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Diffusion approximations for Wright-Fisher models with selection

We present the formulation of the diffusion approximation for the Wright-Fisher model with

selection here and refer to Durrett (2008) for a rigorous proof, especially for one- and two-locus

population dynamics. For simplicity of notation, we introduce a short-hand notation for the con-

ditional expectation of a random variable given the population of the haplotype frequencies x in

generation k

E(k,x)( · ) = E
(
· |X(N)(k) = x

)
,

and a function ρiuv of three variables u, v and i, defined as

ρiuv =
1

2
(δui + δvi),

where δui and δvi are the Kronecker delta functions.

Let ∆X
(N)
i (k) denote the change in the frequency of haplotype i from generation k to the next,

and we have

E(k,x)
(

∆X
(N)
i (k)

)
=
∑
u,v

ρiuvE
(k,y)

(
∆Y (N)

uv (k)
)

(1)

E(k,x)
(

∆X
(N)
i (k)∆X

(N)
j (k)

)
=
∑
u,v

∑
m,n

ρiuvρ
j
mnE

(k,y)
(

∆Y (N)
uv (k)∆Y (N)

mn (k)
)
. (2)

Based on the construction of the Wright-Fisher model with selection, we have

E(k,y)
(

∆Y (N)
uv (k)

)
= quv − yuv (3)

E(k,y)
(

∆Y (N)
uv (k)∆Y (N)

mn (k)
)

=
1

N
quv(δumδvn − qmn) + (quv − yuv)(qmn − ymn). (4)

where quv is the frequency of genotype made up of haplotype u and v of an effectively infinite

population after the possible mechanisms of evolutionary change (except population regulation) at

intermediate stages of the life cycle such as natural selection, meiosis and random mating within

generation k. Substituting Eqs. (3) and (4) into Eqs. (1) and (2), respectively, we have

E(k,x)
(

∆X
(N)
i (k)

)
= pi − xi

E(k,x)
(

∆X
(N)
i (k)∆X

(N)
j (k)

)
=

1

2N
pi(δij − pj) + (pi − xi)(pj − xj),

1
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where

pi =
∑
u,v

ρiuvquv (5)

is the frequency of haplotype i of an effectively infinite population after the possible mechanisms

of evolutionary change (except population regulation) at intermediate stages of the life cycle such

as natural selection, meiosis and random mating within generation k.

Considering the limits as the population size N goes to infinity, we can formulate the infinitesimal

mean vector µ(t,x) as

µi(t,x) = lim
N→∞

2NE([2Nt],x)
(

∆X
(N)
i ([2Nt])

)
= lim

N→∞
2N(pi − xi)

and the infinitesimal covariance matrix Σ(t,x) as

Σij(t,x) = lim
N→∞

2NE([2Nt],x)
(

∆X
(N)
i ([2Nt])∆X

(N)
j ([2Nt])

)
= lim

N→∞
pi(δij − pj) + 2N(pi − xi)(pj − xj),

where [ · ] is used to denote the integer part of the value in the brackets, according to standard

techniques of diffusion theory (see, for example, Karlin and Taylor, 1981).

Therefore, the process X(N) converges to a diffusion process, denoted by X = {X(t), t ≥ 0}
and referred to as the Wright-Fisher diffusion with selection, satisfying the stochastic differential

equation of the form

dX(t) = µ (t,X(t)) dt+ σ (t,X(t)) dW (t),

where the diffusion coefficient matrix σ(x) satisfies the relation that

σ(t,x)σT (t,x) = Σ(t,x)

and W (t) is a multi-dimensional standard Brownian motion.

One-locus population dynamics. For the population evolving at a single locus, we use a common

category of fitness values for a diploid population at a single locus (see Hamilton, 2011, for other

categories of fitness values presented in terms of selection coefficients), which can be presented as

follows: genotypes A1A1, A1A2 and A2A2 at a given locus A have fitness values 1, 1 − hAsA

and 1− sA, respectively, where sA is the selection coefficient and hA is the dominance parameter.

Substituting the sampling probabilities q
(v)
uv and q

(f)
uv for u, v = 1, 2 into Eq. (5), respectively, we

have

p
(v)
1 =

x21 + (1− hAsA)x1x2
1− (2hAx1x2 − x22)sA

p
(v)
2 =

(1− hAsA)x1x2 + (1− sA)x22
1− (2hAx1x2 − x22)sA
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and

p
(f)
1 =

x21 + (1− hAsA)x1x2
1− (2hAx1x2 − x22)sA

p
(f)
2 =

(1− hAsA)x1x2 + (1− sA)x22
1− (2hAx1x2 − x22)sA

,

That is, we have ∣∣∣p(v)i − p
(f)
i

∣∣∣ = 0

for i = 1, 2, which implies that we have the same representation of the infinitesimal mean vectors

and covariance matrices for the cases that natural selection takes the form of viability or fecundity

selection,

µ1(x) = αAx1x2[x1hA + x2(1− hA)]

µ2(x) = −αAx1x2[x1hA + x2(1− hA)]
(6)

and

Σij(x) = xi(δij − xj) (7)

for i, j = 1, 2. Eqs. (6) and (7) ensure the same SDE-representation of the one-locus Wright-Fisher

diffusion with selection for the two types of natural selection, viability and fecundity selection.

Two-locus population dynamics. For the population evolving at two linked loci, we use a same

category of fitness values for a diploid population at a single locus and assume that the fitness

values of two-locus genotypes are determined multiplicatively from fitness values at individual loci,

e.g., the fitness value of the A1B2/A2B2 genotype is (1 − hAsA)(1 − sB). We let r denote the

recombination rate between the two loci (i.e., the rate that a recombinant gamete is produced at

meiosis). Substituting the sampling probabilities q
(v)
uv and q

(f)
uv for u, v = 1, 2, 3, 4 into Eq. (5),

respectively, and sing Taylor expansions with respect to the selection coefficients sA and sB and

the recombination rate r, we have

p
(v)
1 = x1 − (x1x4 − x2x3)r + dA

(
x1(x3 + x4)− (x3 + x4)(x1x4 − x2x3)r

)
sA

+ dB
(
x1(x2 + x4)− (x2 + x4)(x1x4 − x2x3)r

)
sB +O(s2A + sAsB + s2B + r2)

p
(v)
2 = x2 + (x1x4 − x2x3)r + dA

(
x2(x3 + x4) + (x3 + x4)(x1x4 − x2x3)r

)
sA

− dB
(
x2(x1 + x3) + (x1 + x3)(x1x4 − x2x3)r

)
sB +O(s2A + sAsB + s2B + r2)

p
(v)
3 = x3 + (x1x4 − x2x3)r − dA

(
x3(x1 + x2) + (x1 + x2)(x1x4 − x2x3)r

)
sA

+ dB
(
x3(x2 + x4) + (x2 + x4)(x1x4 − x2x3)r

)
sB +O(s2A + sAsB + s2B + r2)

p
(v)
4 = x4 − (x1x4 − x2x3)r − dA

(
x4(x1 + x2)− (x1 + x2)(x1x4 − x2x3)r

)
sA

− dB
(
x4(x1 + x3)− (x1 + x3)(x1x4 − x2x3)r

)
sB +O(s2A + sAsB + s2B + r2)
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and

p
(f)
1 = x1 − (x1x4 − x2x3)r + dA

(
x1(x3 + x4) + (x1 + x2 − x3 − x4)(x1x4 − x2x3)r

)
sA

+ dB
(
x1(x2 + x4) + (x1 − x2 + x3 − x4)(x1x4 − x2x3)r

)
sB +O(s2A + sAsB + s2B)

p
(f)
2 = x2 + (x1x4 − x2x3)r + dA

(
x2(x3 + x4)− (x1 + x2 − x3 − x4)(x1x4 − x2x3)r

)
sA

− dB
(
x2(x1 + x3) + (x1 − x2 + x3 − x4)(x1x4 − x2x3)r

)
sB +O(s2A + sAsB + s2B)

p
(f)
3 = x3 + (x1x4 − x2x3)r − dA

(
x3(x1 + x2) + (x1 + x2 − x3 − x4)(x1x4 − x2x3)r

)
sA

+ dB
(
x3(x2 + x4)− (x1 − x2 + x3 − x4)(x1x4 − x2x3)r

)
sB +O(s2A + sAsB + s2B)

p
(f)
4 = x4 − (x1x4 − x2x3)r − dA

(
x4(x1 + x2)− (x1 + x2 − x3 − x4)(x1x4 − x2x3)r

)
sA

− dB
(
x4(x1 + x3)− (x1 − x2 + x3 − x4)(x1x4 − x2x3)r

)
sB +O(s2A + sAsB + s2B),

where

dA = (x1 + x2)hA + (x3 + x4)(1− hA)

dB = (x1 + x3)hB + (x2 + x4)(1− hB).

That is, we have ∣∣∣p(v)i − p
(f)
i

∣∣∣ = O
(

1

N2

)
for i = 1, 2, 3, 4 under the assumption that the selection coefficients sA and sB and the recombi-

nation rate r are all of order O(1/N), which implies that we have the same representation of the

infinitesimal mean vectors and covariance matrices for the cases that natural selection takes the

form of viability or fecundity selection,

µ1(x) = αAx1(x3 + x4)[(x1 + x2)hA + (x3 + x4)(1− hA)]

+ αBx1(x2 + x4)[(x1 + x3)hB + (x2 + x4)(1− hB)]−R(x1x4 − x2x3)

µ2(x) = αAx2(x3 + x4)[(x1 + x2)hA + (x3 + x4)(1− hA)]

− αBx2(x1 + x3)[(x1 + x3)hB + (x2 + x4)(1− hB)] +R(x1x4 − x2x3)

µ3(x) = −αAx3(x1 + x2)[(x1 + x2)hA + (x3 + x4)(1− hA)]

+ αBx3(x2 + x4)[(x1 + x3)hB + (x2 + x4)(1− hB)] +R(x1x4 − x2x3)

µ4(x) = −αAx4(x1 + x2)[(x1 + x2)hA + (x3 + x4)(1− hA)]

− αBx4(x1 + x3)[(x1 + x3)hB + (x2 + x4)(1− hB)]−R(x1x4 − x2x3),

(8)

and

Σij(x) = xi(δij − xj) (9)

for i, j = 1, 2, 3, 4, where αA = 2NsA, αB = 2NsB and R = 2Nr are the scaled selection coefficients

and recombination rate, respectively. Eqs. (8) and (9) guarantee the same SDE-representation of
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the two-locus Wright-Fisher diffusion with selection for the two types of natural selection, viability

and fecundity selection.

Therefore, we can conclude that we have the same diffusion approximations for the Wright-Fisher

models with selection for the population dynamics at a single locus or two linked loci no matter

whether viability or fecundity selection is occurring.
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