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Supplementary Data 
 
 
Strains 
 

  Strain Integrated plasmid Plasmid Name 

yE
G

FP
 

PTC875 YIp-HK-TEF1p-L0-yEGFP_mut3-24xMS2SL-PGK1t pNM1-MS2SL 

PTC1006 YIp-HK-TEF1p-U-yEGFP_mut3-24xMS2SL-PGK1t pNM1b-MS2SL 

PTC897 YIp-HK-TEF1p-M1U-yEGFP_mut3-24xMS2SL-PGK1t pNM2-MS2SL 

PTC899 YIp-HK-TEF1p-G10-yEGFP_mut3-24xMS2SL-PGK1t pNM44-MS2SL 

PTC992 YIp-HK-TEF1p-M3-yEGFP_mut3-24xMS2SL-PGK1t pNM3c-MS2SL 

PTC901 YIp-HK-TEF1p-M3U-yEGFP_mut3-24xMS2SL-PGK1t pNM3-MS2SL 

PTC903 YIp-HK-TEF1p-G14-yEGFP_mut3-24xMS2SL-PGK1t pNM45-MS2SL 

PTC825 YIp-HK-PAB1p-L0-yEGFP_mut3-24xMS2SL-PGK1t pED27 

PTC905 YIp-HK-PAB1p-M1U-yEGFP_mut3-24xMS2SL-PGK1t pED32 

PTC907 YIp-HK-PAB1p-G10-yEGFP_mut3-24xMS2SL-PGK1t pED33 

PTC876 YIp-HK-DCD1p-L0-yEGFP_mut3-24xMS2SL-PGK1t pNM4-MS2SL 
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PTC1015 Ylp-HK-TEF1p-L0-ymNeonGreen-24xMS2SL-PGK1t pED41 

PTC1034 YIp-HK_TEF1p-M3wN-ymNeonGreen-24xMS2SL-PGK1t pED51 

PTC1043 YIp-HK_TEF1p-M3N-ymNeonGreen-24xMS2SL-PGK1t pED55 

PTC1017 Ylp-HK-TEF1p-M3UN-ymNeonGreen-24xMS2SL-PGK1t pED42 

PTC1019 Ylp-HK-TEF1p-G14-ymNeonGreen-24xMS2SL-PGK1t pED43 

PTC1036 YIp-HK-PAB1p-L0-ymNeonGreen-24xMS2SL-PGK1t pED52 

PTC1021 YIp-HK-DCD1p-L0-ymNeonGreen-24xMS2SL-PGK1t pED44 
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PTC1023 Ylp-HK-TEF1p-L0-mRuby3-ADH1t-TEF1p-L0-yEGFP-24xMS2SL-
PGK1t pED46 

PTC1039 YIp-HK_TEF1p-M1Ur-mRuby3-ADH1t-TEF1p-M1Ug-yEGFP_mut3-
24xMS2SL-PGK1t pED53 

PTC1041 YIp-HK_TEF1p-M3r-mRuby3-ADH1t-TEF1p-M3g-yEGFP_mut3-
24xMS2SL-PGK1t pED54 

PTC1032 YIp-HK_PAB1p-L0-mRuby3-ADH1t-PAB1p-L0-yEGFP_mut3-
24xMS2SL-PGK1t pED50 
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Selection of inhibitory structural elements for insertion into reporter gene 5’UTRs 

A wide range of stem-loop structures were designed based on the observed relationships between 

predicted folding free energies and inhibitory effect that were described in previous reports [see 

e.g. Sagliocco F, Vega Laso MR, Zhu D, Tuite MF. McCarthy, JEG, and Brown AJP (1993) The 

influence of 5' secondary structures upon ribosome binding to mRNA during translation in yeast. J 

Biol Chem 268: 26522-26530; Koloteva N, Müller PP, McCarthy JEG (1997) The position 

dependence of translational regulation via RNA-RNA and RNA-protein interactions in the 5ʹ-

untranslated regions of eukaryotic mRNA is a function of the thermodynamic competence of 40S 

ribosomes in translational initiation. J Biol Chem 272:16531-16539; McCarthy JEG (1998) 

Posttranscriptional control of gene expression in yeast. Microbiol Mol Biol Rev 62: 1492-1553 ]. 

The impact of these stem-loop structures was tested using the LUC reporter gene (Figure S1). We 

also compared the effects of two poly(G) elements (G10 and G14). A subset of these structural 

elements was then combined with yEGFP, ymNeonGreen and mRuby3 for the noise studies 

described in this paper. In a number of cases, the juxtaposition of a reporter gene with a stem-loop 

structure at the mRNA level enabled the formation of unwanted additional base pairs. We 

accordingly engineered small sequence adjustments in the stem-loop structures in order to 

maximise the probability that each stem-loop structure would be maintained when in combination 

with all of the respective reporter gene mRNAs. However, some variation in the predicted stability 

of each stem-loop type (M1, M3 etc.) expected in combination with the different reporter genes 

was unavoidable. This did not, however, detract from our key objective, i.e. to explore the trend in 

gene expression noise for different reporters as the inhibitory potential of 5’UTR structure is 

increased. 

 
Live-cell imaging of mRNAs 
 
We initially attempted to perform live-cell mRNA quantitations using both tandem MCP/MS2 loops 

and tandem PCP/PP7 loops in the target mRNA 3’UTRs (compare Wu,B. et al. (2012) Biophys. J. 

102, 2936-2944). However, in our experience, this approach seemed to have a limited capacity to 

detect more than ten foci and, moreover, the foci were of greatly variable intensity. In addition, a 

number of questions have arisen in the wider literature about the accuracy of this type of system in 
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yeast, related to the effects of binding of the bacteriophage coat proteins to the stem-loop 

structures on the degradation and/or location of the target mRNAs. Such effects can potentially 

lead to aggregation/accumulation of fragmented mRNAs in p-bodies or other granular structures. 

References relevant to these points include: 

• Garcia,J.F. and Parker,R. (2015) MS2 coat proteins bound to yeast mRNAs block 5' to 

3'degradation and trap mRNA decay products: implications for the localization of mRNAs by 

MS2-MCP system. RNA, 8, 1393-5. 

• Haimovich,G., Zabezhinsky,D., Haas,B., Slobodin,B., Purushothaman,P., Fan,L., Levin,J.Z., 

Nusbaum,C. and Gerst,J.E. (2016) Use of the MS2 aptamer and coat protein for RNA 

localization in yeast: A response to "MS2 coat proteins bound to yeast mRNAs block 5' to 3' 

degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-

MCP system". RNA, 5, 660-6. 

• Heinrich,S., Sidler,C.L., Azzalin,C.M. and Weis,K. (2017) Stem-loop RNA labeling can affect 

nuclear and cytoplasmic mRNA processing. RNA, 2, 134-141. 

 

Single molecule Fluorescence In Situ Hybridization (smFISH) 

We accordingly adopted smFISH as the more reliable and accurate technique for detecting and 

quantitating full-length mRNAs. The probe sequences used in this study were as follows: 

 
yEGFP_mut3 coding seq 
aattcttcacctttagacat 
aattgggacaacaccagtga 
gaccattaacatcaccatct 
ccttcaccggagacagaaaa 
ttaccgtaagtagcatcacc 
actggcaatttaccagtagt 
tagtgactaaggttggccat 
acattgaacaccataaccga 
atatgatctgggtatctcgc 
ctggcatggcagacttgaaa 
gttctttcttgaacataacc 
gtagttaccgtcatctttga 
acttgacttcagctctggtc 
ttaactaaggtatcaccttc 
gacctaaaatgttaccatct 
agagttatagttgtattcca 
gtcagccatgatgtaaacat 
ctttgataccattcttttgt 
accatcttcaatgttgtgtc 
ttgttgataatggtcagcta 
gaccatcaccaattggagta 
tggttgtctggtaacaagac 
ggcagattgagtggataagt 
cttttcgtttggatctttgg 
ctaacaagaccatgtggtct 
ggtaataccagcagcagtaa 
tgtacaattcatccatacca 
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MS2SL 
attcaattcgccctatagtg 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
accgtaggatctgatgaacc 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
accgtaggatctgatgaacc 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
accgtaggatctgatgaacc 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
accgtaggatctgatgaacc 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
accgtaggatctgatgaacc 
tcgtgctttcttggcaataa 
gtgatcgtcgtcgtttgaag 
tgaaccctggaatactggag 
tcgtgctttcttggcaataa 
gtgatcgtcgtcgtttgaag 
tgaaccctggaatactggag 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
accgtaggatctgatgaacc 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
accgtaggatctgatgaacc 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
accgtaggatctgatgaacc 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
accgtaggatctgatgaacc 
tcgtgctttcttggcaataa 
cgtttgaagattcgacctgg 
aatactggagcgacgcgtga 
ttcgcgagatctgatgaacc 
gtcctgcaggtttaaacgaa 
 
 

We have followed previously published guidance on testing different concentrations of smFISH 

probes for each transcript to be detected (see, for example, Raj, A. and Tyagi, S. (2010) Detection 

of individual endogenous RNA transcripts in situ using multiple singly labeled probes. Methods in 

Enzymology, 472, 365-386). 

This allowed us to optimise the signal-to-noise ratio for measurements of mRNAs of different 
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abundance. We found out that using a low concentration of FISH probes for low expression 

transcripts and higher concentration for high expression transcripts gave the best results. 

 

Image acquisition and analysis: 

 FISH images were acquired on a Deltavision Elite, an epifluorescence inverted widefield 

microscope, equipped with a 60x PlanApo objective, 1.42 numerical aperture using 1.515 

refractive index oil and a CCD camera. The temperature of the incubation chamber was set at 

25°C for optimal functioning of the glucose oxidase and catalase contained in the GLOX buffer. 

Cells were imaged in three dimensions with z-steps of 200 nm and a total z-stack of 5.8 µm. Pixel 

size in x and y was 107 nm. A four-colour image was acquired for each field of view using CY5 

(excitation 632/22 nm, emission 676/34 nm), TRITC (excitation 542/27 nm, emission 594/45 nm), 

FITC (excitation 475/28 nm, emission 532/36 nm) and DAPI (excitation 390/18 nm, emission 

435/48 nm) filter sets in this order. 

Cell segmentation and image analysis were performed using FISH-quant [Mueller F, 

Senecal A, Tantale K, Marie-Nelly H, Ly N, Collin O, Basyuk E,Bertrand E, Darzacq X, Zimmer C. 

FISH-quant: automatic counting of transcripts in 3D FISH images. Nat Methods. 10 (2013) 277-8; 

Tsanov N et al (2016) smiFISH and FISH-quant – a flexible single RNA detection approach with 

super-resolution capability. Nucleic Acids Res 44: e165]. For each FISH experiment, the 

background strain PTC830 (not expressing any reporter) was imaged alongside the sample strain 

as a negative control in order to determine the optimal intensity threshold to use to detect all real 

spots while keeping the false positive detection rate as low as possible (below 2.5% for all 

experiments). 

 

Preparation of cells for flow cytometry 

Two days prior to an experiment, single colonies from each of the strains were picked and grown 

overnight in YNB (plus amino acids, 2% glucose) to saturation with shaking at 30°C. The following 

morning, cells were diluted to give an optical density at 600 nm (OD600) of ~0.1 and incubated 

further to an OD600 of about ~0.8 to 1.0. The cultures were then diluted again to an OD600 of 

~0.0001 and allowed to grow overnight. On the morning of the experiments, cultures were handled 
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in batches of 3 or 4: the cultures were diluted to an OD600 ~0.2, and these diluted cultures were 

grown to mid-log phase (OD600 ~0.4 to 0.5) with shaking at 30°C. This procedure allowed us to 

maintain the cultures in the exponential growth phase right up to the time of measurement. 

100µl of mid-log phase culture from each strain were transferred to individual plastic tubes. 

The cells were subjected to low-power sonication at 50-60Hz for approximately 10 seconds in 

order to separate any cell aggregates. After sonication, the cell suspensions were further diluted by 

adding 900 µL of PBS to each tube prior to the flow cytometry measurements. To minimize 

variation due to delays between sample delivery and measurements, the individual strains were 

prepared for flow cytometry at intervals of 20 minutes. 

 

Noise data obtained with different reporters 

In this study, we used three different reporter genes. Comparison of the noise estimates obtained 

with yEGFP and ymNeonGreen (Table 1, Figure 4) reveals that the absolute estimates of noise for 

equivalent constructs were not identical. This is likely to be due primarily to two factors: 1. 

Differences in the 5’-proximal sequences of the respective reporter genes meant that we could not 

use identical 5’UTR sequences for both of the genes, and also that the secondary structures 

around the start codons were non-identical and possibly followed different folding/unfolding 

kinetics; 2. The folding times and degradation rates for the encoded fluorescent proteins are 

probably non-identical, which in turn means that the overall lifetimes of the fluorescently active 

species are different. Despite these differences, the trends of translation rate vs measured CV for 

the two genes were remarkably consistent. 

We constructed genomic dual expression constructs using the yEGFP and mRuby3 

reporter genes (Figure 5; Table S2). The mean fluorescence data and CV values for yEGFP in the 

directly comparable single-reporter (Table 1) and dual-reporter (Table S2; Figure 5) constructs 

reveal strong consistency. However, changes also had to be made in the 5’UTRs when these were 

paired with the mRuby3 reading frame, and these changes, for the reasons mentioned above, 

could have been at least partially responsible for the differences in absolute noise levels observed 

with the respective reporters. 
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R code for analysis of two-colour flow cytometry data 
 
###This R code is written to calculate statistics for each flow cytometry data 
file in FCS 3.0 
rm(list=ls(all=TRUE))   
graphics.off()    
gc() 
library(flowCore) 
library(flowViz) 
library(flowDensity) 
#load the fcs 3.0 data file 
fs <- read.flowSet(pattern='.fcs')    
#plot(fs[[1]],c('FSC-A','SSC-
A'),main=sampleNames(fs)[1],ylim=c(0,200000),smooth=FALSE)   
time.value <- exprs(fs[[1]])[,'Time'] 
time.post <- which(exprs(fs[[1]])[,'Time'] > 100 & exprs(fs[[1]])[,'Time'] < 
(max(time.value)-20)) 
fs.time <- fs[[1]][time.post] 
#plot(fs.time,c('FSC-A','SSC-
A'),main=sampleNames(fs)[1],ylim=c(0,200000),smooth=FALSE)  
fsca.value <- exprs(fs.time)[,'FSC-A'] 
fsca.post <- which(exprs(fs.time)[,'FSC-A'] > 40000 & exprs(fs.time)[,'FSC-A'] < 
100000) 
ssca.value <- exprs(fs.time)[,'SSC-A'] 
ssca.post <- which(exprs(fs.time)[,'SSC-A'] > 10000 & exprs(fs.time)[,'SSC-A'] < 
90000) 
combine.post <- intersect(fsca.post,ssca.post) 
fs.select <- fs.time[combine.post] 
plot(fs.select,c('FSC-A','SSC-
A'),main=sampleNames(fs)[1],xlim=c(0,200000),ylim=c(0,200000),smooth=TRUE)   
interval <- 1500    
i <- seq(from=0, to=200000-interval, by=interval)    
map <- matrix(0.6,length(i),length(i))   
maptab <- matrix(0.6,length(i)^2,7,dimnames=list(c(), 
c('m','fsc.No','n','ssc.No','cmb.No','x','y')))    
x <- 0    
max.cells <- 0    
j <- 1    
for (m in 1:length(i)){ 
  cat('  m=',m) 
  cat('  x=',x) 
  fsca.post <- which(exprs(fs.select)[,'FSC-A'] > x & exprs(fs.select)[,'FSC-A'] 
< x+interval) 
  cat('  fsc=',length(fsca.post)) 
  cat('\n')   
  y <- 0     
  for (n in 1:length(i)){ 
    cat('  n=',n) 
    cat('  y=',y) 
    ssca.post <- which(exprs(fs.select)[,'SSC-A'] > y & exprs(fs.select)[,'SSC-
A'] < y+interval) 
    cat('  ssc=',length(ssca.post)) 
    cat('\n')   
    combine.post <- intersect(fsca.post,ssca.post) 
    map[length(i)-n+1,m] <- length(combine.post)    
    cat('\n') 
    cat('\f') 
    if(map[length(i)-n+1,m] >= max.cells){    
      maptab[j,1] <- m 
      maptab[j,2] <- length(fsca.post)    
      maptab[j,3] <- n 
      maptab[j,4] <- length(ssca.post)    
      maptab[j,5] <- length(combine.post)   
      maptab[j,6] <- x   
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      maptab[j,7] <- y    
      max.cells <- map[length(i)-n+1,m]   
      j <- j+1 
    } 
    y <- y+interval 
  }   
  x <- x+interval 
} 
#write.csv(map,file = 'map.csv',row.names = FALSE) 
#write.csv(maptab,file = 'maptab.csv',row.names = FALSE) 
max.position <- which(maptab[,5] == max(maptab[,5]))    
if (length(max.position) > 1){ 
  text(100000,100000,'ERROR!\nMAX > 1\nReset interval',col='red',cex=2) 
  maptab[max.position[1],] 
  maptab[max.position[2],]    
} else { 
  maptab[max.position[1],]   
  center.x <- maptab[max.position[1],6]+interval/2 
  center.y <- maptab[max.position[1],7]+interval/2 
  points(center.x,center.y,col='red',cex=3,pch='.') 
} 
cell.list <- matrix(1,nrow(fs.select),14,dimnames=list(c(), c('No.k', 
'distance','GFP','nrGFP-med','RFP','nrRFP-med','FSC-axis','SSC-axis','(nrG-
nrR)^2','nrG*nrR','nrG^2+nrR^2','center.x','center.y','interval')))  
FSC <- seq(from = 1, to = nrow(fs.select), by = 1) 
SSC <- seq(from = 1, to = nrow(fs.select), by = 1) 
GFP <- seq(from = 1, to = nrow(fs.select), by = 1) 
RFP <- seq(from = 1, to = nrow(fs.select), by = 1) 
r <- seq(from = 1, to = nrow(fs.select), by = 1) 
med.GFP <- median(exprs(fs.select)[,'B488-530/30-A']) 
med.RFP <- median(exprs(fs.select)[,'YG561-610/20-A']) 
for (k in 1:nrow(fs.select)){ 
  FSC[k] <- exprs(fs.select)[,'FSC-A'][k]    
  SSC[k] <- exprs(fs.select)[,'SSC-A'][k]    
  GFP[k] <- exprs(fs.select)[,'B488-530/30-A'][k]   
  RFP[k] <- exprs(fs.select)[,'YG561-610/20-A'][k]   
  r[k] <- sqrt((FSC[k]-center.x)^2+(SSC[k]-center.y)^2)    
  cell.list[k,1] <- k 
  cell.list[k,2] <- r[k]    
  cell.list[k,3] <- GFP[k] 
  cell.list[k,4] <- GFP[k]/med.GFP    
  cell.list[k,5] <- RFP[k] 
  cell.list[k,6] <- RFP[k]/med.RFP 
  cell.list[k,7] <- FSC[k] 
  cell.list[k,8] <- SSC[k] 
  nrGFP <- cell.list[k,4] 
  nrRFP <- cell.list[k,6] 
  cell.list[k,9] <- (nrGFP-nrRFP)^2    
  cell.list[k,10] <- nrGFP*nrRFP   
  cell.list[k,11] <- nrGFP^2+nrRFP^2   
  cell.list[k,12] <- center.x 
  cell.list[k,13] <- center.y 
  cell.list[k,14] <- interval 
  cat(floor(k/nrow(fs.select)*100),'%','|||')   
  if ((k)%%2==0){                       
    cat('\f')                             
  }                                      
} 
#write.csv(cell.list,file = 'cell-list.csv',row.names = FALSE) 
decrease.post<- order(cell.list[,2],decreasing=FALSE)   
order2col <- cell.list[decrease.post,]  
#write.csv(order2col,file = 'order2col.csv',row.names = FALSE) 
trimGFP.max = 0.5    
trimGFP.min = 0.5    
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trimRFP.max = 0.5    
trimRFP.min = 0.5 
orderGFP.post <- order(order2col[,3],decreasing=FALSE) 
trimGFP.post <- 
orderGFP.post[((nrow(order2col)*(trimGFP.min/100))+1):(nrow(order2col)*(1-
trimGFP.max/100))]  
#-order2col 
orderRFP.post <- order(order2col[,5],decreasing=FALSE) 
trimRFP.post <- 
orderRFP.post[((nrow(order2col)*(trimRFP.min/100))+1):(nrow(order2col)*(1-
trimRFP.max/100))]  
combine.post2 <- intersect(trimGFP.post,trimRFP.post)    
trim.percentage <- (nrow(order2col)-length(combine.post2))/nrow(order2col)*100    
trim2col <- order2col[combine.post2,] 
plot(order2col[,4],order2col[,6],pch='.',xlim=c(0,4),ylim=c(0,4),col='red',xlab=
'Normalised GFP (a.u.)',ylab='Normalised RFP (a.u.)',las=1)    
points(trim2col[,4],trim2col[,6],pch='.',xlim=c(0,4),ylim=c(0,4),col='blue')     
text(3.6,3.6,sprintf("%1.1f%%", -trim.percentage),col='blue',cex=1.5)    
distance.post<- order(trim2col[,2],decreasing=FALSE)    
trim2col <- trim2col[distance.post,]  
#=trim2col 
write.csv(trim2col,file = 'trim2col.csv',row.names = FALSE) 
#-trim2col 
table2col <- matrix(1,(nrow(trim2col)-1),14,dimnames=list(c(), c('cell number', 
'max distance','GFP-mean','GFP-cv%','GFP-Fano','RFP-mean','RFP-cv%','RFP-
Fano','intrinsic','extrinsic','total','Fano.int','Fano.ext','Fano.total'))) 
for (t in 1:(nrow(trim2col)-1)){ 
  GFPcv <- (sd(trim2col[1:(t+1),3])/mean(trim2col[1:(t+1),3]))*100    
  GFPfano <- (sd(trim2col[1:(t+1),3])^2)/mean(trim2col[1:(t+1),3])    
  RFPcv <- (sd(trim2col[1:(t+1),5])/mean(trim2col[1:(t+1),5]))*100    
  RFPfano <- (sd(trim2col[1:(t+1),5])^2)/mean(trim2col[1:(t+1),5])    
  table2col[t,1] <- t+1   
  table2col[t,2] <- max(trim2col[1:(t+1),2])   
  table2col[t,3] <- mean(trim2col[1:(t+1),3])    
  table2col[t,4] <- GFPcv 
  table2col[t,5] <- GFPfano 
  table2col[t,6] <- mean(trim2col[1:(t+1),5])    
  table2col[t,7] <- RFPcv 
  table2col[t,8] <- RFPfano 
  table2col[t,9] <- 
sqrt(mean(trim2col[1:(t+1),9])/(2*mean(trim2col[1:(t+1),4])*mean(trim2col[1:(t+1
),6])))   
  table2col[t,10] <- sqrt((mean(trim2col[1:(t+1),10])-
mean(trim2col[1:(t+1),4])*mean(trim2col[1:(t+1),6]))/mean(trim2col[1:(t+1),4])*m
ean(trim2col[1:(t+1),6]))    
  table2col[t,11] <- sqrt((mean(trim2col[1:(t+1),11])-
2*mean(trim2col[1:(t+1),4])*mean(trim2col[1:(t+1),6]))/(2*mean(trim2col[1:(t+1),
4])*mean(trim2col[1:(t+1),6])))   
  table2col[t,12] <- 
mean(trim2col[1:(t+1),9])/(2*sqrt(mean(trim2col[1:(t+1),4])*mean(trim2col[1:(t+1
),6])))    
  table2col[t,13] <- (mean(trim2col[1:(t+1),10])-
mean(trim2col[1:(t+1),4])*mean(trim2col[1:(t+1),6]))/sqrt(mean(trim2col[1:(t+1),
4])*mean(trim2col[1:(t+1),6]))    
  table2col[t,14] <- 
(table2col[t,11])^2*(sqrt(mean(trim2col[1:(t+1),4])*mean(trim2col[1:(t+1),6])))    
  cat(floor(t/(nrow(trim2col)-1)*100),'%','|||')      
  if ((t+1)%%2==0){                       
    cat('\f')                             
  }    
} 
write.csv(table2col,file = 'table2col.csv',row.names = FALSE) 
## 
pdf("plots2col.pdf",width=8, height=8) 
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# 
plot(fs[[1]],c('FSC-A','SSC-
A'),main=sampleNames(fs)[1],ylim=c(0,200000),smooth=FALSE)   
# 
plot(fs.select,c('FSC-A','SSC-
A'),main=sampleNames(fs)[1],xlim=c(0,200000),ylim=c(0,200000),smooth=TRUE)  
points(center.x,center.y,col='red',cex=3,pch='.') 
# 
plot(order2col[,4],order2col[,6],main=sampleNames(fs)[1],pch='.',xlim=c(0,4),yli
m=c(0,4),col='red',xlab='Normalised GFP (a.u.)',ylab='Normalised RFP 
(a.u.)',las=1)    
points(trim2col[,4],trim2col[,6],pch='.',xlim=c(0,4),ylim=c(0,4),col='blue')    
text(3.6,3.6,sprintf("%1.1f%%", -trim.percentage),col='blue',cex=1.5)  
# 
plot(table2col[,2],table2col[,4],main=sampleNames(fs)[1],col='green',pch='.',cex
=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x',xaxt='n',las=1) 
axis(1,at=c(1000,2000,3000,4000,5000,6000,7000,8000,9000,10000,100000), 
labels=c('1k','','','','5k','','','','','10k','100k'), cex.axis=0.8) 
axis(1,at=c(3000,5000,10000),labels=c('3k','5k','10k'), cex.axis=0.8) 
axis(1,at=c(seq(20000,100000,10000)),labels=FALSE) 
points(table2col[,2],table2col[,7],col='red',pch='.',cex=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x') 
legend("topright",legend=c('GFP','RFP'),col=c('green','red'),pch=20,lwd=2,cex=1.
5,bty='n') 
# 
plot(table2col[,2],table2col[,9]*100,main=sampleNames(fs)[1],col='purple',pch='.
',cex=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x',xaxt='n',las=1) 
axis(1,at=c(1000,2000,3000,4000,5000,6000,7000,8000,9000,10000,100000), 
labels=c('1k','','','','5k','','','','','10k','100k'), cex.axis=0.8) 
axis(1,at=c(3000,5000,10000),labels=c('3k','5k','10k'), cex.axis=0.8) 
axis(1,at=c(seq(20000,100000,10000)),labels=FALSE) 
points(table2col[,2],table2col[,10]*100,col='blue',pch='.',cex=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x') 
points(table2col[,2],table2col[,11]*100,col='black',pch='.',cex=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x') 
legend("topleft",legend=c('Intrinsic','Extrinsic','Total'),col=c('purple','blue'
,'black'),pch=20,lwd=2,cex=1.5,bty='n') 
# 
plot(table2col[,2],table2col[,9]*100,main=sampleNames(fs)[1],col='purple',pch='.
',cex=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x',xaxt='n',las=1) 
axis(1,at=c(1000,2000,3000,4000,5000,6000,7000,8000,9000,10000,100000), 
labels=c('1k','','','','5k','','','','','10k','100k'), cex.axis=0.8) 
axis(1,at=c(3000,5000,10000),labels=c('3k','5k','10k'), cex.axis=0.8) 
axis(1,at=c(seq(20000,100000,10000)),labels=FALSE) 
points(table2col[,2],table2col[,10]*100,col='blue',pch='.',cex=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x') 
points(table2col[,2],table2col[,11]*100,col='black',pch='.',cex=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x') 
legend("topleft",legend=c('Intrinsic','Extrinsic','Total'),col=c('purple','blue'
,'black'),pch=20,lwd=2,cex=1.5,bty='n') 
points(table2col[,2],table2col[,4],col='green',pch='.',cex=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x',xaxt='n',las=1) 
points(table2col[,2],table2col[,7],col='red',pch='.',cex=3,xlab='radius 
(a.u.)',ylab='CV %',xlim=c(1000,100000),ylim=c(0,50),log='x') 
legend("topright",legend=c('GFP','RFP'),col=c('green','red'),pch=20,lwd=2,cex=1.
5,bty='n') 
dev.off()  
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Computational model  
 
The computational model depicted in Figure 7 was developed based on the model of Kaern et al. 

(ref 15) which was used to study transcriptional intrinsic noise. The model represents a gene that 

can be in two states, D0 and D1, where the former is transcribed at a low basal rate, and the latter 

is an activated state with a higher rate of transcription. The gene exists in two copies which can be 

in either state; the transition from D0 to D1 is through an implicit binding of a transcription factor with 

association constant Keq = kon/koff . Transcription of the gene generates an mRNA species R0 at 

rates α0 and  α1 where  α1 = 10 x α0. R0 is degraded in a first-order process with rate constant γR. 

R0 supports translation producing a protein P at a translation rate β x [R0]. The protein is degraded 

in a first-order process with rate constant γP. The part of this model that differs from Kaern et al. 

(15) is that there is a process of folding of the mRNA into a species Rf, which is not able to be used 

for translation. The transition between R0 and R0 happens through a first-order reversible reaction 

with rate constants kfo and kun. The stability of the folded mRNA is characterized by equilibrium 

constant KeqF= kfo/kun. 

The model is then simulated using one of Gillespie’s stochastic simulation algorithms (the 

direct method, ref. 29) in the software COPASI (30). Simulations are carried out from initial 

conditions of a stable steady state (calculated using the equivalent ODE system). Noise levels are 

assessed by simulating 500 time courses of 1000 minutes each with 100 samplings at regular 10-

minute intervals. The coefficient of variation (CV) is then calculated from the 50,000 sampled 

values (500x100). In Figure 7 we investigated the dependency of the protein noise level (CV) on 

the rate of folding kfo and the folding stability KeqF through a parameter scan. Each point at the 

intersections of the 2D surface were calculated with the procedure above for a fixed pair of values 

of kfo and KeqF (i.e. for each point 500 simulations were carried out). Figure 7 shows that noise 

increases with the stability of the folded mRNA (high KeqF values) and at high rate of folding (kfo). 

For comparison, in Figure S6 we plot the dependency of the protein noise level on the rate of gene 

activation kon and the dissociation constant of the transcription factor Kd using the same procedure 

as for Fig. 7. Noise is higher at an intermediate rate of transition between gene states (kon of about 

0.5 min-1) and at low promoter binding affinity (Keq of 10-3). 
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Both SBML and COPASI versions of the model have been added as zip files. The SBML 

version is portable and can be used by any software capable of reading SBML. The COPASI 

version is only for the open source software COPASI but includes both the model and the 

simulation specifications. 

 

Analysis of genome-wide expression and noise data 
 
The study of Sen et al (49) was designed to identify mRNAs with complex 5’UTRs whose 

translation is Ded1-dependent (it is thought that this is because this RNA helicase is required to 

facilitate scanning through the 5’UTR structure). We have extracted the noise data for those genes 

in the Sen et al study (49) that are also represented in the dataset of Stewart-Ornstein et al (50; 

group 1). Analysis of these genes reveals a statistically significant* correlation between 

translational dependence on Ded1 and the (primarily intrinsic) noise for the genes. The Table 

below also summarises the following observations: the mean intrinsic noise for a subset (group 2) 

of genes identified by Sen et al as having strong dependence on Ded1 is significantly greater than 

for group 1 overall; the mean intrinsic noise for the subset of group 2 that lacks a TATA-box (group 

3; 36 genes) is greater than that of group 2 as a whole. For comparison, we show the equivalent 

noise data for all genes common to both studies that have a TATA-box (group 4) and all genes 

common to both studies that lack a TATA-box (group 5).  

 
 
Selection of genes CV† total CV† intrin. CV† extrin. 

1:  All genes common to both studies (438) 0.22 0.17 0.13 

2:  45 genes from most Ded1-dependent group (Sen et al 2015) 0.24 0.20 0.12 

3:  Members (36) of group 2 that have no TATA-box 0.25 0.21 0.11 

4:  All TATA-plus genes (128) 0.26 0.19 0.16 

5:  All TATA-less genes (308) 0.20 0.16 0.11 

 
*The p value = 0.0015 for the hypothesis that the observed correlation between intrinsic noise and 
reduced translation efficiency in the absence of Ded1 could be due to random sampling. 
†Coefficient of variation (total, intrinsic and extrinsic, respectively†). 



Table S1   
Predicted folding energies 
 

 
5’UTR 

construct	
 
∆G folding 

(kcal mol-1)* 
       MIUg         - 2.6 
       M3g 							- 17.7 
       M3Ug       - 17.5 
       M3n       - 18.6 
       M3Un       - 18.4 
       M3Wn       - 12.4 
       M1Ur         - 3.5 
       M3r        -18.6 
 
The free energy values for the stability of the respective stem-loops have been 
estimated using published software [Zuker M (2003) Mfold web server for nucleic 
acid folding and hybridization prediction. Nucleic Acids Res 31: 3406-15]. The 
relationship between predicted stability and degree of translational inhibition is not 
strictly proportional, since the nucleotide sequence can also influence scanning. 



 
 
Table S2.  mRuby3 / yEGFP ratio experiments 
 
           PTEF1(L0)        PTEF1(M1U)          PTEF1(M3)         PPAB1(L0) 
r = 4000 Average Std dev Average Std dev Average Std dev Average Std dev 
Cell number 1004 105 905 136 1002 81 932 78 
EGFP-mean 1622 25 419 11 240 5 263 7 
EGFP-CV% 12.1 0.6 13.4 0.5 15.5 0.7 14.6 0.7 
mRuby3-
mean 5580 274 2459 102 1102 92 967 37 
mRuby3-
CV% 12.2 0.7 13.1 0.9 16.3 0.3 16.5 0.8 
intrinsic 0.078 0.006 0.099 0.006 0.125 0.006 0.128 0.007 
extrinsic 0.070 0.006 0.065 0.007 0.075 0.008 0.066 0.008 
total 0.122 0.006 0.133 0.007 0.159 0.005 0.156 0.007 
 
These data derive from the experiments presented in Fig. 5, and are summarised in the bar graph 
in Fig. 5E. 
 



M1Ug 

M3g M3Wn 

L0   GGATCCAATTATCTACTTAAGAACACAAAACTCGAGAACATATG
M1Ug   GGATCCAATTATCTCCATATGAACACAAAACTCGAGAACATATG
M1Ur                      GGATCCAATTATCTACATATGAACACAAAACTCGAGAACATATG 
M3Wn   GGATCCAATTATCTACATATCTTCTCGAAACTCGAGAACATATG
M3g   GGATCCAATTATCTCCATATCTTCTCGAAACTCGAGAAGATATG
M3n/M3r   GGATCCAATTATCTACATATCTTCTCGAAACTCGAGAAGATATG
M3Ug   GGATCCAATTATCTCCATATGTTCTCGAAACTCGAGAACATATG
M3Un                      GGATCCAATTATCTACATATGTTCTCGAAACTCGAGAACATATG
 
 

BamH1 

Reporter mRNA sequences 

LUC  AUGGAAGACGCCAAAAACAUAAAGAAAGGCCCGGCGCCAUUCUAUCCACUAGAGGAU

yEGFP      AUGUCUAAAGGTGAAGAAUUAUUCACUGGUGUUGUCCCAAUUUUGGUUGAAUUAGAU 
 
ymNG   AUGGUUUCTAAGGGUGAAGAAGACAACAUGGCUUCUUUGCCAGCUACUCACGAAUUG

mRuby3 AUGGUGUCCAAAGGAGAGGAGUUAAUCAAGGAAAACAUGAGAAUGAAAGUUGUCAUG

A 

B 

C 

Figure S1. 5’UTR and reporter gene sequences used in this study. A: Three key examples  
of stem-loop structures that impose different degrees of inhibition of translation initiation  
in the appropriate range. The red bar indicates the position of the start codon of the reporter  
gene; the blue bar shows the position of the uORF AUG. The folding predictions were made  
using established software (Zuker M (2003) Mfold web server for nucleic acid folding and  
hybridization prediction. Nucleic Acids Res 31: 3406-15). B: The DNA sequences of the  
respective 5’UTRs, highlighting the position of the BamH1 site (located at the major transcr- 
iptional start site). In some cases, single site mutations were introduced to prevent the  
fomation of unwanted additional base pairs that would otherwise arise when the 5’UTRs were 
combined with the respective reporter gene sequences. The resulting variants of the 5’UTRs  
are indicated as follows: yEGFP (g); ymNG (n); mRuby3 (r). The underlined nucleotides are  
those engaged in base pairing (compare panel A). U indicates the presence of an upstream 
start codon that initiates an overlapping uORF. C: The reporter mRNA sequences (first 19  
codons), starting with the start codon (in red). The stop codons (UAG and UAA) highlighted in  
purple signify the translation termination points for +1 short reading frames initiated by upstream 
AUGs in the M1Ug/r and M3Ug constructs. The LUC gene was used in the initial stage of  
searching for structures (guided by previously published work) that provide the required range  
of translation inhibition; noise measurements were only performed using the fluorescent reporter  
protein constructs. 



Figure S1. D: The 5’UTR sequences carrying the G10 and G14 elements.  
                  E: The U 5’UTR/yEGFP sequence indicating the location of the uORF. 
 

G10  GGATCCAATTATCTACTTAAGGGGGGGGGGCTCGAGAACATATG
 
G14  GGATCCAATTATCTACTTAAGGGGGGGGGGGGGGAGAACATATG
 
 
 
 
 
 
 
 U  CTTCTTGTTCATTAGAAAGGATCCAATTATCTACTTATGAACTCGAAACTCGAGAACATATG
      TCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGT

D 

uORF yEGFP 

uORF 
stop 

E 



Figure S2.   mRNA degradation in the presence of poly(G). The key species detected by 
smFISH are illustrated. In the predominant decay pathway, deadenylation of intact mRNA (1)  
promotes decapping, generating a species (2) that is poorly recruited to 40S ribosomal subunits.  
Where decapping occurs before deadenylation is complete, this also results in multiple species  
(not explicitly shown here) that are poorly recruited to 40S ribosomal subunits. The (folded)  
poly(G) structure inhibits scanning in all species of mRNA shown. It also inhibits 5’ - 3’  
exonucleolytic degradation (3), thus stabilising decapped mRNAs. Thus the additional mRNA  
molecules identified by smFISH are poorly translatable or non-translatable species that play at  
most a minor role in gene expression; these species cannot therefore contribute substantially to 
the observed changes in protein-level noise. 
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Figure S3  Addressing technical questions related to flow cytometry. A: Illustrations of how 
the greater intensity of ymNeonGreen (ymNG) fluorescence (dark grey signal distribution) eliminates/ 
minimises overlap with host strain autofluorescence (light grey peak, measured using the host  
strain lacking any fluorescent reporter constructs) for two of the most strongly inhibited constructs.  
B: Control demonstrating that reducing the detected mean intensity of fluorescence (by  
reducing the photomultiplier voltages) does not change the observed noise values significantly.  
Flow cytometry was performed on a strain carrying the genomic PTEF1 (L0) ymNG construct. Each 
plot of fluorescence intensity vs cell number features the mean fluorescence intensity and CV value 
for the subset of cells identified by gating (gating radius set at 4000; see SI Appendix). In further  
experiments (not shown here), we found that measurements (at 438V) of the strain bearing the  
genomic PTEF1 (G14) ymNG construct also manifested a mean fluorescence value of 250 [compare  
PTEF1(L0)ymNG (at 320V) above], but a CV value of 0.154. These data therefore demonstrate that  
the flow cytometry instrument does not artefactually boost noise at lower fluorescence intensities. 
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Figure S4. Normalisation of flow cytometry. We compared two alternative procedures for 
normalisation of dual reporter data.  We illustrate here three different situations, in which the  
raw data show the following relationships: GFP > RFP (A), GFP < RFP (B), and GFP ≈ RFP (C).  
The slope (k value) of each regression line was calculated for the raw data (GFP vs RFP), after 
normalization to the median (nrGFP vs nrRFP; Newman et al, 2006), and after quantile  
normalization (qrGFP vs qrRFP; Fu & Pachter, 2016), respectively. Informed by such k values,  
we chose to adopt the median normalisation method described by Newman et al (2006) as our 
standard procedure. 
 
Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, et al (2006) Single-cell  
proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:  
840–846. 
Fu AQ, Pachter L (2016) Estimating intrinsic and extrinsic noise from single-cell gene expression 
measurements. Stat Appl Genet Mol Biol 15: 447-471. 
 



Figure S5. Plot of noise strength vs mean fluorescence  
intensity using the same data shown in Fig. 6B  but  
including PDCD1(L0; data point in red). The point in purple  
is PPAB1(L0). Note that the estimate of noise for PDCD1(L0)  
is affected by overlap with autofluorescence (Fig. S3). 
Standard deviation values are represented by error bars. 
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Figure S6. (A) A scheme showing reversible stochastic events in the gene expression 
pathway, featuring promoter on (D1) and off (D0) states) and mRNA (5’UTR) folded (Rf)  
and unfolded (Ru) states. P is protein, and γR and γP are degradation rates for mRNA 
and protein, respectively. (B) Predicted dependence of protein level noise as a function  
of kinetic parameters of transcription. This is presented for comparison with Fig. 7B.      
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