SUPPLEMENTARY FIGURES

Fig. S1 – *Dns does not inhibit natural transformation of tDNA with one small arm of homology.* Natural transformation assay of the indicated strains with tDNA containing the indicated length of homology on either side of the mutation. All data are the result of at least three independent biological replicates and are shown as the mean ± SD.

Fig. S2 – *High efficiency transformation requires two arms of homology where at least one arm is long.* Natural transformation assay of the indicated strains with tDNA containing the indicated length of homology on either side of the mutation. All data are the result of at least three independent biological replicates and are shown as the mean ± SD. *** = p<0.001 and LOD = limit of detection.

PCR reaction. The overlapping ends of the two ARMS allows them to be spliced together and the final product is amplified with the F1 and R2 primers. (**C** and **D**) Making single PCR mutant constructs for Exo-MuGENT in ssDNA exonuclease mutant strain backgrounds. (**C**) Overview of single PCR mutant constructs. The forward oligo contains (1) a short (80 bp) arm of homology, (2) the mutation being introduced, and (3) a 3' sequence which serves as a primer to amplify the large (3 kb) downstream region of homology as depicted. (**D**) Detailed schematic depicting how forward oligos are designed to make deletions (top) and point mutations (bottom).

Fig. S4 – *Loss of recJ and exoVII does not increase mutation rate.* Fluctuation analysis for spontaneous resistance to rifampicin was performed to assess the mutation rate of the indicated strains. All data are from at least 10 independent biological replicates and shown as the mean ± SD.

Fig. S5 – *FtsZ localization during the cell cycle is largely unchanged in the* $\Delta 10xSBS$ *mutant.* Cell cycle choreography for FtsZ-RFPT. Dark red and blue colors were assigned to the maximal and minimal fluorescence intensity projections observed at each time point, respectively. This representation highlights changes in the relative distribution of fluorescence along the long cell axis. Data for each sample are the compilation of data from 40 to 80 single cells.

Fig. S6 – *The 12 DGCs targeted act additively or synergistically to reduce swimming motility in* V. cholerae. Swim assay performed for the indicated strains. All strains are in a P_{tac}-tfoX $\Delta recJ \Delta exoVII$ parent strain background. Data are the result of at least three independent biological replicates and shown as the mean ± SD.

SUPPLEMENTARY TABLES

Locus ^{&}	Gene name	Replicate 1 ^{\$}	Replicate 2 [§]	Replicate 3 ^{\$}	Average expression [#]	Expression rank [*]	Biofilm [%]	Motility [%]
VC0072		0.155	0.135	0.111	0.134	20		
VC0130		0.182	0.140	0.221	0.181	16		
VC0398		0.278	0.250	0.260	0.263	10		
VC0653	rocS	0.378	0.394	0.760	0.510	2		\mathbf{h}
VC0658	1005	0.084	0.123	0.172	0.126	21		
VC0703	mbaA	0.305	0.262	0.207	0.258	11		
VC0900	cdgG	0.303	0.379	0.422	0.368	3		
VC1029	1080	0.080	0.072	0.076	0.076	30		
VC1067	cdgH	0.289	0.351	0.184	0.275	8	+	^
VC1104	cdgK	0.080	0.082	0.059	0.074	32	+	۲
VC1185		0.053	0.056	0.068	0.059	37		-
VC1216		0.083	0.152	0.690	0.308	5		
VC1353		0.150	0.146	0.206	0.167	18		
VC1367		0.445	0.360	0.273	0.359	4		
VC1370		0.033	0.034	0.049	0.039	39		
VC1372		0.088	0.130	0.145	0.121	23		
VC1376	cdgM	0.026	0.072	0.171	0.089	26	+	
VC1593	acgB	0.048	0.029	0.119	0.065	33		
VC1599		0.216	0.246	0.340	0.267	9		
VC1934		0.030	0.023	0.066	0.040	38		
VC2224		0.087	0.070	0.073	0.077	29		
VC2285	cdgL	0.318	0.235	0.309	0.287	6	↓	^
VC2370		0.032	0.041	0.105	0.059	36		•
VC2454	vpvC	0.141	0.180	0.248	0.189	14	$\mathbf{+}$	1
VC2697		0.016	0.004	0.042	0.020	41		-
VC2750		0.054	0.041	0.139	0.078	28		
VCA0049		0.227	0.122	0.227	0.192	13		
VCA0074	cdgA	0.028	0.038	0.037	0.034	40	+	
VCA0080		0.081	0.121	0.168	0.123	22		
VCA0165		0.148	0.095	0.377	0.207	12		
VCA0217		0.084	0.134	0.121	0.113	24		
VCA0557		0.152	0.085	0.269	0.169	17		
VCA0560		0.179	0.154	0.118	0.151	19		
VCA0697	cdgD	0.590	0.522	0.443	0.519	1		1
VCA0785	cdgC	0.041	0.029	0.110	0.060	34		
VCA0848		0.048	0.051	0.126	0.075	31		
VCA0939		0.068	0.043	0.128	0.080	27		
VCA0956		0.159	0.171	0.220	0.183	15		
VCA0960		0.038	0.048	0.092	0.060	35		
VCA0965		0.058	0.073	0.174	0.102	25		
VCA1082		0.219	0.296	0.319	0.278	7		

Table S1 – RNA-seq expression analysis of all DGCs in *V. cholerae* during growth in rich medium

[&]The 12 loci highlighted in blue were targeted for inactivation via Exo-MuGENT ^{\$}Data represent the relative transcript abundance of each gene indicated on the left in three independent biological replicates (see **Methods** for a detailed description on how this analysis was performed)

*Average expression is the mean of all three biological replicates.

*Expression of each DGC is indicated on a scale from 1 (highest expression) to 41 (lowest expression)

[%]Mutants of the genes indicated have previously been observed to display an increase (\blacklozenge) or decrease (\blacklozenge) in biofilm formation or motility as indicated (1,2).

resistances	Description	/ (strain#)			
V. cholerae strains					
E7946 Sm ^R	Wildtype <i>V. cholerae</i> 01 El Tor strain. The parent strain used to make all <i>V. cholerae</i> mutants in this study	(3) / (SAD030)			
$\Delta exol$::Kan ^R (i.e. $\Delta VC1234$)	Introduced Δ <i>exoI</i> ::Kan ^R mutation into the wildtype strain background	This study (TND0111 / SAD1505)			
Δ <i>recJ</i> ::Spec ^R (i.e. ΔVC2417)	Introduced Δ <i>recJ</i> ::Spec [®] mutation into the wildtype strain background	This study (TND0109 / SAD1506)			
$\Delta exolX$::Kan ^R (i.e. $\Delta VC0898$)	Introduced Δ <i>exoIX</i> ::Kan ^R mutation into the wildtype strain background	This study (TND0110 / SAD1507)			
Δ <i>exoVII</i> ::Carb ^R (i.e. ΔVC0766)	Introduced $\Delta exoVII$::Carb ^R mutation into the wildtype strain background	This study (TND0112 / SAD1508)			
Δ <i>recJ</i> ::Spec ^R , Δ <i>exoIX</i> ::Kan ^R	Introduced ∆ <i>exoIX</i> ::Kan ^R mutation into the TND0109 strain background	This study (TND0125 / SAD1509)			
Δ <i>recJ</i> ::Spec ^R , Δ <i>exoVII</i> ::Carb ^R	Introduced ∆ <i>exoVII</i> ::Carb [®] mutation into the TND0109 strain background	This study (TND0126 / SAD1510)			
Δ <i>exoIX</i> ::Kan ^R , Δ <i>exoVII</i> ::Carb ^R	Introduced Δ <i>exoVII</i> ::Carb ^R mutation into the TND0110 strain background	This study (TND0127 / SAD1511)			
Δ <i>recJ</i> ::Spec ^R , ΔexoVII::Carb ^R , ΔexoIX::Kan ^R	Introduced $\Delta exoVII$::Carb ^R and $\Delta exoIX$::Kan ^R mutations into the TND0109 strain background	This study (TND0118 / SAD1512)			
P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔVC1807::Kan ^R	MuGENT to introduce P _{tac} -tfoX mutation and 501bp deletions into the 5' end of the <i>recJ</i> and <i>exoVII</i> genes in the wildtype strain background	This study (TND0195 / SAD1513)			
P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔmutS 501bp, ΔVC1807::Spec ^R	Introduced a ~500bp deletion into the 5' end of the <i>mutS</i> gene in the TND0195 strain background via cotransformation	This study (SAD1252)			
P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔVC1807::P _{tac} -mutL E32K Spec ^R	Introduced the $\Delta VC1807::P_{tac}$ - mutL E32K (Spec ^R -linked to this mutation) into the TND0195 strain background	This study (SAD1308)			
P_{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Spec ^R	Introduced $\Delta lacZ::lacIq$ mutation into TND0195 via cotransformation	This study (TND0252 / SAD1514)			
	resistances resistances E7946 Sm ^R $\Delta exol::Kan^R$ (i.e. $\Delta VC1234$) $\Delta recJ::Spec^R$ (i.e. $\Delta VC2417$) $\Delta exolX::Kan^R$ (i.e. $\Delta VC0898$) $\Delta exolX::Kan^R$ (i.e. $\Delta VC0766$) $\Delta recJ::Spec^R$, $\Delta exolX::Kan^R$ $\Delta recJ::Spec^R$, $\Delta exolX::Kan^R$ $\Delta exolX::Kan^R$, $\Delta exolII::Carb^R$ $\Delta exolX::Kan^R$, $\Delta exolII::Carb^R$, $\Delta exolX::Kan^R$ $P_{tac}-tfoX \Delta recl 501bp, \Delta exolII$ $S01bp, \Delta VC1807::Kan^R$ $P_{tac}-tfoX \Delta recl 501bp, \Delta exolII$ $S01bp, \Delta VC1807::P_{tac}-mutL E32K$ Spec ^R $P_{tac}-tfoX \Delta recl 501bp, \Delta exolII$ $S01bp, \Delta VC1807::P_{tac}-mutL E32K$ Spec ^R $P_{tac}-tfoX \Delta recl 501bp, \Delta exolII$ $S01bp, \Delta VC1807::P_{tac}-mutL E32K$ Spec ^R $P_{tac}-tfoX \Delta recl 501bp, \Delta exolII$	resistancesDescriptionE7946 Sm ^R Wildtype V. cholerae 01 El Tor strain. The parent strain used to make all V. cholerae mutants in this studyΔexol::Kan ^R (i.e. ΔVC1234)Introduced Δexol::Kan ^R mutation into the wildtype strain backgroundΔrecJ::Spec ^R (i.e. ΔVC2417)Introduced Δexol::Kan ^R mutation into the wildtype strain backgroundΔexolX::Kan ^R (i.e. ΔVC0898)Introduced ΔexolX::Kan ^R mutation into the wildtype strain backgroundΔexolX::Kan ^R (i.e. ΔVC0766)Introduced ΔexolX::Kan ^R mutation into the wildtype strain backgroundΔexolX::Kan ^R (i.e. ΔVC0766)Introduced ΔexolX::Kan ^R mutation into the wildtype strain backgroundΔexolX::Kan ^R (i.e. ΔVC0766)Introduced ΔexolX::Kan ^R mutation into the TND0109 strain backgroundΔexolX::Kan ^R , ΔexolII::Carb ^R mutation into the TND0109 strain backgroundIntroduced ΔexolII::Carb ^R mutation into the TND0109 strain backgroundΔexolX::Kan ^R , ΔexolII::Carb ^R , mutation into the TND0109 strain backgroundIntroduced ΔexolII::Carb ^R mutation into the TND01010 strain backgroundΔexolX::Kan ^R , ΔexolII::Carb ^R , MuceTfoX ΔrecJ 501bp, ΔexolIIIntroduced ΔexolII::Carb ^R mutation and 501bp deletions into the 5' end of the rec/ and exolII genes in the wildtype strain backgroundPww-tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔVC1807::Spec ^R Introduced a ~500bp deletion into the 5' end of the mutS gene in the TND0195 strain background via cotransformationPww-tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔVC1807::Spec ^R Introduced ΔacZ::laclq mutL E32K (Spec ^R -linked to this mutation into the TND0195 via cotransformation			

 Table S2 – Strains used in this study

	501bp, Δ <i>lacZ::lacIq</i> , ΔVC1807::Kan ^R , ΔVC2224	ΔVC2224 with a premature stop codon containing sequence in the TND0252 strain background.	(TND0383 / SAD1515)
ΔVC1104	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVC1104	Replaced ~50bp of the 5' end of $\Delta VC1104$ with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0384 / SAD1516)
ΔVC1376	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVC1376	Replaced \sim 50bp of the 5' end of Δ VC1376 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0385 / SAD1517)
ΔVCA0074	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVCA0074	Replaced ~50bp of the 5' end of Δ VCA0074 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0386 / SAD1518)
ΔVCA0939	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVCA0939	Replaced ~50bp of the 5' end of Δ VCA0939 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0387 / SAD1519)
ΔVCA0697	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVCA0697	Replaced \sim 50bp of the 5' end of Δ VCA0697 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0388 / SAD1520)
ΔVC2285	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVC2285	Replaced \sim 50bp of the 5' end of Δ VC2285 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0389 / SAD1521)
ΔVCA0956	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVCA0956	Replaced \sim 50bp of the 5' end of Δ VCA0956 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0390 / SAD1522)
ΔVC2454	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVC2454	Replaced \sim 50bp of the 5' end of Δ VC2454 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0391 / SAD1523)
ΔVC1216	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVC1216	Replaced \sim 50bp of the 5' end of Δ VC1216 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0392 / SAD1524)
ΔVC1067	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVC1067	Replaced ~50bp of the 5' end of Δ VC1067 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0393 / SAD1525)
ΔVC1599	P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Kan ^R , ΔVC1599	Replaced ~50bp of the 5' end of Δ VC1599 with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0394 / SAD1526)
Δ12 DGC "unrepaired"	ΔVCA0956, ΔVC1599, ΔVC2454, ΔVC1104, ΔVCA0939, ΔVCA0074, ΔVC2224, ΔVC1376, ΔVC1067, ΔVC1216, ΔVCA0697, ΔVC2285, P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Tm ^R	Replaced ~50bp of the 5' end of all 12 DGCs indicated with a premature stop codon containing sequence in the TND0252 strain background.	This study (TND0349 / SAD1527)

Δ12 DGC "repaired"	ΔVCA0956, ΔVC1599, ΔVC2454, ΔVC1104, ΔVCA0939, ΔVCA0074, ΔVC2224, ΔVC1376, ΔVC1067, ΔVC1216, ΔVCA0697, ΔVC2285, ΔVC1807::Spec ^R	Repaired the Ptac-tfoX, $\Delta recJ$, $\Delta exoVII$, and $\Delta lacZ::lacIq$ mutations in TND0349.	This study (TND0354 / SAD1528)
Δ10xSBS parent strain background	Δ10xSBS, P _{tac} -tfoX ΔrecJ 501bp, ΔexoVII 501bp, ΔlacZ::lacIq, ΔVC1807::Spec ^R	Mutated conserved residues in the 10 highest-affinity SBSs in the TND0252 strain background.	This study (TND0291 / SAD1529)
Δ10xSBS parent strain background "repaired"	Δ10xSBS, ΔVC1807::Spec ^R	Repaired the P_{tac} -tfoX, $\Delta recJ$, $\Delta exoVII$, and $\Delta lacZ$::lacIq mutations in TND0291.	This study (TND0311 / SAD1530)
Δ10xSBS Ptac-mutL E32K strain background	$\Delta 10 \text{xSBS}, P_{tac}\text{-}tfoX \Delta recJ 501 \text{bp},$ $\Delta exoVII 501 \text{bp}, \Delta VC1807::P_{tac}\text{-}mutL E32 \text{K Spec}^{\text{R}},$ $\Delta VCA0692::Carb^{\text{R}}$	Mutated conserved residues in the 10 highest-affinity SBSs in the SAD1308 strain background.	This study (TND0273 / SAD1531)
Δ10xSBS Ptac-mutL E32K strain background "repaired"	Δ10xSBS, ΔVC1807::Kan ^R	Repaired the P_{tac} -tfoX, $\Delta recJ$, $\Delta exoVII$, $\Delta VC1807::P_{tac}$ -mutL E32K, and $\Delta VCA0692$ mutations in TND0273.	This study (TND0313 / SAD1532)
ΔcdgJ	ΔcdgJ::Kan ^R	Introduced a cdgJ mutation into the WT (SAD030) strain background.	This study (TND0411 / SAD1533)
Δ12 DGC ΔcdgJ	ΔVCA0956, ΔVC1599, ΔVC2454, ΔVC1104, ΔVCA0939, ΔVCA0074, ΔVC2224, ΔVC1376, ΔVC1067, ΔVC1216, ΔVCA0697, ΔVC2285, ΔVC1807::Spec ^R , ΔcdgJ::Kan ^R	Introduced a cdgJ mutation into the TND0354 strain background.	This study (TND0412 / SAD1534)
WT <i>ftsZ</i> -RFPT	ΔlacZ::(P _{bad} ::ftsZ-RFPT-zeo)	Introduced a P _{bad} :: <i>ftsZ</i> -RFPT- <i>zeo</i> in place of the chromosomal copy of <i>lacZ</i> into the WT (SAD030) strain background	This study
∆slmA <i>ftsZ</i> -RFPT	ΔslmA::Kan ^R , Δ <i>lacZ</i> ::(P _{bad} ::ftsZ- RFPT-zeo)	Introduced a P_{bad} :: <i>ftsZ</i> -RFPT- <i>zeo</i> in place of the chromosomal copy of <i>lacZ</i> in a $\Delta slmA$ mutant strain background	This study
Δ10xSBS <i>ftsZ</i> -RFPT	ΔVC1807::Kan ^R , Δ10xSBS, ΔlacZ::(P _{bad} ::ftsZ-RFPT-zeo)	Introduced a P _{bad} :: <i>ftsZ</i> -RFPT- <i>zeo</i> in place of the chromosomal copy of <i>lacZ</i> into TND0313	This study
WT pMLH17	pMLH17	WT strain (SAD030) with pMLH17 (Hsieh <i>et al.</i> unpublished), an Amp ^R arabinose- inducible vector for ectopic expression of <i>vpsR</i> . This vector is derived from pHERD20T.	This study
Δ12 DGC pMLH17	ΔVCA0956, ΔVC1599, ΔVC2454, ΔVC1104, ΔVCA0939, ΔVCA0074, ΔVC2224, ΔVC1376, ΔVC1067, ΔVC1216, ΔVCA0697, ΔVC2285, ΔVC1807::Spec ^R , pMLH17	TND0354 with pMLH17 (Hsieh <i>et al.</i> unpublished), an Amp ^R arabinose-inducible vector for ectopic expression of <i>vpsR</i> . This vector is derived from pHERD20T.	This study
A. baylyi strains			
WT	Strain ADP1	Wildtype <i>A. baylyi</i> strain used throughout this study	(4) / SAD631

		Introduced Δ <i>recJ</i> ::Kan ^R mutation	This study
∆RecJ	$\Delta recJ$::Kan ^R (i.e. Δ ACIAD3500)	into the wildtype strain	(TND0166 /
		background	SAD1535)
		Introduced an in-frame $\Delta exoX$	This study
ΔΕχοΧ	$\Delta exoX$ (i.e. $\Delta ACIAD2257$)	mutation into the wildtype strain	(TND0185 /
		background	SAD1536)
		Introduced an in-frame $\Delta exoX$	This study
ΔRecJ ΔExoX	$\Delta recJ$::Kan ^R , $\Delta exoX$	mutation into the TND0166 strain	(TND0194 /
		background	SAD1537)

Table S3 – Primers used in this study

Primer Name	Primer Sequence $(5' \rightarrow 3')^*$	Description		
Primers for Mutant constructs				
BBC688	TGGATGAGTGCTAAATGATGC	$\Delta exol$ Vc F1		
BBC689	gtcgacggatccccggaatCATGTGGCTTACCAAATCGC	$\Delta exol$ Vc R1		
BBC690	gaagcagctccagcctacaTGCTAACATCGTTTATTTTACTTGC	$\Delta exol$ Vc F2		
BBC691	AACATGGTAAACAGCACCATC	Δexol Vc R2		
BBC678	TGGATGCCAATCAACATTCG	Δ <i>recJ</i> Vc F1		
BBC679	gtcgacggatccccggaatCATACTGTGACAGGCCAAAG	Δ <i>recJ</i> Vc R1		
BBC680	gaagcagctccagcctacaGAAGCGAAATGATTGAAAACAACG	Δ <i>recJ</i> Vc F2		
BBC681	GATCGCATCCACAATGTTAGC	Δ <i>recJ</i> Vc R2		
DOG0190	AGAAGAACTCTGTTTTGCATTAGAAC	Δ <i>exoIX</i> Vc F1		
DOG0191	gtcgacggatccccggaatCAAGCGACGAGTTCATGCTTG	$\Delta exolX$ Vc R1		
DOG0192	gaagcagctccagcctacaTAAATCCCCTCTGATTAGCATC	ΔexoIX Vc F2		
DOG0193	TTAACCCTGACGTGACCGTG	$\Delta exolX$ Vc R2		
DOG0185	TTCACTTCACCCAGTACACGC	ΔexoVII Vc F1		
DOG0186	gtcgacggatccccggaatCAACGCTGATTCCTCAGACG	Δ <i>exoVII</i> Vc R1		
DOG0187	gaagcagctccagcctacaTTAATGGATGGTGAGATTCTCTC	ΔexoVII Vc F2		
DOG0188	AGTTTGTAGAGGTTGTTATGGTAC	ΔexoVII Vc R2		
DOG0219	ATAGATGGTGCCTTGCGC	ΔexoVII 501bp Vc F1		
DOG0220	gctaattcagtttaagcggccatCAACGCTGATTCCTCAGACG	ΔexoVII 501bp Vc R1		
DOG0221	atggccgcttaaactgaattagcCTGCCTGTAGTGATCTACCCC	Δ <i>exoVII</i> 501bp Vc F2		
DOG0222	AAGTTCTCGGTAGTCAAAACC	ΔexoVII 501bp Vc R2		
BBC1342	ATACGTTCAGGCACTGTTTGG	Δ <i>recJ</i> 501bp Vc F1		
BBC1343	GCTAATTCAGTTTAAGCGGCCATCATGCTTGAAAAGAGCC AGC	Δ <i>recJ</i> 501bp Vc R1		
BBC1344	ATGGCCGCTTAAACTGAATTAGCGTGGATGCTATGGTCAA CCC	Δ <i>recJ</i> 501bp Vc F2		
BBC1345	TTACGAATCGCAGACACTAGC	Δ <i>recJ</i> 501bp Vc R2		
ABD824	TTTAGCCCCATTGGCGAACTGGG	Δ <i>mutS</i> 501bp Vc F1		
ABD825	GAGTATCTTTGACGTATTGGATCtcatattatactaCATAATCTT ATGTC	Δ <i>mutS</i> 501bp Vc R1		
ABD826	GATAAGCAGCGACATAAGATTATGtagtataatatgaGATCCAA TACGTC	Δ <i>mutS</i> 501bp Vc F2		
ABD360	AGATCTTGCCTGATGACGCTTTACTC	Δ <i>mutS</i> 501bp Vc R2		
BBC717	AAATAGATTTGGTGACTTTACCTCC	ΔVC1807 Vc F1		
ABD340	gtcgacggatccccggaatACGTTTCATTAGTCACCTCTATTGTT AACTT	ΔVC1807 Vc R1		
ABD341	gaagcagctccagcctacaTAGTCGAAAATAAAAAAAAAGAGGCTC GCCTC	ΔVC1807 Vc F2		

BBC718	CTTTACGCCTGATTGTCTACAC	ΔVC1807 Vc R2
BBC1249	CCAGCATCTAAACTGTTcTtCACCAACTCCTTGACTAC	mutL E32K R1
BBC1250	GTAGTCAAGGAGTTGGTGaAgAACAGTTTAGATGCTGG	mutL E32K F2
BBC791	caatttcacacaggatcccgggAGGAGGTaacgtaATGACGATTCGA ATC	MIDDLE for P _{tac} -mutL E32K F
BBC792	tgtaggctggagctgcttcTCATGAGTGTAATGCTGTAATTG	MIDDLE for P _{tac} -mutL E32K R
ABD342	ATTTTTCAGTTGGCCTACAATGCTTTCC	UP for ΔVC1807::P _{tac} -mutL Spec ^R E32K F1
BBC244	CCCGGGATCCTGTGTGAAATTGTTATCCGC	UP for ΔVC1807::P _{tac} -mutL E32K Spec ^R R1
ABD341	gaagcagctccagcctacaTAGTCGAAAATAAAAAAAAGAGGCTC GCCTC	DOWN for ΔVC1807::P _{tac} -mutL Spec ^R E32K F2
ABD345	CTTGCTAACCGTTGGTGTTACCAGC	DOWN for ΔVC1807::P _{tac} -mutL Spec ^R E32K R2
DOG0209	TAGTGGTGGATGACCTTCATG	Δ <i>recJ</i> Ab F1
DOG0210	gtcgacggatccccggaatCATTTATGGCATCAGTCGTTGC	$\Delta rec/$ Ab R1
D0G0211	gaagcagctccagcctacaTAAAAAAAATCGCTCATTTGAGCG	Δrec/ Ab F2
D0G0212	AATCAGACCTGCACCAGCTC	$\Delta rec/Ab R2$
D0G0231	TCAGCCTGCTCTTAATACGC	$\Delta exoX$ Ab F1
DOG0232	gtcgacggatccccggaatCAATCTGATTTTCTTTGCTTACATTG	$\Delta exoX$ Ab R1
DOG0233	gaagcagctccagcctacaTAAAATATAGCTCTCACTGACTATTT C	Δ <i>exoX</i> Ab F2
D0G0234	ATCATGTTGTTCGTTTGCATCG	ΔexoX Ab R2
BBC1388	ATGCCGATCATATCGGTCAGTGTGTACACACTCCTGTTCCc AatCTatacAcagAAGCATTTATTCTCGTTGGTGAC	SBS29 edit F
BBC1389	GCTACGAGTAGAAATCATCGC	SBS29 edit R
BBC1383	AAGCCGATAAGAATGAGCGGTTAGCAGGCAAAACCATTGG cGAGCAtcTttTgGCACCGACCAAAATTTATATCAA	SBS17 edit F
BBC1384	CTAGCATGGTGAAAGTCAGTG	SBS17 edit R
BBC1393	GTGATTCAACTCGCAAAACGGGTACGGTTTAGCTAGGTTTa aTctgGTTTtagTtagTATTTGGCCTTGTTTGATAATGG	SBS49 edit F
BBC1384	CTAGCATGGTGAAAGTCAGTG	SBS49 edit R
BBC1408	TTAGGCGCAAGGTCACTTTCACGGCTTCAGGCAAGGCGTTc GTtGGaACCCAtTCCTTACTCCATTCACCTTGC	SBS5 edit F
BBC1409	CAAGGTTTTGCGTTTAAGCG	SBS5 edit R
BBC1398	CTGCAGGCAGTATGATCGCCGATCAAGATCAGGAACGTTTa cTgGCttTAACgAACCAACTCGCGACCGATC	SBS15 edit F
BBC1399	AAACTACGACAAGTATCTTGCG	SBS15 edit R
BBC1412	TATTGGATTGGGGATCGTTATCAAAGACAAGGCTATGGTA AaGAAGCttTgACgGCGCTGATTTTATTCTGTTTTGAG	SBS23 edit F
BBC1413	ACTATCTTGGTCGAGTTGACC	SBS23 edit R
BBC1403	CAGATAATGTGGTTTTGACTCTTTGTTCGAGGTTACCGTGt caAAAaGacTctTgAAGTCTGGCATCATTGTAAGTG	SBS46 edit F
BBC1404	TCTCTACCATCAATTCGATCGG	SBS46 edit R
BBC1378	AATCGCCCGACACATCGCGCAGCGAACCATGATCAATAAAa TTcGCcgaaACaAgCAAAGAGTTGATGTTGATGCC	SBS56 edit F
BBC1379	CTGTTGTTACTGGGTATTGGC	SBS56 edit R
BBC1373	TCCATGCGGAAACCGATAGTGAGCGAGATAGCGCATTACGc GAGCAtcTttTgGCGCTTCGTAACCATATTCG	SBS2 edit F
BBC1374	GAAGTTTTCGGCCAGATAGCG	SBS2 edit R
BBC1084	CAAGTAGGCGCGTAAGTTGGCGGTTTGCTGCCACTCATCAC CCGGCATTTTGTACATAAGacttcttTTcCCATACACCACTTCA TCGTGTG	SBS66 edit F

BBC1085	AAAGTGGGTAGCCCAGAATTCC	SBS66 edit R
DOG0300	CGCAGCAAAAAATACAACATACCATTATTCAACGTCTATGg	
	ccgcttaaactgaattagcTTGATTTCCACCAGCAGTTTAGC	VC1067 edit F
DOG0301	TTATCCCTTCCCAACTAAGCAGC	VC1067 edit R
	CGTGAGTTAGCGGTATAGGCTAAAGAGTTGAGCGCCGAGC	
DOG0304	ATGgccgcttaaactgaattagcGATGAGCAGCATCAATCTCTC	VC1216 edit F
D0G0305	TTTGTCAGCATCTGGATGTTGAG	VC1216 edit R
200000	AAGGTTATGAAAATGTCTTGCGTATCCGAAACAAGTGATG	
DOG0308	gccgcttaaactgaattagcCCTTTAATGATGAAACATCATGTCG	VCA0956 edit F
DOG0309	ATCATTCACTTTACGCATATTTCC	VCA0956 edit R
500010	TTCTATAGTATGCACTCAACGACTTATACATCGAATTATGg	
D0G0312	ccgcttaaactgaattagcGTACTTGGTTTCATTCCTACACTG	VCA0697 edit F
D0G0313	AACAAATCCATATTGGCATCATAG	VCA0697 edit R
	ATAAACGCTTACGTTTAGCCCCGGAGAGGGGTGAGTGCATGg	
DOG0316	ccgcttaaactgaattagcTGCGGCCTAAGTTTCTTTG	VC1599 edit F
D0G0317	ттастсасстсатссатсс	VC1599 edit B
2000017	TTTGTTCTAAGTAAAGGTTTATTATGACGATGGTGATATG	
DOG0320	gccgcttaaactgaattagcGCGGTGGTGTTAGGCTTTTTAATG	VC2285 edit F
D0G0321	AATCACTGTCGCCACTAAAAC	VC2285 edit R
200001	TAACGATTGGCTAGGTTCCCCCAAGCCCGAAGCAACCGATGg	
D0G0324	ccgcttaaactgaattagcAATAGAATTGAAGAGCTTTTTGATAA	VCA0939 edit F
2000021	C.	
D0G0325	ΑΑΑΓGGTTGCCAGTATAAGC	VCA0939 edit B
200020		
DOG0328	ccocttaaactgaattagcATGCGCTTCTGTTTTCCACTG	VC2224 edit F
D0G0329	TTCAAGCACGCTTAGACTTAC	VC2224 edit B
0000027	TGGTGGGTTTTTCATTTCTAGAGGTTAGCAGGCAATTATG	
DOG0332	ccocttaaactgaattagcGTTTTTGTGCTGGCCGCAT	VC1104 edit F
D0G0333	AACATACGAATCGAGCCATC	VC1104 edit R
2000000	GATATTGATATATCACACATCTTCATCATGATTTTTCATG	
DOG0336	ccgcttaaactgaattagcATTGTGCCCTTGCTGGTAC	VC1376 edit F
D0G0337	AATTTTAGGTACTATGCTTGAAGAG	VC1376 edit R
	CCCGCTGATCTTACATGCCAAAACACTGCTGATCTTCATGg	
DOG0340	ccgcttaaactgaattagcGATTTATCTAAGTCTTACTCTCGC	VCA0074 edit F
D0G0341	TTATCTTGGGTATTGGTCGC	VCA0074 edit R
	AACGCGAACTTCGCCACTGGTTAATCGCTTGCTGAAGATGg	
DOG0344	ccgcttaaactgaattagcATTCCGCGCGCGCATACAG	VC2454 edit F
D0G0345	AACCTTCTCACCATCATCAATG	VC2454 edit R
BBC1672	GATCAATTCCTTTGGCTCGAG	AcdgI F1
BBC1673	gtcgacggatccccggaatCATGGTGTCCTCAAAGGGTTG	AcdgI R1
22010/0	gaagcagctccagcctacaCGATTAATTTAGTGATAAGTTAATGC	
BBC1674	ACC.	ΔcdgJ F2
BBC1675	CATACTCCCCGACAATTGCAC	AcdgL R2
Primers fo	r MASC-PCR	
		Foligo to detect all resistance cassette
ABD725	GAAGCAGCTCCAGCCTACA	or in-frame mutations
122010		Foligo to detect all 501 bp or 50 bp
ABD969	ATGGCCGCTTAAACTGAATTAGC	mutations
BBC692	GAACAGCAAAATCATGTAACG	R to detect <i>exol</i> mutation in Vc
BBC682	AAGAGTTGAAACAATATATGGAATGG	R to detect <i>recl</i> mutation in Vc
D0G0194	TTTCCGCGATTGGATGCTG	R to detect <i>exoIX</i> mutation in Vc
D0G0189	TCGATGAATTATGTGATACAACGC	R to detect <i>exoVII</i> mutation in Vc
D0G0223	ΑGGATGCTGTTTATCAACCTTCTG	R to detect <i>exoVII</i> 501hn mutation in
2000223		it to acteer every in sorph indiation in

		Vc
BBC1346	CAGTTCCATCAGTTTAGGC	R to detect <i>recJ</i> 501bp mutation in Vc
ABD848	AGGGTATCAATGCCGTGACG	R to detect <i>mutS</i> 501bp mutation in Vc
BBC030	ACCAAACAATAAACGAGTAATGC	R to detect VC1807 mutation in Vc
BBC1251	AGTCAAGGAGTTGGTGagg	F to detect <i>mutL</i> E32K
BBC1252	GGTTAAGCGTGAGACTGAGC	R to detect <i>mutL</i> E32K
BBC1150	GCACTTGGTTTACAAGGTTATGAC	R to detect $\Delta recJ$ mutation in Ab
DOG0235	AAGCATCTGGTAAAGTCAATAAG	R to detect $\Delta exoX$ mutation in Ab
BBC1676	TTTAACGCTGAGCGCTCGAC	R to detect $\Delta cdgJ$ mutation
BBC1390	CTGTTCCcAatCTatacAcag	Detect SBS29 edited F
BBC1391	AACAGCGGTATTTTATTGCG	Detect SBS29 R
BBC1385	CCATTGGcGAGCAtcctt	Detect SBS17 edited F
BBC1386	GATTTCGCCGATGACCCATG	Detect SBS17 R
BBC1395	CTAGGTTTaaTctgGTTTtagTtag	Detect SBS49 edited F
BBC1396	AGTGAATAAAGCAATCCGCAAG	Detect SBS49 R
BBC1411	CGCTGTTTAGCCCGCATTTTC	Detect SBS5 edited F
BBC1410	AAGGAaTGGGTtCCaAtg	Detect SBS5 R
BBC1400	AGGAACGTTTacTgGttt	Detect SBS15 edited F
BBC1401	GAACTGTTCTACACGCCAG	Detect SBS15 R
BBC1414	GGCTATGGTAAaGAAGttt	Detect SBS23 edited F
BBC1415	CCTAATGGGTAACTTAACTCGTG	Detect SBS23 R
BBC1405	ACCGTGtcaAAAaGaccct	Detect SBS46 edited F
BBC1406	GACCGGGACAAATGCTTGAG	Detect SBS46 R
BBC1380	ATGATCAATAAAaTTcGCcgaa	Detect SBS56 edited F
BBC1381	CTCGATGATCTCTTACTGCG	Detect SBS56 R
BBC1375	CATTACGcGAGCAtcctt	Detect SBS2 edited F
BBC1376	GTCGGCTTGAATCGCGAC	Detect SBS2 R
BBC1086	GGCATTTTGTACATAAGacttctt	Detect SBS66 edited F
BBC1087	AATGTTGACGGTGGACGCG	Detect SBS66 R
DOG0302	TGACGTATTCAATTTCAAGGTTG	Detect VC1067 edit R
DOG0306	ATGAAGTGCTGAAATGCCG	Detect VC1216 edit R
DOG0310	CAAAGGAACTGGTGTCACTG	Detect VCA0956 edit R
DOG0314	ATTGAGCCACAATTTGCTGG	Detect VCA0697 edit R
DOG0318	AGAGTGAGGTTTGATCACTAAACC	Detect VC1599 edit R
DOG0322	TTTCTTCGGTTCGAATGAAGGG	Detect VC2285 edit R
DOG0326	AGAGTCAGAGGGTTAGCATAG	Detect VCA0939 edit R
DOG0330	TGTAGTGGTAGTAATGACCGG	Detect VC2224 edit R
DOG0334	TGATCACTGAGCGATAAGGCC	Detect VC1104 edit R
DOG0338	GCATATCGAGATCTTGTTCCATG	Detect VC1376 edit R
DOG0342	CAAGCAGTAGCGGTTCAAG	Detect VCA0074 edit R
D0G0346	ACGCTGGCTAACTTAACCG	Detect VC2454 edit R

SUPPLEMENTARY REFERENCES

- 1. Liu, X., Beyhan, S., Lim, B., Linington, R.G. and Yildiz, F.H. (2010) Identification and characterization of a phosphodiesterase that inversely regulates motility and biofilm formation in Vibrio cholerae. *J Bacteriol*, **192**, 4541-4552.
- 2. Townsley, L. and Yildiz, F.H. (2015) Temperature affects c-di-GMP signalling and biofilm formation in Vibrio cholerae. *Environ Microbiol*, **17**, 4290-4305.
- 3. Miller, V.L., DiRita, V.J. and Mekalanos, J.J. (1989) Identification of toxS, a regulatory gene whose product enhances toxR-mediated activation of the cholera toxin promoter. *J Bacteriol*, **171**, 1288-1293.
- 4. Juni, E. and Janik, A. (1969) Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). *J Bacteriol*, **98**, 281-288.