylvester equation

UslowY − Y Ufast = Ucoup. (59)

In this case, this gives

Y =


0.0108 0.722

−0.00133 0.0736

0.00946 −0.0982

 . (60)
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It is then possible to construct the transformation T of the state variables which decouples the fast and
slow components of the system via

T = Q

I +

 0 Y

0 0

 and T−1 =

I −
 0 Y

0 0

Q−1, (61)

and hence obtain

T−1Jxc
T =

 Uslow 0

0 Ufast

 . (62)

For our nonlinear example model this gives

T =



0.00511 0.102 −0.989 −0.00959 0.0000289

0.0109 −0.000364 −0.0000125 1 0.00668

−0.115 0.124 −0.0952 0.000104 0.917

−0.992 −0.0666 −0.000238 −0.00000941 −0.829

−0.0532 0.985 0.115 −0.000000996 −0.0965


, (63)

T−1 =



0.0833 0.000876 −0.823 −0.914 0.0329

0.110 0.00105 0.0515 −0.0587 0.994

−1 −0.00959 0.00107 −0.0109 0.103

−0.000154 1 0.00241 0.0106 0.000802

−0.108 −0.00114 0.981 −0.107 −0.119


. (64)

Via the Petrov-Galerkin projection we can then construct the reduced system

˙̄x(t) = T−1Sv (T x̄(t),k) . (65)

Hence, on the slow timescale we have the reduced 3 dimensional system

dx̄1
dt

= 0.051x̄1(t)
2 − 0.014U − 1.050x̄2(t)

2
+ 0.093x̄3(t)

2 − 0.001Ux̄1(t)− 0.072x̄1(t)

− 1.591x̄2(t) + 0.945x̄3(t) + 0.917x̄1(t)x̄2(t) + 0.164x̄1(t)x̄3(t) + 0.687x̄2(t)x̄3(t) + 0.013, (66)

dx̄2
dt

= 0.068x̄1(t)
2 − 0.017U − 1.16x̄2(t)

2
+ 0.103x̄3(t)

2 − 0.001Ux̄1(t)− 0.028x̄1(t)

− 2.617x̄2(t) + 0.059x̄3(t) + 0.997x̄1(t)x̄2(t) + 0.192x̄1(t)x̄3(t) + 0.757x̄2(t)x̄3(t) + 0.015, (67)

dx̄3
dt

= 0.154U + 0.008x̄1(t)
2 − 0.125x̄2(t)

2
+ 0.011x̄3(t)

2
+ 0.010Ux̄1(t)− 0.006x̄1(t)

+ 0.094x̄2(t)− 3.58x̄3(t) + 0.119x̄1(t)x̄2(t)− 0.087x̄1(t)x̄3(t) + 0.085x̄2(t)x̄3(t)− 0.173. (68)

Using the previously defined model parameterisation and initial condition, and setting U = 1, it is
possible to simulate this reduced model. Figure 3 shows how the reduced model compares to the original
system for the simulation of our assigned output – the time-varying concentration of the complex CD.
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Figure 3. Model reduction via the intrinsic low dimensional manifold method. Comparison of result for
the output variable [CD] for the reduced 3 dimensional model, vs the original 9 dimensional system.

2.5 Sensitivity Analysis

In this section we demonstrate the application of sensitivity analysis for the study and reduction of the
nonlinear example defined by equation (32). Following the approach outlined in Section 1.5, we begin by
computing the normalised sensitivity matrix R for the system, such that

R(t) =

{
rij(t) =

∂log (xi(p, t))

∂log (pj)

∣∣∣∣
p=p∗

}
. (69)

Which can be rewritten as

rij(t) =
∂xi(p, t)

∂pj

∣∣∣∣
p=p∗

p∗j
xi(p∗, t)

(70)

describing the effect of perturbing the jth rate parameter on the ith state-variable.
The most common computational approach to calculating the remaining partial derivative is via a finite

difference approximation yielding

∂xi(p, t)

∂pj
≈
xi(p

∗
j + ∆pj , t)− xi(p∗j )

∆pj
. (71)

The accuracy of this approximation, however, will depend upon the size of the perturbation ∆pj employed
and the time-points at which the differences are evaluated. It is common to take repeated perturbations
at multiple trajectory points and average the estimated sensitivity coefficients so as to obtain more robust
approximations.
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Figure 4. Normalised sensitivity values for the output species [CD].

Focussing only on the steady-state sensitivity of the nonlinear example defined by equation (32), we
obtain the normalised sensitivity matrix

Rss =



0.033 −0.081 −0.030 0.041 −0.066 −0.040 0.046 0.026 −0.472 0.823

0.014 −0.035 0.015 −0.002 0.003 0.002 −0.002 −0.001 0.021 −0.034

−0.302 0.774 −0.343 0.039 −0.064 −0.038 0.044 0.025 −0.462 0.761

−0.312 0.838 0.332 0.041 −0.066 0.441 −0.477 −0.248 −0.472 0.823

−0.294 0.720 0.296 −0.458 0.744 0.391 −0.456 −0.232 −0.451 0.708

0.026 −0.064 −0.026 0.0409 −0.066 −0.035 0.041 0.021 0.040 −0.063

0.014 −0.035 −0.014 −0.002 0.003 0.002 −0.002 0.022 0.021 −0.034

−0.302 0.774 0.313 0.039 −0.064 −0.038 0.044 −0.488 −0.462 0.761

0.033 −0.081 −0.030 0.041 −0.066 −0.040 0.046 0.026 0.055 −0.089



,

(72)
where R(t) → Rss as t → ∞. In the case of the output species [CD], this implies we have normalised
steady-state sensitivities depicted in Figure 4.

As described in the main text, once a sensitivity matrix has been obtained, principle component analysis
provides a straightforward means to assess the relative importance of each species in determining the overall
dynamical behaviour of the system. This can be used to guide the application of model reduction methods
and eliminate parameters from parameter fitting processes. In the case of the nonlinear system, a singular
value decomposition reveals that the system is dominated by 5 principle components. Analysis of each
parameter’s relative contribution to these components shows that 2 of the parameters - k5 and k8 have a
limited influence on the overall steady-state behaviour of the system in comparison to the remainder of the
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network. This knowledge could be used to therefore guide the reduction of the network through application
of the methods such as the rapid equilibrium approximation or to reduce the number of parameters that
are required for data fitting..

2.6 Lumping

In this section we demonstrate the application of linear proper lumping for the reduction of the nonlinear
example defined by equation (32). As described in the main text, this implies the reduction of the state-

variables x(t) ∈ Rn to a reduced set x̃(t) ∈ Rn̂ via some linear projection L ∈ {0, 1}n̂×n
, where each row of

L is pairwise orthogonal. Hence, we are seeking to create new ‘lumped’ state-variables as proper sums of
the originals, with each of the original variables x(t) corresponding to, at most, one of the reduced variables
x̃(t). Once such a lumping matrix L is found a reduced system can be computed via the Petrov-Galerkin
projection (as described in the main text).

In the case of the nonlinear example system, we applied the forward selection strategy described by
Dokoumetzidis and Aarons [5] and outlined in the main text. Here the algorithm seeks iteratively to lump
two state-variables at a time whilst optimising against simulated output error. Beginning with the system
already simplified via the application of conservation analysis (represented by equation (47)) this lumping
approach led to the results given in Table 2 and depicted in Figure 5. At the three dimensional level, this
leads to the reduced system

dx̃1
dt

= 0.056k8x̃3 − 0.339k3x̃1 − 1.0k10 (x̃1 − ST − CT + x̃2 + x̃3)− 0.661Uk9x̃1, (73)

dx̃2
dt

= 0.339k3x̃1 + 0.944k5x̃3 + 0.056k7x̃3 − k6 (ET − 0.056x̃3) x̃2 − k4 (CT − 0.944x̃3) x̃2, (74)

dx̃3
dt

= k6 (ET − 0.056x̃3) x̃2 − 0.056k7x̃3 − 0.056k8x̃3 − 0.944k5x̃3 + k4 (CT − 0.944x̃3) x̃2, (75)

with the initial conditions x̃1(0) = 0.1971, x̃2(0) = 0.1537, and x̃3(0) = 0.6492. This reduced system can
then be used to approximate the original state-variables by x ≈ L̄x̃ with

L̄ =



0.339 0 0

0.661 0 0

0 1 0

0 0 0.944

0 0 0.0556


. (76)

2.7 Singular value decomposition based methods

In this section we demonstrate the application of balanced truncation for the reduction of the nonlinear
example defined by equation (32). As is described in the main text balanced truncation is designed for the
reduction of controlled, linear systems in a state-space representation form, typically such systems can be
expressed as

ẋ = Ax+Bu,

y = Cx.

Once such a linear system has been constructed, balanced truncation can be applied by following the
detailed steps given in the main text of the article. This process involves first constructing the system
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Table 2. The results for lumping the nonlinear example system under the forward selection
strategy.

Dimensions Output Error Lumped Variables

4 1.67% [A] + [AB], [C], [CD], [CE]

3 2.29% [A] + [AB], [C], [CD] + [CE]

2 9.53% [A] + [AB], [C] + [CD] + [CE]

1 61.89% [A] + [AB] + [C] + [CD] + [CE]

Figure 5. Model reduction via linear proper lumping. Comparison of results for the output variable [CD]
for the reduced 3 dimensional model versus the original 9 dimensional system.
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controllability and observability Gramians through solving two Lyapunov equations and then seeking a
balancing transformation which equalises and diagonalises these Gramians. Using this it is possible to
transform the dynamical system over to the new basis governed by the balancing transformation and finally
yield a reduced system by truncating those states that are found to be least responsible for driving the
system’s overall input-output behaviour - corresponding to the smallest singular values of the balanced
Gramian.

In the case of our nonlinear example, the system can be expressed in such a form via application of
linearisation as in the form of equation (50). Application of the described yields the transformation matrix
for the 3 dimensional reduced case of

T =


−5.208 −0.029 −18.679 −19.741 −13.180

−5.557 −0.032 −9.123 8.636 −14.053

1.938 0.012 −20.444 12.543 4.852

 (77)

and its generalised inverse

T̄ =



−0.006 −0.139 0.012

−0.037 −1.532 11.168

−0.019 0.006 −0.033

−0.029 0.032 0.012

−0.003 0.003 −0.0006


. (78)

Hence we can work with the reduced state-variables x̃(t) = Tx(t). Using the Petrov-Galerkin projection we
can then use this transformation to yield the reduced 3 dimensional dynamical system

dx̃1
dt

= 1.06 (0.290x̃1 − 0.315x̃2 − 0.124x̃3 + 1) (0.0191x̃1 − 0.006x̃2 + 0.033x̃3 + 0.003)

− 5.498 (0.030x̃1 − 0.0291x̃2 + 0.006x̃3 + 1.093) (0.019x̃1 − 0.006x̃2 + 0.033x̃3 + 0.003)

+ 5.179 (0.037x̃1 + 1.532x̃2 − 11.168x̃3 + 48.953) (0.059x̃1 + 1.393x̃2 − 0.125x̃3 − 2.057)

− 0.007x̃1 + 1.163x̃2 + 0.229x̃3 − 2.898U (0.037x̃1 + 1.532x̃2 − 11.168x̃3 + 48.953)− 4.045, (79)

dx̃2
dt

= 4.929 (0.030x̃1 − 0.029x̃2 + 0.006x̃3 + 1.093) (0.019x̃1 − 0.006x̃2 + 0.033x̃3 + 0.003)

− 17.760 (0.290x̃1 − 0.315x̃2 − 0.124x̃3 + 1) (0.019x̃1 − 0.006x̃2 + 0.033x̃3 + 0.003)

+ 5.526 (0.037x̃1 + 1.532x̃2 − 11.168x̃3 + 48.953) (0.059x̃1 + 1.393x̃2 − 0.125x̃3 − 2.057)

+ 0.443x̃1 − 0.829x̃2 + 0.144x̃3 − 3.150U (0.037x̃1 + 1.532x̃2 − 11.168x̃3 + 48.953)− 1.142, (80)

dx̃2
dt

= 1.192x̃1 − 25.297 (0.030x̃1 − 0.029x̃2 + 0.006x̃3 + 1.093) (0.019x̃1 − 0.006x̃2 + 0.033x̃3 + 0.003)

− 1.926 (0.037x̃1 + 1.532x̃2 − 11.168x̃3 + 48.953) (0.059x̃1 + 1.393x̃2 − 0.125x̃3 − 2.057)

− 32.987 (0.290x̃1 − 0.315x̃2 − 0.124x̃3 + 1) (0.019x̃1 − 0.006x̃2 + 0.033x̃3 + 0.003)

+ 2.280x̃2 − 0.833x̃3 + 1.240U (0.037x̃1 + 1.532x̃2 − 11.168x̃3 + 48.953)− 6.540, (81)

with the associated initial conditions x̃1(0) = −15.6324, x̃2(0) = 2.9729, and x̃3(0) = 4.7534. Results for
this reduced system are given in Figure 6 which demonstrates the reduced dynamics of the output in the
4, 3, and 2 dimensional reduced cases, respectively. As can be seen from this figure, all 3 reduced models
have very similar dynamics and exhibit similar error to the original model — this is due to the fact that
the majority of the error was incurred in the initial linearisation step and not through the application of
balanced truncation for reduction.
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Figure 6. Model reduction via linearisation and balanced truncation. Comparison of results for the
output variable [CD] for the reduced 4, 3, and 2 dimensional models vs the original 9 dimensional system.
All 3 of the reduced systems are nearly identical in their dynamics — this is due to the fact that the
primary cause of error in this reduction is not from the application of Balanced Truncation, but is due to
the initial linearisation step.
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