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Supplementary methods and results 

Ligase reaction mechanism and kinetics  

A series of elegant biochemical investigations in the mid 1970 to late 1970s(1–7), complemented 

by structural analyses in the first decade of this century(8–12), described  the basic elements of 

the intermolecular ligation reaction between two (oligo/poly)nucleotide reactants. These 

investigations led to the proposal of a three step, ping-pong ordered kinetics(13) mechanism for 

this reaction(4, 6, 13, 14) . In the first step, RNA ligase binds ATP and transfers a nucleotidyl 

group from the trinucleotide cofactor to form a covalently adenylated enzyme (E-AMP) while 

releasing pyrophosphate (PPi). The second step involves the transfer of the AMP group from the 

enzyme to the 5ʹ phosphoryl of the donor (D) to form a pyrophosphate linked adenylate 

intermediate(1–4), E∙App-D.  The final step in the reaction is the formation of the phophodiester 

bond between the 3ʹ of the acceptor (A) and the 5ʹ of the donor sequence to form the product AD 

while AMP is released.  In this reaction scheme, the presence of the acceptor sequence allows the 

final step of the reaction to proceed in the forward direction, because donor sequences that are 

too short to form circular products are not ligated unless an acceptor is present(7, 15). 

Furthermore, all three steps of the reaction are reversible(2, 16) supporting the following reaction 

scheme:  

𝐸 + 𝐴𝑇𝑃
𝑘1
⇋
𝑘−1

 𝐸 ∙ 𝐴𝑇𝑃
𝑘1𝑎
⇋
𝑘−1𝑎

 𝐸 − 𝐴𝑀𝑃 + 𝑃𝑃𝑖 

𝐸 − 𝐴𝑀𝑃 + 𝐷 
𝑘2
⇋
𝑘−2

 𝐸 ∙ 𝐴𝑝𝑝 − 𝐷
𝑘2𝑎
⇋
𝑘−2𝑎

𝐸 + 𝐴𝑝𝑝 − 𝐷 

𝐸 ∙ 𝐴𝑝𝑝 − 𝐷 + 𝐴
𝑘3
⇋
𝑘−3

 𝐸 ∙ 𝐴𝑝𝑝 − 𝐷 ∙ 𝐴
𝑘3𝑎
⇋
𝑘−3𝑎

𝐴𝑀𝑃 + 𝐸 + 𝐴𝐷  
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Even though this is a simplified schema e.g. there is evidence to suggest that the first step 

proceeds by two non-covalent enzyme, magnesium, ATP complexes(12), it nonetheless provides 

a minimal, accurate description of the stoichiometries involved and is compatible with existing 

data. When libraries are constructed for RNA-seq applications, the sequences of interest are 

ligated to the 3ʹ and 5ʹ either in a single step, or more commonly with the sequential addition of 

the 3ʹ and 5ʹ adapters. In either case, the RNA sequences in the biological complex play the role 

of both acceptor (3ʹ adapter ligation) and donor (5ʹ adapter ligation). It is not immediately clear 

how the reaction efficiency depends on the concentration of the RNA sequences to be ligated or 

even the composition of the sample. The latter may be an important factor since the second(first) 

step of the 3ʹ(5ʹ) adapter ligation is subject to multiple substrate inhibition, i.e. by all the RNA 

sequences in the sample of interest. We heuristically argue below that despite the highly non-

linear nature of the ordinary differential equations describing the ligase reaction system, the 

efficiencies of the reaction itself may be treated as approximately constant for any given library 

preparation protocol.   

When an excess of pre-adenylated adapters is used to drive 3ʹ ligation in the absence of PPi, the 

surplus of donors will establish a quasi-state with the non-covalent intermediate E∙App-D and the 

adenylated enzyme E-AMP (note that due to the absence of PPi, the first step in the reaction will 

not be reversed). Simultaneously, the excess of donors will also drive the third step of the 

reaction forward. Hence after a brief transient period, the yield of the complex three-step reaction 

will be determined by the final step. The kinetic analysis of the last step is simplified by the large 

excess of adapters, which implies that their concentration is effectively constant over the course 

of the reaction, and the ping-pong mechanism of the reaction. These features allow one to use the 

quasi-steady state approximation(17, 18) to formulate a Michaellis-Menten type of equation for 
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the last step. Furthermore, the apparent reaction velocity and Michaellis-Menten constant depend 

on the kinetic constants (𝑘3, 𝑘−3, 𝑘4) and the nearly constant concentration of adenylated 

donor/enzyme complex. A similar argument may be used to simplify the analysis of the 5ʹ 

adapter ligation. In the latter case, the excess of ATP and acceptor (adapter) sequences will 

ensure that after a short transient the concentration of adenylated enzyme stays constant during 

the course of the reaction. This is because the free enzyme is consumed in the first step, is 

regenerated in the final step. At (quasi-)steady state, the output of the entire sequence of 

reactions will be determined by generation of the enzyme/adenylated donor(the original RNA 

sequence with the covalently attached 3ʹ)/acceptor(5ʹ adapter) ternary complex. As in the case of 

3ʹ ligation, the availability of excess acceptor sequences ensures that the reaction is driven 

forward.  

Multiple substrate inhibition and ligation efficiency 

When preparing libraries from a heterogeneous mixture of 𝑛 RNAs, the ligation reaction of each 

of the distinct species is subject to competitive inhibition by all the other RNAs in the reaction 

mix. Substrate inhibition in both 5ʹ and 3ʹ ligation may be analyzed under the framework of 

multi-substrate competition for ordered ping-pong, bisubstrate reactions(19). Since one of the 

reactants (donor in 5ʹ ligation, acceptor in 3ʹ ligation) is in such large excess, its concentration 

may be absorbed into the maximum velocity and apparent Michaellis-Menten constant of the 

reaction. The expression for the reaction velocity is identical to the those obtained for the more 

familiar case of competitive inhibition in mono-substrate reactions. We will work out the 

expression for the efficiency of the 3ʹ adaptor ligation, noting that similar arguments may be 

used to derive an equivalent expression for the efficiency of the 5ʹ ligation. Under Michaelis-

Menten kinetics, the reaction velocity for the ith species (taken as a referent) may be written as: 
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𝑉𝑖 =

𝑉𝑖
𝑚𝑎𝑥𝑋𝑖

𝑋𝑖 + 𝐾𝑀
𝑖 (1 + ∑

𝑋𝑗

𝐾𝑀
𝑗𝑗≠𝑖 )

=
𝑉𝑖
𝑚𝑎𝑥𝑋𝑖

𝐾𝑀
𝑖 (1 + ∑

𝑋𝑗

𝐾𝑀
𝑗𝑖 )

 
(Eq.1)  

The sum appearing in the denominator is over a large number of RNA-species and hence on 

accounts of the law of large numbers, would be expected to converge to the quantity 𝑛𝐸 [
𝑋

𝐾𝑀
], 

where the expectation is taken over all RNA species present in the reaction sample. Using a 

Taylor series argument (see Appendix A), we can approximate this expectation with the ratio of 

the corresponding expectations: 

 
𝑉𝑖 ≈

𝑉𝑖
𝑚𝑎𝑥𝑋𝑖

𝐾𝑀
𝑖 (1 + 𝑛

𝐸[𝑋]
𝐸[𝐾𝑀]

)
=

𝑉𝑖
𝑚𝑎𝑥𝑋𝑖

𝐾𝑀
𝑖 (1 +

𝐶𝑇𝑜𝑡𝑎𝑙(𝑡)
𝐸[𝐾𝑀]

)
 

(Eq.2)  

where 𝐶𝑇𝑜𝑡𝑎𝑙(𝑡) is the total RNA concentration in the reaction volume that has not been ligated 

up to time t. To characterize the order of the reaction, we need to consider the quantitative 

relation between the initial concentration of RNA against the expected Michaellis Menten 

constant. It is precisely this initial relation that determines the order of the reaction at all 

subsequent time points.  

Small RNA input is less than 200 ng for most protocols in current use (e.g. the Illumina TrueSeq 

protocol suggests a minimum of 10-50 ng of purified small RNA), and can be as low as 1-10 ng 

for the Ion Total RNA-Seq Kit v2 and the NEXTflex Small RNA-Seq Kit v3. Such low input 

materials are typical of applications for biomarker discovery in clinical samples and extracellular 

fluid media. Ligation reaction volumes are between 10-20 microliters, yielding a final 

concentration of between 50.6-101.3 nM if 10 ng of small RNA, with an average length of 29b is 

diluted in 10-20 microliters. This should be considered a rather high estimate of the 

concentration, because of issues quantifying small amounts of nucleic acid in dilute samples(20), 
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and the unknown size distribution of small RNA.  In our own experiments with synthetic mixes, 

the maximum amount of miRNA was 100 femtomole in 10 microliters, yielding an initial (total) 

concentration of 10 nM. This figures should be considered in light of the reported Michaelis – 

Menten constants for the enzymatic catalysis of the RNA ligation reaction which have been 

reported to be in the micromolar to millimolar range(2, 3, 13, 15, 21–23). As the concentration of 

RNA input is orders of magnitudes lower than the corresponding Michaelis-Menten constant, we 

can approximate the reaction velocity as a first order reaction: 

 
𝑉𝑖 ≈

𝑉𝑖
𝑚𝑎𝑥𝑋𝑖

𝐾𝑀
𝑖

 
(Eq.3)  

As the concentration of reactants declines during the reaction’s progression, the first order 

kinetic approximation becomes in fact more accurate. Hence, we can approximate the reaction 

velocity at all time points with the first order kinetic law. Integration of (Eq.3) up to a given 

reaction time yields 𝑇𝑅  the following expression for the ligation reaction yield:  

 
𝑋𝑖 {1 − exp(−

𝑉𝑖
𝑚𝑎𝑥

𝐾𝑀
𝑖
𝑇𝑅)} = 𝑋𝑖𝑓𝑖

5ʹ 
(Eq.4)  

Examination of this equation reveals that the efficiency depends on the kinetic parameters of the 

ligation reaction (maximum velocity and Michaelis-Menten constant) which in turn depend on 

characteristics of the adapter and the sequence to be ligated, the reaction time the total RNA 

input of the protocol and concentration of adapter cofactors. To the extent that these are kept 

constant, we postulate that reaction efficiencies will be constant for a given RNA and 

independent of the initial abundance 𝑋𝑗 or even the composition of the sample. A similar 

argument may be used to establish the near constancy of the 3ʹ ligation (𝑓𝑖
3ʹ). This allows us to 
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write the following, deterministic relationship between the input (𝑋𝑖) and output (Λ𝑖) of the 

ligase reaction: 

 Λ𝑖 = 𝑋𝑖  𝑓𝑖
5ʹ  𝑓𝑖

3ʹ = 𝑋𝑖  𝑓𝑖 (Eq.5)  

In the latter equation, the overall efficiency  𝑓𝑖 is the product of the efficiencies of the two 

consecutive adapter ligations.  Our hypothesis of constant ligation efficiencies,  𝑓𝑖, for any given 

library preparation protocol, leads to two testable predictions: the first concerns the form of a 

linear-quadratic (LQ) relation between the mean and the variance of sequence counts. We 

provide a mathematical proof of the LQ relation in a subsequent section. The second prediction 

specifies that sequencing data from an equimolar mix may be used to estimate relative 

efficiencies that are universally applicable to all datasets created with the same protocol. 

Consequently, these bias correction factors may be used to adjust the abundance estimates from 

other datasets in which these sequences were present in variable amounts.  

 

Mean and Variance Relationships in Stochastic Branching Processes for PCR reactions 

It is well recognized that the accumulation of the products of the PCR reaction may be 

stochastically modelled with a Galton-Watson branching process(24). We will consider the 

exponential phase of the PCR reaction, in which the reaction efficiency is constant. This 

assumption is likely to be verified in small RNA sequencing experiments, in which both the 

amount of starting material and the number of cycles are relatively small, e.g. less than 10 ng and 

fewer than 20 cycles respectively.  It follows that the abundance of the iit RNA species after the 

j+1 cycle, may be expressed by the Markovian relation(25–27): 



 

Page | 7  

 

 
L𝑖
𝑗+1
|L𝑖
𝑗
, 𝑞𝑖 = L𝑖

𝑗
+ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(L𝑖

𝑗
, 𝑞𝑖)            

𝑗 = 0, 𝑁 − 1

L𝑖
0 = Λ𝑖

 
(Eq.6)  

The corresponding mean and variance of the counts at the Nth cycle, conditional on the initial 

abundance and reaction efficiency may be derived by standard branching theory results(24, 25) 

as: 

 𝜇𝑖
𝑁|Λ𝑖, 𝑞𝑖 = Λ𝑖(1 + 𝑞𝑖)

𝑁 (Eq.7)  

 
𝜎2𝑖

𝑁
|Λ𝑖, 𝑞𝑖 = Λ𝑖

1 − 𝑞𝑖
1 + 𝑞𝑖

(1 + 𝑞𝑖)
𝑁[(1 + 𝑞𝑖)

𝑁 − 1] ≅ 
(Eq.8)  

 
 Λ𝑖
1 − 𝑞𝑖
1 + 𝑞𝑖

(1 + 𝑞𝑖)
𝑁(1 + 𝑞𝑖)

𝑁 =
1 − 𝑞𝑖

Λ𝑖(1 + 𝑞𝑖)
𝜇𝑖
𝑁2 

(Eq.9)  

 

The error incurred in approximating (Eq.8) with (Eq.9) is very small, i.e. less than 0.8% for 12 or 

more PCR cycles and efficiency greater than 50%. Hence the variance of the distribution of the 

amplified PCR products is proportional to the square power of the mean at each cycle. 

Equivalently, the coefficient of variation is constant for a given efficiency of the reaction and an 

initial starting abundance. The values of the coefficient of variation for different combinations of 

starting materials and reaction efficiencies are shown in Supplementary Figure 1. The coefficient 

of variation is inversely related to the initial abundance and is substantially less than 5% for copy 

numbers that are likely to be present in ligation reaction volumes.  

 

Numerical Approximation to the truncated Normal mixed Poisson distribution 

Special function formulation: The truncated normal mixed Poisson distribution was investigated 

by several authors in the 1960s(28–30); interest in that distribution subsequently waned, since no 
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practical applications or “real data which follows this distribution”(30) were known at the time. 

We will follow the textbook notation (See page 398 in (31)), which was introduced in 1967(29) 

and define the probability mass function (p.m.f.) of this distribution as: 

 

𝑝(𝑥|𝜇, 𝜙) = 𝑒𝑥𝑝 (
𝜇2𝜙

2
− 𝜇)(𝜇√𝜙  )

𝑥
𝐼𝑥 (𝜇√𝜙 −

1

√𝜙
)

𝐼0 (−
1

√𝜙
)

 

(Eq.10)  

where 𝐼0(𝑥) =
1

√2𝜋
∫ 𝑒𝑥𝑝 (−

𝑡2

2
) 𝑑𝑡

∞

𝑥
 and 𝐼𝑟(𝑥) =

1

√2𝜋
∫

(𝑡−𝑥)𝑟

𝑟!
𝑒𝑥𝑝 (−

𝑡2

2
) 𝑑𝑡

∞

𝑥
 . 

(Eq.10) follows from the notation by Kemp and Kemp(29) by substituting the expression for the 

variance of the PCR reaction 𝜇2𝜙 for the variance of the Gaussian mixing distribution. 

Using the definition of the cumulative density function of the standard normal distribution Φ(x), 

the relations between the I functions and the probability function 𝐻ℎ𝑟(𝑥): 𝐻ℎ𝑟(𝑥) = √2𝜋 𝐼𝑟(𝑥) 

(29) and between the probability function and the U parabolic cylinder function (12.7.7 (32, 33)) 

we can re-express the p.m.f. in (Eq.10) as  

 
𝑝(𝑥|𝜇, 𝜙) = 𝑒𝑥𝑝 (

𝜇2𝜙

4
−
𝜇

2
−
1

4 𝜙
) 
(𝜇√𝜙  )

𝑥

√2𝜋 
𝑈
𝑥+
1
2
(𝜇√𝜙 −

1

√𝜙
)

1

1 − Φ(−
1

√𝜙
)

≈ 𝑒𝑥𝑝 (
𝜇2𝜙

4
−
𝜇

2
−
1

4 𝜙
) 
(𝜇√𝜙  )

𝑥

√2𝜋 
𝑈
𝑥+
1
2
(𝜇√𝜙 −

1

√𝜙
) 

(Eq.11)  

We can considerably simplify (Eq.11), by taking advantage of the rapid convergence of the term 

involving the cumulative density function of the standard normal distribution to one. For just 3 

copies and a PCR efficiency of >0.8 the last term in (Eq.11) differs from unity by less than 

11/10000000 with the difference becoming smaller for higher abundances and efficiencies. 
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Therefore, this term may be ignored, reducing the problem of calculating the p.m.f. of the mixed 

Poisson distribution to that of computing the parabolic cylinder function U. 

Approximation by the Negative Binomial I and the Linear Quadratic Normal Model: We 

undertook extensive numerical simulations to assess whether (Eq.11) can be numerically 

approximated by less complex functions. We assessed the degree to which the Negative 

Binomial I (NBI) distribution (as defined in the main text) and the Linear Quadratic Normal 

family (LQNO) defined as: 

 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎𝐿𝑄
2 ), 𝜎𝐿𝑄

2 =  𝜇 (1 + 𝜙𝜇) (Eq.12)  

To carry out these evaluations, we simulated 10000 unique combinations of 𝜇, 𝜙 uniformly in the 

range of [1,106] x [10-10,1] using a Sobol sequence for quasirandom numbers. Each combination 

of 𝜇, 𝜙 defines a unique Truncated normal mixing distribution for a standard Poisson variate. 

Subsequently we simulated 50 values for the 𝑥 in the interval [𝜇 − 10𝜎𝐿𝑄, 𝜇 + 10𝜎𝐿𝑄] for each 

such variate (a total of 500,000 evaluation points) and evaluated (Eq.11) using an arbitrary 

precision numerical library for the computation of the hyperbolic cylinder function(34). In case 

this approach failed to generate a numerical value, we numerically evaluated the integral 

defining the mixed distribution (Eq. 9 in the main text) by an arbitrary precision (20 decimal 

digits) double exponential integrator(35, 36). The value of the p.m.f. was then contrasted against 

the value of the probability density function of the NBI and the LQNO at the same values of 

𝜇, 𝜙, 𝑥. The median (interquartile) absolute difference between the NBI and the truncated normal 

mixed Poisson distribution was 3.4 x 10-7 (4 10-8 - 3.77 10-6), while that for the LQNO were 2.62 

x 10-5 (1.1 10-3-4.1 10-7). In addition, we evaluated whether there are parameter combinations for 

which the LQNO distribution provides a better approximation to the mixed Poisson distribution 
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compared to the NBI. To do so, we built a logistic regression classifier to model the probability 

that the mixed Poisson p.m.f. was closer in absolute value to the LQNO than the NBI. This 

analysis (Supplementary Figure 4) demonstrates that depending on the combination of 

dispersion, mean value and signal generation probability, either one of these simpler distributions 

may provide a numerically superior approximation to the truncated normal mixed Poisson 

model. This analysis suggests that both the NBI and LQNO may be retained as alternatives to the 

more complex expression of (Eq.11) when modeling of RNA-seq experiments, since it will not 

always be evident the regime (upper yellow and lower red regions) in which an experiment is 

operating on. 

Distributional regression models for the analysis of differential expression 

The extension of the proposed framework to the problem of assessing differential expression 

changes between experimental conditions is straightforward. The two regression submodels in 

(Eq.12) of the main text (not to be confused with Eq.12 of the supplement), are augmented to 

account for differences in the abundances, i.e. the log 𝑋𝑖 terms between two or more 

experimental conditions. This augmentation, takes the form of a simple linear model under the 

working assumption of 𝑄𝑖,𝑗 = 𝑄𝑗 and the reparameterization 𝑄𝑗 = 𝑄𝑗×𝑟𝑗, when the relevant 

quantities are expressed in logarithmic scale. In this model, the mean parameter of the ith 

sequence, from the jth experiment in the kth experimental condition, may be written as a function 

of the fold expression change of that sequence (Δi,k) in that state relative to the (log-)expression 

against the referent state (log 𝑋𝑖,0): 
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 log 𝜇𝑖,𝑗,𝑘 = log𝑋𝑖,𝑘  + log𝑄𝑗 + log 𝑓𝑖
= log𝑋𝑖,0 + log 𝑓𝑖 + log𝑄𝑗 + Δi,k
= log 𝜇𝑖,0 + log𝑄𝑗 + Δi,k

 

(Eq.13)  

In moving from the second to the third equation, we adopt a viewpoint which considers the 

expression values in the referent condition as of a secondary interest relative to the differences in 

expression. This viewpoint allows us to absorb the ligase bias factors log 𝑓𝑖 into the terms for the 

expression of the sequence in the referent state log 𝑋𝑖,0 into composite terms log 𝜇𝑖,0. 

Consequently, one may estimate log-fold changes even for sequences for which the bias 

correction factors are not available e.g. from calibration equimolar datasets.   

Further structure may be imposed on (Eq.13) by adopting a mixed effects modeling perspective. 

This approach restricts the three terms to conform to a Normal distribution around their overall 

(grand) mean, while the latter (log 𝜇0,0, log 𝑄0, Δk) are allowed to vary freely: 

log 𝜇𝑖,0 = log 𝜇0,0 +𝑚𝑖,0,   𝑚𝑖,0~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜇0
2 )

log𝑄𝑗 = log 𝑄0 + 𝑤𝑗,           𝑤𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑄
2)

Δi,k = Δk + 𝛿𝑖,𝑘 , 𝑘 ≠ 0,   𝛿𝑖,𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑘
2)

 

This mixed effects model is a flexible approach which can readily accommodate global 

differential changes in expression level (Δk) that shift the expression level of every sequence by 

the same amount, while allowing sequence-specific variations (𝛿𝑖,𝑘) around this pattern. 

Furthermore, the model accommodates variation in the sequence counts of the referent state 

(𝑚𝑖,0), relative to mean sequence count in that state (log 𝜇0,0), while also explicitly representing 

technical, library-specific variation in PCR efficiency and signal generation probabilities (𝑤𝑗). In 

many applications, this technical variation, as quantified by the 𝜎𝑄
2 term, will be of substantially 

smaller magnitude than the variation in differential expression (𝜎𝑘
2) and referent sequence count 
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(𝜎𝜇0
2 ). Hence, one may simplify this model by setting 𝜎𝑄

2 → 0, which implies that 𝑤𝑗 → 0. Then 

one may absorb the term log 𝑄0 into the mean expression value of the referent group, log 𝜇0,0 

which becomes the grand mean (intercept) term of the regression model: 𝛼 = log 𝜇0,0 + log 𝑄0. 

The reduced model assumes the much simpler form: 

log 𝜇𝑖,𝑗,𝑘 = 𝛼 + Δk +𝑚𝑖,0 + 𝛿𝑖,𝑘

𝑚𝑖,0 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜇0
2 )

𝛿𝑖,𝑘 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑘
2)

 

A similar expression may be recovered, mutatis mutandis for the sub-model of the log 𝜙𝑖,𝑗,𝑘 

parameter. The GAMLSS model comprised of the two reduced sub-models on log 𝜇𝑖,𝑗,𝑘 log 𝜙𝑖,𝑗,𝑘 

is the cornerstone of our approach to differential expression analysis. 

 

Library Generation and Sequencing in the 4N random adaptor protocol 

In this section, we describe the protocol for the generation of the libraries using the 4N 

randomized adaptor protocol 

Input RNA 

RNA inputs were pools of 962 (miRXplore; Miltenyi Biotec) or 286 synthetic RNA oligos 

(IDT).  Each library was prepared from 0.1 femtomole to 100 femtomoles of RNA.  Pools were 

either equimolar or ratiometric mixes as indicated.  The composition of each pool can be found 

in Supplementary Table 1. Libraries and sequences were undertaken in three batches, with the 

identity of the samples (miRXplore v.s. 286 and ratiometric v.s. equimolar) randomly assigned to 

batches. Our randomization strategy, guards against the introduction of bias due to random 

variation or drift in laboratory practice or equipment performance. 
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Library preparation and sequencing 

3’ ligation: 

3’ ligation was carried out in thin-walled PCR tubes containing dried pellets of polyethelyne 

glycol (PEG) to give the indicated final PEG concentration (15%-25%) when resuspended in 

10uL.  For each library, the indicated amount of input RNA (0.1 femtomoles – 100 femtomoles) 

in 6uL of water was added to the PCR tube along with 1uL of 3’ adapter such that the final 

amount of adapter in the ligation reaction was as indicated (10 picomoles – 50 picomoles) (3’ 

adapter sequence: /5rApp/(N:25252525)(N)(N)(N)TGGAATTCTCGGGTGCCAAGG/3ddC/). 

Tubes containing RNA, adapter and PEG were denatured for 2 minutes at 70C then chilled on 

ice.  To each tube, 1uL of 10X T4 RNA ligase reaction buffer, 1uL of RNase inhibitor, and 1uL 

of T4 RNA ligase 2 truncated KQ were added and tubes were incubated for 2 hours at 25C.   

Adapter dimer removal: 

Excess 3’ adapter was removed enzymatically by addition of 1ug of E. coli single strand binding 

protein and incubation for 10 minutes at 25C, followed by treatment with 1uL of 5’ deadenylase 

for 1 hour at 30C, then treatment with 1uL of RecJ for 1 hour at 37C.   

5’ ligation: 

In a separate tube, the indicated 5’ adapter (5’ adapter v1 sequence: 

rGrUrUrCrArGrArGrUrUrCrUrArCrArGrUrCrCrGrArCrGrArUrCr(N:25252525)r(N)r(N)r(N), 

5’ adapter v3 sequence: 

G*T*T*C*A*G*A*G*T*T*C*T*A*C*A*G*T*C*C*G*A*C*rGrArUrCr(N:25252525)r(N)r(

N)r(N)) was denatured for 2 minutes at 70C and chilled on ice.  1uL of 5’ adapter to yield the 
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indicated final amount of 5’ adapter (10 picomoles – 135 picomoles), 1uL of 10mM ATP and 

1uL of T4 RNA ligase 1 was added to each tube and incubated at either 25C or 37C  for 1-2 

hours as indicated.   

Reverse transcription: 

6uL of ligated RNA and 1uL of reverse transcription primer (10uM; 

GCCTTGGCACCCGAGAATTCCA) were added to a new tube and denatured at 70C for 2 

minutes then chilled on ice.  To each tube, 2uL of 5X first strand reaction buffer, 1uL of 100mM 

DTT, 0.5 uL of 12.5mM dNTP mix, 1uL of RNase inhibitor and 1uL of SuperScript III reverse 

transcriptase were added and the reaction was incubated at 55C for 1 hour followed by 70C for 

15 minutes.  To remove excess 5’ adapter, 1uL of RiboShredder RNase blend was added and 

incubated at 37C for 15 minutes.   

PCR amplification #1: 

25uL of 2X PCR master mix, 2uL of Illumina forward PCR primer (20uM; sequence: 

AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA) and 2uL 

of Illumina indexed reverse PCR primer (20uM; sequence: 

CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCCTTGGCACCCGAG

AATTCCA, where XXXXXX indicates barcode), and 7.5uL of water was added to the cDNA.  

Libraries were amplified for 4 cycles.  PCR reactions were cleaned using a PCR purification 

column and eluted in 20uL of elution buffer.   

Size selection #1: 
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5uL of PippinHT loading buffer 30A was added to each purified PCR and libraries were loaded 

on a 3% agarose gel and size selected on a PippinHT automated electrophoresis instrument.  The 

range of 127-156bp was collected.  Eluted DNA was concentrated in a vacuum concentrator until 

the volume was less than 22.5uL.   

PCR amplification #2: 

Each library was transferred to a new PCR tube and the volume was adjusted to 22.5uL with 

water.  25uL of PCR master mix and 2.5uL of universal primer cocktail (20uM each primer; 

Forward primer sequence: AATGATACGGCGACCACCGAG, Reverse primer sequence: 

CAAGCAGAAGACGGCATACGA) was added to each tube.  Libraries were amplified for a 

further 8-15 cycles.  PCR reactions were cleaned using a PCR purification column and eluted in 

20uL of elution buffer.   

Size selection #2: 

5uL of PippinHT loading buffer 30A was added to each tube and libraries were loaded on a 3% 

agarose gel and size selected on a PippinHT automated electrophoresis instrument.  The range of 

127-156bp was collected.  Eluted DNA was concentrated in a vacuum concentrator until the 

volume was approximately 15uL.  1uL of each library was loaded onto a Bioanalyzer DNA 1000 

chip to assess size and purity of the finished library. 

Sequencing and RNA counts 

Libraries were denatured, diluted and loaded onto a NextSeq 500 and sequenced according to 

manufacturer’s instructions. Only those sequences that matched exactly those of the miRNAs in 

the miRXplore and 286 pools were counted and analyzed in this report. The following one-line 

bash script was used to generate RNA counts from a directory of fastq files: 
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LC_ALL=C grep -F -o -f /media/disk2/mirx/mirxplore.txt $FILE4 > pass/$PART4".extracted” 

where mirxplore.txt is the list of full length sequences that are supposed to be in the pool. 

 

  



 

Page | 17  

 

Appendix 

A. Expectation and variance of capture probabilities in RNA-seq experiments 

In this section, we derive expressions for the expectation and the variance of ratios of random 

variables, such as the capture probabilities in (Eq. 3) of the main text.  Previous treatments of 

this problem, consider the case of the ratio of two random variables (75–78).  In our case, the 

denominator is the sum of the numerator and many other random variables, i.e. the abundances 

of all the other RNA species in the reaction.  For clarity, we introduce the notation 𝐿−𝑖
𝑁 =

∑ 𝐿𝑗
𝑁𝑛

𝑗=1
𝑗≠𝑖

 i.e. the sum of all products of the PCR reaction at the Nth cycle, except for the ith species.   

Consider Taylor series expansions of the expected value of  the ratios  𝑠𝑖 =
𝐿𝑖
𝑁

𝐿𝑖
𝑁+𝐿−𝑖

𝑁   .  Since the 

ratio will be small for almost all si, we have the result: 

𝐸[𝑠𝑖] ≈ 𝐸 [
𝐸[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]
+

𝜕

𝜕𝐿𝑖
𝑁 (

𝐿𝑖
𝑁

𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 )|
(𝐸[𝐿𝑖

𝑁],𝐸[𝐿−𝑖
𝑁 ])

(𝐿𝑖
𝑁 − 𝐸[𝐿𝑖

𝑁])

+
𝜕

𝜕𝐿−𝑖
𝑁 (

𝐿𝑖
𝑁

𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 )|
(𝐸[𝐿𝑖

𝑁],𝐸[𝐿−𝑖
𝑁 ])

(𝐿−𝑖
𝑁 − 𝐸[𝐿−𝑖

𝑁 ])] ⇒ 

 
𝐸[𝑠𝑖] ≈

𝐸[𝐿𝑖
𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]
=

𝐸[𝐿𝑖
𝑁]

𝐸[𝐿𝑖
𝑁] + 𝐸[𝐿−𝑖

𝑁 ]
 

(Eq.14)  

where the last relation follows because of the assumption of the statistical independence of PCR 

amplification, under the branching process model (44, 65, 79).  By definition, the variance of the 

capture probability, si , is equal to 𝑉[𝑠𝑖] = 𝐸 {[𝑠𝑖 − 𝐸[𝑠𝑖]]
2
}.   Using the expression for 𝐸[𝑠𝑖] and 

expanding 𝑠𝑖 as a Taylor series to first order, one obtains 
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𝑉[𝑠𝑖] ≈ 𝐸 {[
𝐸[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]
+

𝜕

𝜕𝐿𝑖
𝑁 (

𝐿𝑖
𝑁

𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 )|
(𝐸[𝐿𝑖

𝑁],𝐸[𝐿−𝑖
𝑁 ])

(𝐿𝑖
𝑁 − 𝐸[𝐿𝑖

𝑁])

+
𝜕

𝜕𝐿−𝑖
𝑁 (

𝐿𝑖
𝑁

𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 )|
(𝐸[𝐿𝑖

𝑁],𝐸[𝐿−𝑖
𝑁 ])

(𝐿−𝑖
𝑁 − 𝐸[𝐿−𝑖

𝑁 ]) −
𝐸[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]
]

2

}

= 𝐸 {(
𝐸[𝐿−𝑖

𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
)

2

(𝐿𝑖
𝑁 − 𝐸[𝐿𝑖

𝑁])2 + (−
𝐸[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
)

2

(𝐿−𝑖
𝑁 − 𝐸[𝐿−𝑖

𝑁 ])2

− 2
𝐸[𝐿−𝑖

𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
×

𝐸[𝐿𝑖
𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
(𝐿𝑖
𝑁 − 𝐸[𝐿𝑖

𝑁])(𝐿−𝑖
𝑁 − 𝐸[𝐿−𝑖

𝑁 ])} 

             = (
𝐸[𝐿−𝑖

𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
)

2

𝑉[𝐿𝑖
𝑁] + (

𝐸[𝐿𝑖
𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
)

2

𝑉[𝐿−𝑖
𝑁 ]

− 2
𝐸[𝐿−𝑖

𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
×

𝐸[𝐿𝑖
𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
𝐶𝑜𝑣(𝐿𝑖

𝑁 , 𝐿−𝑖
𝑁 ) 

                           = (
𝐸[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]
)

2

{
𝑉[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁]2

×(
𝐸[𝐿−𝑖

𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]
)

2

+
𝑉[𝐿−𝑖

𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
}

= (
𝐸[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]
)

2

{
𝑉[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁]2

×(
𝐸[𝐿−𝑖

𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]
)

2

−
𝑉[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
+
𝑉[𝐿𝑖

𝑁 + 𝐿−𝑖
𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
}

= (
𝐸[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]
)

2

{
𝑉[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁]2

×(
𝐸[𝐿−𝑖

𝑁 ]2 − 𝐸[𝐿𝑖
𝑁]2

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
) +

𝑉[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
} ⇒ 

 
𝑉[𝑠𝑖] ≈ 𝐸[𝑠𝑖]

2 {
𝑉[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁]2

×
𝐸[𝐿−𝑖

𝑁 ] − 𝐸[𝐿𝑖
𝑁]

𝐸[𝐿𝑖
𝑁] + 𝐸[𝐿−𝑖

𝑁 ]
+
𝑉[𝐿𝑖

𝑁 + 𝐿−𝑖
𝑁 ]

𝐸[𝐿𝑖
𝑁 + 𝐿−𝑖

𝑁 ]2
} 

(Eq.15)  

In this derivation we used the statistical independence between the amplification reactions for the 

different RNA species to set the covariance term to zero. Furthermore, by defining𝐿𝑁 = 𝐿𝑖
𝑁 +

𝐿−𝑖
𝑁 , the total size of the PCR amplified library, we can further reduce the expression to: 
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𝑉[𝑠𝑖] ≈ 𝐸[𝑠𝑖]

2 {
𝑉[𝐿𝑖

𝑁]

𝐸[𝐿𝑖
𝑁]2

×
𝐸[𝐿𝑁] − 2×𝐸[𝐿𝑖

𝑁]

𝐸[𝐿𝑁]
+
𝑉[𝐿𝑁]

𝐸[𝐿𝑁]2
} = 𝐸[𝑠𝑖]

2  𝜙𝑖 
(Eq.16)  

In all expressions, the notation 𝐸[𝑋]2 stands for the square of the expectation of X 𝐸[𝑋]. The 

expectations and the variances appearing in the last two equations should be understood as the 

quantities characterizing the stochastic process of PCR amplification.  For a given sample 

composition and efficiency of the PCR reaction, the term inside the brackets is a constant, 

dispersion factor (𝜙𝑖). Stated in other terms,  the variance is proportional to the square of the 

mean and the proportionality constant is the dispersion factor.  

Factoring common terms, and noting that the dispersion factors are in general functions of the 

expectation of the capture probabilities, allows us to derive two alternative, yet equivalent 

expressions for the variance as a function of the mean: 

 𝑉[𝑌𝑖|𝐾𝑘] = 𝐾𝑘𝐸[𝑠𝑖] + 𝐾𝑘
2𝑉[𝑠𝑖] = 𝐸[𝑌𝑖|𝐾𝑘](1 + 𝜑𝑖𝐸[𝑌𝑖|𝐾𝑘]) (Eq.17)  

 𝑉[𝑌𝑖|𝐾𝑘] = 𝐸[𝑠𝑖]𝐾𝑘 + 𝐾𝑘
2𝑓(𝐸[𝑠𝑖]) (Eq.18)  

The functional forms of the mean/variance relations in the last two equations are the ones 

assumed in the edgeR  (15, 18),  and the deSEQx (14, 20) algorithms respectively.    
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B. Marginal distributions in chains of conditionally independent Binomial random 

variables 

In this section, we derive a result that is used to determine the marginal distribution of the last 

node in a chain of conditionally independent Binomial random variables, i.e.: 

 𝐵0|𝑀, 𝑝0~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀, 𝑝0)

𝐵1|𝐵0, 𝑝1~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐵0, 𝑝1)
⋮

𝐵𝑛|𝐵𝑛−1, 𝑝𝑛~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐵𝑛−1, 𝑝𝑛)

 

(Eq.19)  

In particular, we claim that:  

 
𝐵𝑛|𝑀, 𝑝0, … , 𝑝𝑛~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀,∏𝑝𝑖

𝑛

𝑖=0

) 
(Eq.20)  

The statement holds true for a chain of just two variables 𝐵0, 𝐵1 e.g. see section on compound 

binomial distributions p374 in (49). An alternate proof of this assertion may be derived as 

follows: The sought after marginal distribution is obtained by marginalizing the joint distribution 

𝑃(𝐵0, 𝐵1|𝑀, 𝑝0, 𝑝1) over 𝐵0 for all pairs of 𝐵0, 𝐵1 for which the joint distribution is positive, i.e. 

the set of values 0 ≤ 𝐵1 ≤ 𝐵0 ≤ 𝑀. Hence: 

 

𝑃(𝐵1|𝑀, 𝑝0, 𝑝1) = ∑ 𝑃(𝐵0, 𝐵1|𝑀, 𝑝0, 𝑝1)

𝐵0=𝑀

𝐵0=𝐵1

= ∑ 𝑃(𝐵1|𝐵0, 𝑝1)𝑃(𝐵0|𝑀, 𝑝0)

𝐵0=𝑀

𝐵0=𝐵1

= ∑ (
𝑀
𝐵0
) 𝑝0

𝐵0(1 − 𝑝0)
𝑀−𝐵0 (

𝐵0
𝐵1
)

𝐵0=𝑀

𝐵0=𝐵1

𝑝1
𝐵1(1 − 𝑝1)

𝐵0−𝐵1

=
𝑀!

𝐵1!
∑

𝑝0
𝐵0(1 − 𝑝0)

𝑀−𝐵0𝑝1
𝐵1(1 − 𝑝1)

𝐵0−𝐵1

(𝑀 − 𝐵0)! (𝐵0 − 𝐵1)!

𝐵0=𝑀

𝐵0=𝐵1

 

(Eq.21)  
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To proceed we make the substitution 𝐵0 = 𝑏 + 𝐵1 and multiply both numerator and denominator 

by the factor (𝑀 − 𝐵1)! to obtain: 

 
𝑀!

(𝑀 − 𝐵1)! 𝐵1!
∑

(𝑀 − 𝐵1)!  𝑝0
𝑏+𝐵1(1 − 𝑝0)

𝑀−𝐵1−𝑏𝑝1
𝐵1(1 − 𝑝1)

𝑏

(𝑀 − 𝐵1 − 𝑏)! 𝑏!

𝑏=𝑀−𝐵1

𝑏=0

=
𝑀! (𝑝0𝑝1)

𝐵1

(𝑀 − 𝐵1)! 𝐵1!
∑

(𝑀 − 𝐵1)!  𝑝0
𝑏(1 − 𝑝0)

𝑀−𝐵1−𝑏(1 − 𝑝1)
𝑏

(𝑀 − 𝐵1 − 𝑏)! 𝑏!

𝑏=𝑀−𝐵1

𝑏=0

=
𝑀! (𝑝0𝑝1)

𝐵1

(𝑀 − 𝐵1)! 𝐵1!
∑ (

𝑀 − 𝐵1
𝑏

) (1 − 𝑝0)
𝑀−𝐵1−𝑏(1 − 𝑝1)

𝑏 𝑝0
𝑏

𝑏=𝑀−𝐵1

𝑏=0

=
𝑀! (𝑝0𝑝1)

𝐵1

(𝑀 − 𝐵1)! 𝐵1!
((1 − 𝑝0) − (1 − 𝑝1)𝑝0)

𝑀−𝐵1

=
𝑀! (𝑝0𝑝1)

𝐵1(1 − 𝑝0𝑝1)
𝑀−𝐵1

(𝑀 − 𝐵1)! 𝐵1!
= (

𝑀
𝐵1
) (𝑝0𝑝1)

𝐵1(1 − 𝑝0𝑝1)
𝑀−𝐵1 

⇒ 𝐵1|𝑀, 𝑝0𝑝1~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀, 𝑝0𝑝1) 

(Eq.22)  

For a chain of more than two binomials, the respective result follows by induction.  

C. Marginal distribution of the hierarchical multinomial model 

We derive the marginal distribution of the hierarchical multinomial model given in (Eq. 7) of the 

main text by marginalizing the probability 𝑌𝑗|𝐵𝑗, 𝑟 over the multinomial distribution of counts.  

In the second step, we marginalize the resulting distribution over the observed library depth from 

the two levels of the hierarchy to arrive at a model for 𝑌1, 𝑌2, … , 𝑌𝑛, 𝑌𝑛+1that conditions on the 

theoretical library depth 𝐾0, the library depth variation probability, 𝑡, the capture probabilities  

𝑠1, 𝑠2, … , 𝑠𝑛 and the signal generation probability 𝑟. This is an augmented probability space, in 

which the number of “missing” counts appears as another random variable (𝑌𝑛+1). 
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In the first step, marginalization of this multinomial is over all 𝐵1, 𝐵2, … , 𝐵𝑛 that satisfy the 

constraint ∑𝐵𝑖 = 𝐾𝑘 leads to the following expression after dropping the indexing variable in all 

product terms to reduce clutter: 

∑ (𝐵1, 𝐵2, … , 𝐵𝑛|𝐾0, 𝑡, 𝑠1, 𝑠2, … , 𝑠𝑛)∏(𝑌𝑖|𝐵𝑖, 𝑟)

1≤ 𝑖 ≤ 𝑛
∑𝐵𝑖=𝐾𝑘 

= 

∑
𝐾0!

 ∏(𝑌𝑖!) (𝐵𝑖 − 𝑌𝑖)!
∏(𝑟𝑌𝑖𝑠𝑖

𝐵𝑖(1 − 𝑟)𝐵𝑖−𝑌𝑖)
1≤ 𝑖 ≤ 𝑛
∑𝐵𝑖=𝐾𝑘 

 

Since 𝐵𝑖 ≥ 𝑌𝑖, we introduce the transformation 𝑏𝑖 = 𝐵𝑖 − 𝑌𝑖 to re-write the sum as: 

𝐾𝑘!

 ∏(𝑌𝑖!)
∑ ∏

(𝑟𝑌𝑖𝑠𝑖
𝑏𝑖+𝑌𝑖(1 − 𝑟)𝑏𝑖)

𝑏𝑖!

∑𝑏𝑖=𝐾𝑘−∑𝑌𝑖

1≤ 𝑖 ≤ 𝑛
𝑏𝑖=0 

=
𝐾𝑘! (𝑟 𝑠𝑖)

𝑌𝑖

 ∏(𝑌𝑖!)
∑ ∏

(𝑠𝑖
𝑏𝑖(1 − 𝑟)𝑏𝑖)

𝑏𝑖!
=

∑𝑏𝑖=𝐾𝑘−∑𝑌𝑖

1≤ 𝑖 ≤ 𝑛
𝑏𝑖=0 

 

𝐾𝑘! (𝑟 𝑠𝑖)
𝑌𝑖

 ∏(𝑌𝑖!) (𝐾𝑘 − ∑𝑌𝑖)!
{
 

 
∑

(𝐾𝑘 − ∑𝑌𝑖)!

𝑏𝑖!
∏𝑠𝑖

𝑏𝑖(1 − 𝑟)𝑏𝑖

∑𝑏𝑖=𝐾𝑘−∑𝑌𝑖

1≤ 𝑖 ≤ 𝑛
𝑏𝑖=0 }

 

 
 

The expression inside the bracket is recognizable as the multinomial theorem expansion of the 

polynomial (1 − ∑𝑟 𝑠𝑖)
𝐾𝑘−∑𝑌𝑖 = (1 − 𝑟)𝐾𝑘−∑𝑌𝑖. Introducing this term into the last equation 

leads to the following expression:  

𝑌1, 𝑌2, … , 𝑌𝑛, 𝑌𝑛+1|𝐾𝑘, 𝑟, 𝑠1, 𝑠2, … , 𝑠𝑛 =
𝐾𝑘! (𝑟 𝑠𝑖)

𝑌𝑖(1 − 𝑟)𝐾𝑘−∑𝑌𝑖

 ∏(𝑌𝑖!) (𝐾𝑘 − ∑𝑌𝑖)!
 

This is a multinomial distribution over the set of observed counts augmented with the number of 

missing counts 𝑌𝑛+1 = 𝐾𝑘 − ∑𝑌𝑖. Therefore: 

𝑌1, 𝑌2, … , 𝑌𝑛, 𝑌𝑛+1|𝐾𝑘, 𝑟, 𝑠1, 𝑠2, … , 𝑠𝑛~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾𝑘; 𝑟 𝑠1, 𝑟 𝑠2, … , 𝑟 𝑠𝑛, 1 − 𝑟) 
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The marginal distribution of the latter expression over the binomial law describing the random 

variation in library depth is obtained as a single sum term, as there is only one value of 𝐾𝑘 that is 

compatible with the multinomial model, i.e. 𝐾𝑘 = ∑ 𝑌𝑖
𝑖=𝑛+1
𝑖=1 : 

𝐾𝑘! (𝑟 𝑠𝑖)
𝑌𝑖(1 − 𝑟)𝐾𝑘−∑𝑌𝑖

 ∏(𝑌𝑖!) (𝐾𝑘 − ∑ 𝑌𝑖
𝑖=𝑛
𝑖=1 )!

𝑡𝐾𝑘(1 − 𝑡)𝐾0−𝐾𝑘
𝐾0!

𝐾𝑘! (𝐾0 −𝐾𝑘)! 
= 

𝐾0! (𝑟 𝑠𝑖)
𝑌𝑖(1 − 𝑟)𝐾𝑘−∑ 𝑌𝑖

𝑖=𝑛
𝑖=1

 ∏(𝑌𝑖!) (𝐾𝑘 − ∑ 𝑌𝑖
𝑖=𝑛
𝑖=1 )! (𝐾0 − 𝐾𝑘)!

(1 − 𝑡)𝐾0−𝐾𝑘𝑡𝐾𝑘−∑ 𝑌𝑖
𝑖=𝑛
𝑖=1 ∏𝑡𝑌𝑖

𝑖=𝑛

𝑖=1

= 

𝐾0! (𝑡 𝑟 𝑠𝑖)
𝑌𝑖(𝑡(1 − 𝑟))𝐾𝑘−∑ 𝑌𝑖

𝑖=𝑛
𝑖=1

 ∏(𝑌𝑖!) (𝐾𝑘 − ∑ 𝑌𝑖
𝑖=𝑛
𝑖=1 )! (𝐾0 − 𝐾𝑘)!

(1 − 𝑡)𝐾0−𝐾𝑘 

This is recognizable as the expression for a multinomial probability mass function of size 𝐾0 

with 𝑛 + 2 categories and corresponding probabilities: 𝑡 𝑟 𝑠1, 𝑡 𝑟 𝑠2, … , 𝑡 𝑟 𝑠𝑛, 𝑡(1 − 𝑟), 1 − 𝑡 . The 

last two categories correspond to the “missing counts” from the two distinct processes of pre-

analytical and post-analytical random library variation. By properties of the multinomial 

distribution, they can be combined into a single category with probability and counts equal to the 

sum of the respective quantities. By doing so, we prove the claim asserted in (Eq. 8) of the main 

text. 
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Supplementary Figures 

 

Supplementary Figure 1 Coefficient of variation (CV) of PCR counts for different amounts of 

starting material (A) and PCR efficiency (B). To generate these figures the PCR stochastic 

branching process model was simulated for 16 cycles of variable abundance and PCR efficiency. 

At each cycle 20,000 samples were drawn from the distribution defined by (Eq.6) and the mean 

and standard deviation were calculated for each combination of reaction efficiency and 

abundance. The figure summarizes the CV for the final cycle. 
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Supplementary Figure 2 KL distance is given in bits for different amplification cycles (ordinate 

in x axis). In each bar-graph the notch marks the median, and non-overlapping notches suggest 

that the difference of medians is statistically significant. Kullback Leibler (KL) distance between 

samples generated by the Galton-Watson PCR branching process and candidate distributions 

with the same mean and variance (in bits). Normal: Gaussian Distribution, NegBin: Negative 

Binomial I, Inv-Gaussian: Inverse Gaussian. See Table 1 in the main text for the definitions of 

these densities. Differences between the other distributions and the normal one were highly 

statistically significant. (p<0.001 mixed effects regression analysis) (A) KL distance between 

samples generated from the Galton Watson and either the Normal (Gaussian) distribution or its 

left-truncated version for less than 1000 copies of initial abundance (B) 
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Supplementary Figure 3 Distribution of the absolute difference between the Negative Binomial 

(NB) or  the Linear Quadratic Normal family (LQNO) and the truncated normal mixed Poisson 

distribution. To generate this figure, we simulated 10000 unique combinations of 𝜇, 𝜙 uniformly 

in the range of [1,106] x [10-10,1]. Subsequently we simulated 50 values for the 𝑥 in the interval 

[𝜇 − 10𝜎𝐿𝑄, 𝜇 + 10𝜎𝐿𝑄] for each unique combination of 𝜇, 𝜙  (a total of 500,000 evaluation 

points) and evaluated (Eq.11) using an arbitrary precision numerical library. The value of the 

p.m.f. was then contrasted against the value of the probability density function of the NBI and 

the LQNO at the same values of 𝜇, 𝜙, 𝑥. 
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Supplementary Figure 4. Response surface yielding the probability that a mixed Poisson p.m.f 

is numerically closer to the Negative Binomial (red) v.s. the LQNO (yellow). There is a sharp 

demarcation of the regions in which the NBI performs better than the LQNO, given by the linear 

equation 𝜙 = 0.15 − 0.5 𝜇, when both quantities are expressed in a logarithmic (base 10) scale. 

This is shown by the dashed line in the figure. The probability jumps from 1 to zero above this 

line, so that the LQNO provides a better approximation to the truncated normal mixed Poisson 

distribution for higher values of 𝜇 and smaller values of 𝜙. We also plotted the range of values in 

the 𝜙 − 𝜇 plane spanned by different values of the signal generation probabilities (r), PCR 

efficiencies (from 0.9 to 0.99) and abundances (from 1 to 1012) for 16 amplification reaction 

cycles. Depending on the signal generation probability for a particular experiment, either 

distribution may yield a superior approximation to the truncated mixed Poisson distribution. 
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Supplementary Figure 5 Modeling of mean – variance relationship in 3 different RNA-seq 

experimental combinations (total of 32 RNA-seq datasets) involving different amounts of starting 

materials and 5p variations in the random 4N protocol. In each of these experiments, synthetic 

mixes of miRNAs (miRXplore) were used as input for library construction and sequencing. Within 

each experimental condition, we calculated the mean and the variance (over all the replicates) for 

each miRNA sequenced. Subsequently, we fit a linear – quadratic curve to these data-points (blue), 

estimating only the coefficient of the quadratic term from the data. These parametric curves are 

superimposed to flexible smoothing splines that were fit to the same data with smoothing 

regression models (red). There is remarkable agreement between the relations estimated by the 

flexible, data-driven curve and the LQ model. Data sources to derive this figure are detailed in 

Supplementary Table 1. 
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Supplementary Figure 6 Peak detection in expression profiles before and after bias correction 

Data of Haffner et all (A) and ratiometric series A and B in the validation 4N dataset (B). 

Relative to the uncorrected or raw data, application of bias correction results in expression 

profiles with peaks that coincide with the true expression patterns (dashed red lines). Sequence 

data (either the raw data or model estimates) were analyzed with finite Gaussian clustering 

methods to generate the profiles shown in the graph (black curves).   
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Supplementary Figure 7 Analysis of Differential Expression under scenarios of clustered 

symmetric DE without global changes in expression ratiometric A v.s. B (A), clustered 

asymmetric DE which shifts the global expression in one direction: equimolar v.s. ratiometric 

series A (B), equimolar v.s. ratiometric series B (C), ratiometric series A v.s. B in which the 

measurements of the overexpressed RNAs (subpools A and B) were omitted from the analyses 

(D). The dashed red lines are the true DE values, the numbers in bold the RMSE errors and the 

histograms are the model based clustering of the DE measures estimated by each method: 

DESeq2, edgeR (after Trimmed Mean Normalization, TMM), EBSeq (using either the Posterior 

Fold Changes, EBSeqPost, or the fold changes adjusted by normalization factors, EBSeqReal) , 

dss, limma (with or without TMM, limmaTMM), voom (unnormalized, or with sample weights, 

limmaSW, and after TMM, limmaTMM), gamlss (the reference implementation of the methods 

proposed in the text), gamlssAD (the fast implementation using Algorithmic Differentiation 

methods).  This figure is based on the repeat sequencing of the validation datasets. 
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Supplementary Figure 8 Analysis of Differential Expression with the gamlss and the Cubic 

Root (CR) transformation method under scenarios of clustered symmetric DE without global 

changes in expression ratiometric A v.s. B (A, B), clustered asymmetric DE which shifts the 

global expression in one direction: equimolar v.s. ratiometric series A (C,D), equimolar v.s. 

ratiometric series B (E,F), ratiometric series A v.s. B in which the measurements of the 

overexpressed RNAs (subpools A and B) were omitted from the analyses (G,H) and finally 

under a simulated global differential expression scenario (I,J). The images on the left column 

(A,C, E, G, I) were based on the initial sequencing of the validation libraries, while the ones on 

the right on the resequenced ones. 
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Supplementary Figure 9 Regression analysis of sensitivity as a function of the p-value cutoff 

from (0.05 to 0.0001). Confidence intervals and estimates were based on bootstrapping (200 

samples) a mixed logistic regression analysis, with the proportion of significance tests as the 

dependent variable and method as a covariate. This analysis used the DE datasets considered in 

the text. The referent for this analysis is gamlssAD (shown in black). The color scale gives the p-

value (in log10 scale) that each of the other methods had sensitivity different than gamlssAD. 
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Supplementary Figure 10 Regression analysis of specificity (in log10 scale) as a function of the 

p-value cutoff from (0.05 to 0.0001). Confidence intervals and estimates were based on 

bootstrapping (200 samples) a mixed logistic regression analysis, with the proportion of 

significance tests as the dependent variable and method as a covariate. This analysis used the 

datasets without any differential expression considered in the text. The referent for this analysis 

is gamlssAD (shown in black). The color scale gives the p-value (in log10 scale) that each of the 

other methods had specificity different than gamlssAD. For many of the p-value cutoffs, the 

confidence intervals fall below the spatial resolution of the figure and thus do not extent past the 

dot that gives the mixed model estimate 
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Supplementary Table 1 Characteristics of the miRexplore and 286 samples generated for the 

validation of the methodology proposed in the paper. The dilution column provides the dilution 

factor relative to a reference (input) concentration of 100 fmoles for each pool. The total input of 

the two ratiometric series was 100 fmoles. 

Experimental Group Dilution N 

miRExplore 1:10 10 

286 1:1 8 

 1:10 8 

 1:100 8 

 1:1000 8 

Ratio Metric Series A 

(descending) 

Mix of  

• 286 subpool A (1:1) 

• 286 subpool B (1:10) 

• 286 subpool C(1:100) 

• 286 subpool D 

(1:1000) 

8 

Ratio Metric Series B 

(ascending) 

Mix of  

• 286 subpool A 

(1:1000) 

• 286 subpool B (1:100) 

• 286 subpool C(1:10) 

• 286 subpool D (1:1) 

8 

Total 7 groups 58 experiments 
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Supplementary Table 2 Effects of bias correction in the equimolar 4N validation datasets 

Dataset 
Correction 

Factor Dataset 
RMSE MAE MAD Prob(2Fold) 

95% 
Range 

99% 
Range 

0.1 fmole Uncorrected 1.100 0.940 1.338 0.154 2.492 3.031 

0.1 fmole 1 fmole 0.113 0.091 0.110 0.990 0.430 0.581 

0.1 fmole 10 fmoles 0.233 0.161 0.176 0.860 1.033 1.292 

0.1 fmole 100 fmoles 0.367 0.260 0.263 0.717 1.366 1.694 

        

1 fmole Uncorrected 1.077 0.935 1.361 0.133 2.327 3.026 

1 fmole 0.1 fmole 0.117 0.093 0.114 0.990 0.440 0.605 

1 fmole 10 fmoles 0.110 0.081 0.095 0.972 0.464 0.603 

1 fmole 100 fmoles 0.272 0.209 0.252 0.808 1.027 1.455 

        

10 fmoles Uncorrected 0.983 0.843 1.181 0.150 2.201 2.836 

10 fmoles 0.1 fmole 0.222 0.150 0.144 0.888 0.888 1.237 

10 fmoles 1 fmole 0.146 0.102 0.106 0.941 0.615 0.746 

10 fmoles 100 fmoles 0.150 0.115 0.136 0.941 0.585 0.811 

        

100 fmoles Uncorrected 0.750 0.605 0.771 0.325 2.133 2.728 

100 fmoles 0.1 fmole 0.346 0.257 0.292 0.710 1.392 1.702 

100 fmoles 1 fmole 0.275 0.206 0.237 0.811 1.031 1.456 

100 fmoles 10 fmoles 0.149 0.116 0.151 0.948 0.586 0.809 

 

Each of the four equimolar series of varying RNA input (ranging from 0.1 to 100 fmoles) from 

the miRXplore pool in the column Dataset was prepared with the 4N protocol as detailed in the 

Supplementary Methods. Ligase bias metrics were calculated for each uncorrected dataset and 

for three corrected analyses. The latter used the empirical correction factors from the other three 

experiments. Bias reduction (assessed by any of the metrics) was highest when the dataset used 

for the calculation factors, differed up to an order of magnitude for the dataset that was corrected. 

In particular, RMSE was reduced from 77%-90% for these scenarios. Even when the RNA input 

in the correction dataset differed from the dataset to be corrected by 3 orders of magnitude, the % 

reduction in the RMSE was between 54% (correction of the 100 fmoles dataset by the 0.1 fmole) 

and 67% (correction of the 0.1 fmole dataset by the correction factors estimated from the100 

fmoles one).  P-values for the Flinger-Killeen, Ansari and Kolmogorov Smirnov tests for the 

comparison of variability reduction were all <10-9. RMSE: Root Mean Square Error, MAE: Mean 

Absolute Error, MAD: Median Absolute Deviation, Prob(2Fold): Probability of a short RNA to 

be expressed within two folds of the average (referent) value for its group, 95% and 99% Range: 

Range of values for 95% and 99% of short RNAs assessed in each dataset. The last three metrics 

were calculated from the empirical Cumulative Density Function of GAMLSS estimates. For the 

calculation of RMSE, MAD, MAE see the text.
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Supplementary Table 3 Effects of bias correction in the case of empirical factors from samples of heterogeneous composition 

(equimolar series) 

Dataset 
Correction 

Factor Dataset 
miRNA 
subset 

RMSE MAE MAD Prob(2Fold) 95% Range 99% Range 

   Corr. Uncor. Corr. Uncor. Corr. Uncor. Corr. Uncor. Corr. Uncor. Corr. Uncor. 

miRXplore 0.1 fmole Common 0.360 0.621 0.262 0.500 0.302 0.645 0.706 0.315 1.464 2.259 2.028 3.075 

miRXplore 0.1 fmole Unique 0.667 0.670 0.514 0.515 0.633 0.642 0.365 0.367 2.447 2.446 4.156 4.173 

miRXplore 1 fmole Common 0.331 0.621 0.237 0.500 0.253 0.645 0.736 0.315 1.347 2.259 1.962 3.075 

miRXplore 1 fmole Unique 0.666 0.670 0.514 0.515 0.634 0.642 0.365 0.367 2.446 2.446 4.154 4.173 

miRXplore 10 fmoles Common 0.319 0.621 0.234 0.500 0.255 0.645 0.741 0.315 1.192 2.259 1.662 3.075 

miRXplore 10 fmoles Unique 0.666 0.670 0.514 0.515 0.634 0.642 0.367 0.367 2.446 2.446 4.153 4.173 

miRXplore 100 fmoles Common 0.361 0.621 0.272 0.500 0.322 0.645 0.655 0.315 1.302 2.259 1.847 3.075 

miRXplore 100 fmoles Unique 0.666 0.670 0.514 0.515 0.634 0.642 0.367 0.367 2.446 2.446 4.156 4.173 

0.1 fmole miRXplore Common 0.360 1.164 0.266 1.024 0.287 1.541 0.670 0.117 1.465 2.475 2.023 2.712 

0.1 fmole miRXplore Unique 0.677 0.943 0.548 0.754 0.692 0.926 0.371 0.236 2.576 2.564 3.077 3.097 

1 fmole miRXplore Common 0.326 1.137 0.244 1.011 0.276 1.519 0.701 0.096 1.345 2.320 1.940 2.697 

1 fmole miRXplore Unique 0.626 0.931 0.502 0.766 0.623 0.981 0.371 0.213 2.312 2.317 2.985 3.002 

10 fmoles miRXplore Common 0.312 1.046 0.242 0.919 0.305 1.283 0.731 0.117 1.161 2.197 1.685 2.643 

10 fmoles miRXplore Unique 0.558 0.825 0.447 0.675 0.502 0.797 0.449 0.225 2.056 2.053 2.776 2.777 

100 fmoles miRXplore Common 0.351 0.803 0.276 0.672 0.347 0.910 0.655 0.254 1.306 2.138 1.847 2.469 

100 fmoles miRXplore Unique 0.513 0.618 0.404 0.457 0.494 0.491 0.449 0.483 1.982 1.983 2.591 2.596 

Effects of bias correction when empirical factors are estimated from a sample with a different composition than the target one. The 

column “Corr.” gives the metric for the corrected estimate for each series (column “Dataset”) using the correction factor from the 

series listed under the column “Correction Factor Dataset”. Column “Uncor.” tabulates the uncorrected estimate for each dataset. The 

series miRXplore corresponds to the experiments with the 962 pool in the validation dataset. Series 0.1-100 fmoles are the series with 

the 286 from the validation 4N experiments with the stated RNA input.  Bias metrics are calculated separately for the miRNAs that are 

shared between the target (“common”) and the correction factor datasets, and those that only appear in the target dataset (“unique”). It 

is not possible to apply bias correction to the unique dataset. In the analysis of these equimolar samples, RMSE was reduced by  

47.2% ± 12.9%, the MAE by 51.3% ± 13.5%, the MAD by 56.2% ± 13.3% for the miRNAs that were common between the target and 
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correction factor datasets. The percentage of miRNAs with expression level within two fold of the group mean increased from 23.0% 

±  9.5% (uncorrected) to 69.9% ±  3.3%. Simultaneously, the 95% and 99% range were decreased by 36.6%± 8.8% and 33.8% ± 8.4% 

respectively. There was no change in the bias metrics for miRNAs which were not corrected.   P-values for the Flinger-Killeen, Ansari 

and Kolmogorov Smirnov tests for the comparison of variability reduction were all <10-4 for the common subset. RMSE: Root Mean 

Square Error, MAE: Mean Absolute Error, MAD: Median Absolute Deviation, Prob(2Fold): Probability of a short RNA to be 

expressed within two folds of the average (referent) value for its group, 95% and 99% Range: Range of values for 95% and 99% of 

short RNAs assessed in each dataset. The last three metrics were calculated from the empirical Cumulative Density Function of 

GAMLSS estimates. For the calculation of RMSE, MAD, MAE see the text. 
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Supplementary Table 4 Execution times required for the learning and application of bias correction factors 

implementation Operating System R version Distribution Processor Dataset 
Mean 
Learn 

SD 
Learn 

Mean 
Apply 

SD 
Apply 

Reference Windows 10 x64 (build 9200) 3.3.1 (2016-06-21) LQNO i7-5960X 286 30.58 0.55 33.05 0.12 

Reference Windows 10 x64 (build 9200) 3.3.1 (2016-06-21) LQNO i7-5960X miRXplore 99.87 0.57 86.31 0.42 

Reference Windows 10 x64 (build 9200) 3.3.2 (2016-10-31) LQNO T9300 miRXplore 119.62 60.67 138.99 46.46 

Reference Windows 7 x64 (build 7601) 3.3.2 (2016-10-31) LQNO i7-3770 286 35.43 0.26 45.08 0.21 

Reference Windows 7 x64 (build 7601) 3.3.2 (2016-10-31) LQNO i7-3770 miRXplore 72.92 0.49 87.58 1.59 

TMB Windows 10 x64 (build 9200) 3.3.1 (2016-06-21) LQNO i7-5960X 286 4.88 0.10 6.39 0.23 

TMB Windows 10 x64 (build 9200) 3.3.1 (2016-06-21) LQNO i7-5960X miRXplore 22.48 0.49 21.21 0.46 

TMB Windows 10 x64 (build 9200) 3.3.1 (2016-06-21) NBI i7-5960X 286 15.76 0.56 18.57 0.45 

TMB Windows 10 x64 (build 9200) 3.3.1 (2016-06-21) NBI i7-5960X miRXplore 62.77 2.32 60.46 1.62 

TMB Windows 10 x64 (build 9200) 3.3.2 (2016-10-31) LQNO T9300 286 10.88 0.51 14.39 0.40 

TMB Windows 10 x64 (build 9200) 3.3.2 (2016-10-31) LQNO T9300 miRXplore 47.95 0.61 44.01 0.67 

TMB Windows 7 x64 (build 7601) 3.3.2 (2016-10-31) LQNO i7-3770 286 5.93 0.38 7.03 0.07 

TMB Windows 7 x64 (build 7601) 3.3.2 (2016-10-31) LQNO i7-3770 miRXplore 27.05 0.28 25.52 0.28 

 

Timings (means and standard deviations over 20 repeat runs, in seconds) for the learning and application of correction factors in two 

different datasets. All timings were obtained under Windows 64bit operating systems running multithreaded versions of R (Microsoft 

R Open). The Reference implementation can leverage multicore processors to speed up calculations, whereas the TMB 

implementation (gamlssAD) is inherently a single core program. 
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