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From chromatogram to analyte to metabolite. How to pick horses 

for courses from the massive web-resources for mass spectral plant 

metabolomics 
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1 Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-

Golm, Germany 

* Correspondence: LPerez@mpimp-golm.mpg.de; fernie@mpimp-golm.mpg.de 

Abstract 

The grand challenge currently facing metabolomics is the expansion of the coverage of the 

metabolome from a minor percentage of the metabolic complement of the cell towards the 

level of coverage afforded by other post-genomic technologies such as transcriptomics and 

proteomics. In plants this problem is exacerbated by the sheer diversity of chemicals that 

constitute the metabolome with the number of metabolites in the plant kingdom generally 

being considered to be in excess of 200 000. In this review we focus on web-resources that 

can be exploited in order to improve analyte and ultimately metabolite identification and 

quantification. There is a wide range of available software that not only aids in this but also 

in the related area of peak alignment, however, for the uninitiated choosing which program 

to use is a daunting task. For this reason we provide an overview of the pros and cons of the 

software as well as comments regarding the level of programing skills required to effectively 

exploit their basic functions. In addition the torrent of available genome and transcriptome 

sequences that followed the advent of next-generation sequencing has opened up further 

valuable resources for metabolite identification. All things considered, we posit that only via 

a continued communal sharing of information such as that deposited in the databases 

described within the article are we likely to be able to make significant headway towards 

improving our coverage of the plant metabolome. 

Keywords: Arabidopsis, bioinformatics, crop species, GC-MS, LC-MS, peak identification, 

peak annotation. 
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Background 

Metabolomics emerged in the late 1990s with the term coined in a review of Steven Oliver 

[1]. However, the 2000 paper by Fiehn and co-workers wherein gas chromatography (GC) 

coupled to mass spectrometry (MS) defined the chemical composition of a morphological 

and metabolic mutant of the model plant Arabidopsis thaliana [2]; in doing so they were 

able to describe changes in the level of 326 analytes. This work thus greatly extended on the 

early metabolite profiling study of Sauter et al. [3] , which presented the technology as a 

means of putative classification of mode-of-action of pesticides. Thus the advent of 

metabolomics in plants arguably preceded that in microbes and mammals although the 

approach was rapidly adopted in these communities also [2, 4-6]. During the next two 

decades metabolomics had one considerable advantage over profiling technologies such as 

transcriptomics and proteomics in that it is not directly reliant on the genome sequence and 

during this time the species scope of metabolomics rapidly expanded such that it was no 

longer merely a tool for identifying biomarkers of cellular circumstance but additionally one 

of the cornerstones of systems biology and an approach which could provide mechanistic 

insight into metabolic regulation [7-11] . This advantage has subsequently disappeared 

following the widespread adoption of next-generation sequencing and the lack of linear 

relationship between the genome and the metabolome now represents part of the problem 

in identification of unknown analytes [12] . This is nicely exemplified by the fact that 

computation of the size of the metabolome on genome information as attempted by Nobeli 

and co-workers in 2003 for the E. coli metabolome and [13] rendered values far smaller 

than the number of metabolites actually measured to date [14]. Whilst the size of the 

metabolome for prokaryotes has been estimated at a couple of thousand, that of the plant 

kingdom dwarves these numbers with estimates ranging between 200 000 and 1 million 

metabolites [15]. Within the last two decades metabolomics has been employed to address 

a wide range of important questions in plant biology including pathway structure [15], the 

influence of metabolism on growth [8, 16], plant ecology [17], various aspects of plant 

genetics including evolution and the domestication syndrome [18-20] as well as detailed 

characterizations of the metabolic response to biotic and abiotic stressors [21, 22].  

In this review, we discuss two topics. The first is the availability of tools to aid in 

chromatogram evaluation. Since we last reviewed this in 2009 [23], the number of resources 

has exploded as has their diversity in type. In 2009 a number of pathway, analytical 

standards, analytical samples and literature databases were available. In the intervening 

period additional sites providing information on experimental and in silico mass 

fragmentation, isotopic labeling, pathway predicted metabolites, integration of 

metabolomics with other platforms and mass spectrometry imaging have become available. 

For each resource we will briefly outline functionality and provide illustrative examples of 

their utility. The second is to review the current status of the broad variety of plant 

metabolomics databases. In this respect we list sources of archived data and their 

respective volumes of data. We also briefly discuss recent meta-analysis which illustrate 
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that despite current hurdles regarding comparability of data there is great potential for 

cross-study comparisons on metabolite responses in determining common responses 

between either genetic or environmental perturbations of metabolism. Finally, we will 

provide an outlook as to how the grand challenge of comprehensitivity will best be met and 

how the power of archived plant metabolic responses will be best exploited in the future. 

It is not the scope of this review to discuss the theoretical details of every procedure or to 

document the subtle differences between the many similar tools referred to here. We 

rather aim to provide a general idea of the importance and challenges of each step in the 

metabolomics workflow and to summarize the major functions of each tool while referring 

to the more comprehensive literature supporting them. We attempt to classify all the 

resources in a simple and logical manner in order to facilitate understanding of the main 

functionalities of each one. It is, however, important to mention that while few of the tools 

presented here provide a complete workflow, most of them are able to perform multiple 

complementary functions somewhat blurring any initiative to accord their functions specific 

classifications. Other important information that we include here is how these tools can be 

accessed. This is usually performed either via command-line-or graphical-user-interface 

(GUI), the former provides flexibility and facilitating integration, automation and 

development, while the latter was developed to be intuitive and friendly for unexperienced 

users. Finally, it is important to highlight that the active developments in the field result in 

frequently outdated and discontinued resources. While many groups keep releasing new 

upgraded versions of their tools, it is often the case that the projects are just discontinued 

and the tools are kept available online. We tried to represent this by including the most 

recent references as well as the last update dates for each of the resources in 

supplementary table 1. All these features considered allow the researcher to access the 

information required to choose the “winning horse” under the conditions or “course” in 

which they are racing. Finally it is also important to highlight that these tools are constantly 

being updated, integrated and discontinued, and while we ensured that all the links 

provided here were functioning at the time of writing, it is impossible to ensure that to be 

the case in the future. 

Sample preparation and data acquisition 

The metabolomics workflow (Figure 1) starts with sample preparation including extraction 

and often coupled to  pre-treatment and chemical derivatization, followed by data 

acquisition which will depend on the chromatographic system, ionization source and 

analyzer. Optimization of sample preparation and data acquisition can considerably improve 

the analysis and is particularly interesting for plant metabolomics where matrix complexity 

is very high; nevertheless this step is often skipped over in favor of standardization and 

simplicity which allow for greater sample throughput. Methods for chromatography mass 

spectrometry based optimization are well developed and usually rely on statistical designs 

collectively known as Design of Experiments (DoE) [24].  
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While some studies have detailed its application in plant metabolite extraction [25] and 

liquid chromatography (LC) analysis [26], very few software tools were developed so far 

focusing on this kind of approach for metabolomics data. That said a couple of interesting 

software are MUSCLE  [27], a tool for the automated optimization of targeted LC-MS/MS 

analysis that was shown to significantly shorten analysis times and increase analytical 

sensitivities of targeted metabolite analysis, and FragPred [28], which uses experimental 

fragmentation from a database to select common fragmentation products that minimize 

uncertainty about metabolite identities in large-scale multiple reaction monitoring (MRM) 

experiments, have been published and appear to be highly promising. 

 

Data processing 

Raw mass spectrometry chromatograms are three dimensional data consisting of a 

distribution of m/z intensities over the time. Processing this data requires filtering, detecting 

and integrating relevant features, aligning signals across different samples, extracting 

compound mass spectra and normalizing the data, all with the final goal of simplifying and 

hence facilitating data interpretation. 

Feature detection and peak alignment are the initial steps for extracting information from 

raw data and corresponds to the process in which relevant signals are identified and 

quantified across samples, having peak alignment as one of the big challenges to overcome, 

particularly for LC-MS where retention time is more prone to fluctuations in relation to GC-

MS. The many different approaches available to perform these steps of data processing 

were recently reviewed by [29, 30], and some of the most popular algorithms for feature 

detection and peak alignment were compared in different works [31, 32]. Most software 

somehow integrate both steps in the same pipeline to generate a report of signal intensities 

over samples from raw data, and many of them also include some resource for data analysis 

and peak annotation that will be discussed later in more detail. In the following section we 

will detail the available tools for this step, adopting a similar approach in all subsequent 

sections also (the details of the programs are all given in additional file 1). MetAlign [33] is a 

versatile tool that performs well with both LC-MS and GC-MS and allows direct conversion 

from and to vendor formats while most other tools need an extra software for this step. It 

additionally provides a series of functionalities through other tools that are developed by 

the same group and integrate directly in the output of MetAlign. XCMS appears to be the 

most cited software for LC-MS data processing, it was developed for R and implements 

different algorithms for feature detection and alignment suitable for different kinds of data, 

while it can be argued that the software requires familiarity with programming and lacks 

resources for simple data inspection, its platform is, nevertheless, powerful and easily 

integrated with other tools and its extensive community of users provide a great resource 

for troubleshooting. Moreover, a great number of other tools are built upon the functions of 

XCMS [34]. Amongst these, TracMass 2 [35], a MATLAB software which provides a GUI in a 
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modular suite, was developed to provide immediate graphical feedback of every step of the 

processing pipeline, its benchmark paper compared the complexity of different algorithms 

highlighting the importance of low complexity when dealing with large data files and 

demonstrating it to be more efficient than MZmine 2 (see below for discussion of this 

software) and comparable to XCMS, two of the most popular current data processing tools. 

The particularities of TracMass algorithm makes it more suitable for detecting mass traces in 

the low mass region that can be missed by other approaches.  iMet-Q [36], a C# software 

with a GUI whose algorithm includes automatic detection of charge state and isotope ratio 

of detected peaks and was developed to minimize the amount of necessary input 

parameters significantly facilitates the pipeline for new users. GridMass [37] is a 2D feature 

detection algorithm implemented in MZmine 2 that is faster than other algorithms and 

potentially improves detection of low-intensity masses. MSFACTs [38], was one of the first 

tools developed for peak alignment, it uses peak tables or raw data in the ASCII format as 

input being limited only to the chromatographic domain, this approach can, however, now 

be considered outdated when compared with many other resources currently available. 

MET-IDEA [39] is a more recent and flexible tool, developed by the same group as MSFACTs, 

for feature detection and alignment with a friendly interface developed in .NET platform. Its 

features include visualization of integrated peaks and manual integration and display of 

mass spectra, which can be very helpful for quick data inspection. EasyLCMS [40] is a web 

application tool with focus on calibration and calculation of targeted metabolite 

concentration in terms of μmol using algorithms developed for MZmine 2. IDEOM [41] is a 

metabolomics pipeline using functions from XCMS and MZmatch from an Excel GUI. It also 

includes automated annotation based on an internal database of exact mass and retention 

time that can be update by users according to the machine. Massifquant [42] is a feature 

detection algorithm integrated into XCMS based on a Kalman filter for the detection of 

isotope trace, this approach was shown to be particularly useful for low-intensity peaks. 

MET-COFEA [43] is a C++ software accessed via a GUI that implements a novel mass trace 

based extracted-ion chromatogram extraction that copes better with drifts in the mass 

trace. It additionally uses compound-associated peak clusters instead of individual features 

for alignment (this clustering process is an important step to extract metabolite information 

and simplify data as it will be discussed below). MET-Xalign [44] is an extension for MET-

COFEA that can potentially align compounds of samples from different experiments, a hard 

task for metabolomics datasets that is not approached by most other tools. apLCMS [45], is 

an R package for high mass accuracy LC-MS, which tries to be user friendly by providing a 

file-based operation and a wrapper function for a single command line batch process of LC-

MS data, however, still requires quite some computational knowledge to operate. 

xMSanalyzer [46] is an R package for improving feature detection that integrates with 

existing packages such as apLCMS and XCMS, it systematically re-extracts features with 

multiple parameter settings and merges data to optimize sensitivity and reliability. Yamss 

[47] is a recently developed R package focused in providing high-quality differential analysis 

implementing a method based on bivariate approximate kernel density estimation for peak 
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identification. In addition to the tools mentioned above there are a few tools for data 

processing that exclusively perform peak detection or alignment such as peak-grouping-

alignment [48], an approach where information from grouping peaks within samples 

improve alignment across samples, and PTW [49] a fast alignment algorithm based on a 

variation of parametric time warping working on detected features rather than on complete 

profile data. In addition, cosmiq 

(http://www.bioconductor.org/packages/devel/bioc/html/cosmiq.html) is a peak detection 

algorithm to improve detection of low abundant signals that can be easily integrated with 

XCMS. These algorithms represent an important effort in improving the existing approaches 

but they are much less accessible since they need to be integrated with other tools that 

usually perform similar functions and in some instances this requires quite advanced 

computational skills. 

It is important to note the significant differences between GC-MS and LC-MS which are 

intrinsic to the features of each system, and can be summarized as a much higher efficiency 

and stability in GC over LC separation followed by a very stable fragmentation in traditional 

GC ion sources in contrast with the typical atmospheric pressure ionization employed with 

LC. This significantly influences the processes of peak alignment and spectra annotation, and 

while most of the tools developed with a focus towards LC-MS can also be used for 

processing GC-MS data, there are many developed with a particular focus on processing GC-

MS data, making use of different strategies for peak alignment and integrating metabolite 

annotation by matching spectra to libraries. AMDIS [50], developed with the support of U.S. 

Department of Defense, is one of the most popular GC-MS processing tools, it automatically 

extracts component mass spectra from GC-MS data and uses it for search in mass spectral 

libraries, a disadvantage of this software is that the output requires extensive treatment to 

be used for further analysis. However Metab [51], an R package based on functions of XCMS 

was developed to automate the pipeline for analysis of GC-MS data processed by AMDIS 

dealing with the issue of its output data. MetaQuant [52] is a tool that uses retention index 

to define metabolites but it depends on other deconvolution software like AMDIS to extract 

mass spectra. Both MetaboliteDetector [53] and TagFinder [54] provide an efficient pipeline 

performing deconvolution, peak detection, compound identification, alignment based on 

Kovats retention index using alkane mix and quantification, and provide an interactive user 

interface facilitating use by unexperienced users. They do however require several manually 

input and data check steps that are time consuming and negate truly high throughput. 

TargetSearch [55] uses similar approaches to process data, identify and quantify targeted 

metabolites based on retention time index and spectra matching of multiple correlated 

masses but it is highly automated and efficient thus allowing the processing of large sample 

sets. PyMS [56] is an alternative to the previously mentioned interactive software, providing 

similar functions but being particularly suitable for scripting of customized processing 

pipelines and for data processing in batch mode working in Python. MET-COFEI 

(http://bioinfo.noble.org/manuscript-support/met-cofei/) uses reconstructed compound 
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spectra instead of individual peaks to align signals across samples, which is expected to 

improve peak information for downstream analyses, it also match spectrum against an user-

specific library. TNO-DECO [57] uses a segmentation approach to allow the performance of 

simultaneous deconvolution of multiple chromatographic MS files in a semi-automated 

fashion in MATLAB, thereby eliminating peak alignment. By contrast, MetaMS [58] is a 

pipeline for high-throughput GC-MS processing based on XCMS for peak detection and 

alignment and CAMERA for compound spectra extraction. Compound spectra is further 

annotated based on match with a database. This tool may be convenient for users that 

already implement XCMS analysis of other data, but this kind of processing is not optimal for 

GC-MS when compared with other processing types. Maui-VIA [59] implements a graphical 

interface that facilitates visual inspection of identifications and alignments providing faster 

interaction with the data. eRah [60] is an R tool that integrates a novel spectral 

deconvolution method using multivariate techniques based on blind source separation, 

alignment of spectra across samples without the need of internal standards for calculating 

retention indexes, quantification, and automated identification of metabolites by spectral 

library matching, in a fully automated pipeline, even though internal standards are not 

necessary they are still recommended to increase reliability in metabolite identification. The 

software ADAP-GC 3.0 [61] uses a deconvolution algorithm based on hierarchical clustering 

of fragment ions, the updated version is incorporated into the MZmine 2 platform and 

addressed issues from the first version such as fragment ions that are produced by more 

than one co-eluting components, and improved sensitivity and robustness. Finally,  MetPP 

[62] is a processing tool that includes normalization and statistical analysis but is directed 

towards data emanating from GC×GC-TOF MS system. 

Extracting compound mass spectra is another important step of data processing that 

reduces data complexity by many orders of magnitude by identifying m/z signals that belong 

to the same compound and provide essential information for further metabolite annotation 

through the reconstructing of mass spectra. While this process is usually integrated in GC-

MS tools for feature detection, alignment and annotation, as mentioned above, there are 

many approaches to deal with LC-MS data such as the ones employed by CAMERA [63]  a 

package developed in R to extract compound spectra, annotate isotopes and adducts, and 

propose compound mass as an extension to XCMS, it is easy to use in combination with this 

software and provides a significant reduction on data complexity. AStream [64] is another R 

package very similar to CAMERA but using a simpler algorithm for grouping the peaks. 

ALLocator [65], is a web based workflow that applies centwave from XCMS for feature 

detection followed by spectra deconvolution either by CAMERA or by the ALLocatorSD 

algorithm which is optimized for dealing with the particularities of  13C labeled data by 

grouping mirrored isotopes (lighter isotopologues from feeding experiment).  MSClust [66], 

has the same general features as the others but it was developed in the C++ language and it 

is optimized to work with the output files of MetAlign. RAMClustR [67] was developed in 

MATLAB and implemented in R, accepting directly the output of XCMS. The authors suggest 
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the use of a workflow consisting of data acquisition under both low and high collision energy 

as a way to improve the quality of the spectra generated by feature clustering and provide a 

data format that can be submitted directly to the MassBank Database and NIST MSSearch 

program. By contrast, RAMSY [68] uses average peak ratios and their standard deviations 

rather than correlation to allow the recovery of compound spectra, the performance of this 

approach is typically better than the results from correlation methods, furthermore, the 

script for MATLAB is available or it can be run from a web interface with a .csv table as 

input. 

The last step of data processing, data normalization, is essential for further data analysis in 

order to remove bias introduced by sample preparation from meaningful biological 

variation. Most methodologies rely either on the use of internal standards statistical means 

for normalization. Most data normalization procedures are usually integrated in data 

analysis tools, but there are few examples of more specialized tools such as  MetTailor [69] 

that uses a dynamic block summarization method for correcting misalignments reducing 

missing data and apply an RT-based local normalization procedure, or Normalyzer [70] that 

uses twelve different well known normalization methods and compares the results based on 

different parameters. IntCor [71] that corrects for peak intensity drift effects based on 

variance analysis, MetNormalizer [72] which allows normalization and integration of 

multiple batches in large scale experiments using support vector regression, and EigenMS 

[73] which detect bias trends in the data and eliminates them using single value 

decomposition are also highly useful. All of these software are implemented in R, however, 

with the exception of Normalyzer which can be also used in a web interface they all require 

considerable familiarity with this programing language. A couple of other tools that help to 

extract specific information previous to data analysis include the program SpectConnect [74], 

that identifies conserved metabolites in GC-MS datasets, and MathDAMP [75], a 

Mathematica package for Differential Analysis of Metabolite Profiles highlighting differences 

within raw LC-MS and GC-MS datasets.  

A common feature of mass spectrometry data is the presence of multiple peaks for 

individual fragments resulting from the distribution of natural isotopes which are 

particularly interesting and explored in stable isotope labeling experiments. There are a few 

tools for correcting and extracting label enrichment from processed data such as Corrector 

[76], IsoCor [77] and ICT [78]. These tools are very similar all being based on the same matrix 

calculation. Corrector was developed to work on the output of TagFinder but data 

processed with most other tools can be easily arranged in a similar table format. IsoCor 

provides a GUI with a few different options including corrections for the label input whereas 

ICT includes features to process data from tandem MS. Nevertheless most data processing 

pipelines available are not particularly efficient for dealing with this kind of experiment, to 

fill this gap there are some specialized tools like mzMatch–ISO [79], integrated in the 

mzMatch pipeline. This software is capable of targeted and untargeted processing of labeled 

datasets and the output includes a set of plots summarizing the pattern of labelling 
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observed per peak allowing users to quickly explore data. MetExtract [80] which relies on a 

mixture of cultures from the same organism under natural and labeled media to select 

signals that show a clear pattern of isotopic enrichment. However, the approach requires 

the labeled fraction to be fully labeled and the tracer to be highly pure to get the proper 

isotopic distributions. X13CMS [81] and geoRge [82], both run on the R platform using GC-

MS output, the former algorithm iterates over MS signals in each mass spectra using the 

mass difference due to the label, while the latter uses statistical testing to distinguish 

Spectral peaks originated from labeled metabolites resulting in significant less false 

positives. The MIA program [83] detects isotopic enrichment in GC-MS datasets in a non-

targeted manner, providing an easy GUI to visualize mass isotopomer distributions (MID) of 

the detected fragments as barplots including confidence intervals and quality measures, 

tools for differential analysis of relative mass isotopomer abundance across samples and 

network assembly based on pairwise similarity of MID that can reveal related metabolites.  

Another important feature of many mass spectrometry systems is their capability of 

performing tandem mass spectrometry. While this can significantly improve data in many 

ways, it adds another level of complexity for data processing. A very common use of tandem 

MS is to increase selectivity and accuracy in targeted analysis and MRMAnalyzer [84],  

MMSAT [85] and MRMPROBS [86] are useful tools developed for processing data from 

multiple reaction monitoring experiments. MMSAT [85] is a web tool that takes mzXML files 

as the input, it is able to automatically quantify MRM peaks but lacks metabolite 

identification capability. By contrast, MRMPROBS [86] detects and identifies metabolites 

automatically, providing a user-friendly GUI for data analysis. The algorithm has one 

limitation that it needs at least two transitions per metabolite in order to discriminate the 

target metabolite form isomeric metabolites and the background noise. Similarly, 

MRMAnalyzer [84] is an R tool allowing processing, alignment, metabolite identification, 

quality control check and statistical analysis of large datasets that transforms data in 

“pseudo” accurate m/z, in order to use the centwave algorithm from XCMS for peak 

detection. Untargeted metabolomics analysis can also take advantage of tandem MS, 

particularly for compound annotation, and there are few resources for dealing with the 

complexity of such experiments such as decoMS2 [87], an R package for deconvoluting MS2 

spectra eliminating contaminating fragments without the need of sacrificing sensitivity in 

favor of sensibility by narrowing the window of isolation for collision-induced dissociation 

(CID) during data acquisition. This approach requires MS2 data to be acquired under low 

and high collision energies to solve the mathematical equations potentially reducing 

sensitivity of the method. MS-DIAL [88] and MetDIA [89] both deal with Data-independent 

acquisition (DIA) data, an interesting approach for untargeted metabolomics that acquire 

MS2 spectra for all precursor ions simultaneously with the complication that it uses larger 

isolation windows, hence increasing the probability of contamination in the MS2, and it 

loses the relation between precursor and fragment ions. MS-DIAL addresses these problems 

by a mathematical deconvolution based on GC-MS processing tools in a fully untargeted 
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manner, whilst achieving the metabolite identification through a spectrum-centric library 

matching. MS-DIAL is applicable to both data-independent and data-dependent MS/MS 

fragmentation methods in LC-MS and GC-MS. By contrast, MetDIA [89] uses algorithms from 

XCMS for peak detection and alignment combined with a targeted approach based on 

matching metabolites in a library to the detected peaks, thus achieving higher sensitivity 

and specificity on metabolite identification and wider metabolite coverage. 

A trade-off for most of the more flexible and powerful resources presented here is that they 

have multiple parameters that need to be optimized, and recently a number of tools try to 

assist in evaluating and automatizing this process. In this context IPO [90] was developed to 

perform automatic optimization of XCMS parameters based on design of experiment , 

Credentialing Features [91] optimize detection based on regular and 13C-enriched , 

MetaboQC [92] is a quality control approach that evaluates alignment and suggests optimal 

parameters for feature detection based on discrepancies between replicate samples , and 

SIMAT [93] allows the selection of the optimal set of fragments and retention time windows 

for target analytes in GC-SIM-MS based analysis. 

Data analysis 

Metabolomics datasets are usually characterized by high dimensionality, heteroscedasticity 

(i.e. the variance in errors is not constant across the dataset) and differences of orders of 

magnitude across metabolite concentrations and fold changes, making it challenging to 

extract and visualize useful information from processed data. There are numerous 

approaches for data scaling, reduction, visualization and statistical analysis particularly 

useful for analyzing metabolomics data, many of them very well established such as analysis 

of variance (ANOVA), hierarchical cluster analysis (HCS), principal component analysis (PCA) 

and partial least squares discriminant analysis (PLS-DA) to mention just a few. There are 

many general statistical software capable of performing most of these functions, but also a 

variety of software tools exist combining procedures relevant to metabolomics in a single 

pipeline and thus facilitating the workflow such as DeviumWeb 

(https://github.com/dgrapov/DeviumWeb), BioStatFlow (http://biostatflow.org/), 

MetaboLyzer [94], metaP-Server [95], Fusion (https://fusion.cebitec.uni-

bielefeld.de/Fusion/login) , Pathomx [96], MSPrep [97], MixOmics (http://mixomics.org/) 

and COVAIN [98]. 

Other interesting and somehow more specialized tools include RepExplore [99] which 

exploits information from technical replicate variance to improve statistics of differential 

expression and abundance of omics datasets, KMMDA [100] and Metabomxtr [101] which 

deal with the troublesome issue of missing metabolite values, the former through a kernel-

based score test and the later through mixed-model analysis. Similarly, PeakANOVA [102] 

identifies peaks that are likely to be associated with one compound and uses them to 

improve accuracy of quantification, a particularly useful approach for experiments with 

limited sample size. SPICA [103], is a tool that aims at extracting relevant information from 
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noisy data sets by analyzing ion-pairs instead of individual ions. MetabR [104], normalizes 

data using linear mixed models and tests for treatment effects with ANOVA. By contrast 

MPA-RF [105]  combines random forests with model population analysis for selecting 

informative metabolites. Qcscreen [106], helps to verify data consistency, measurement 

precision and stability of large scale biological experiments. 

Metabolite annotation 

Metabolite annotation is often considered the most challenging step and as such represents 

a major bottleneck for metabolomics studies. Even though the gold standard for structural 

characterization remains NMR characterization of the pure compound [107, 108], MS based 

metabolomics offers many advantages including lower cost, higher sensitive and 

throughput, and it can be easily hyphenated with chromatography while still providing 

considerable structural information. As a consequence great efforts have been made to 

improve mass spectrometry based metabolite annotation, and a battery of interesting tools 

were developed with this goal in mind. The great interest from metabolomics and mass 

spectrometry communities even culminated with the creation of the “Critical Assessment of 

Small Molecule Identification” (CASMI) contest. The idea of the contest is to challenge 

multiple approaches and rank their performance over a series of categories [109, 110]. 

Structural information is normally extracted from mass of molecular ion in high-resolution 

MS (HRMS) which can provide the molecular formula and fragmentation pattern. It is 

important to note that most strategies for metabolite annotation rely heavily on 

information retrieved from databases of molecular formulas, spectra and pathways which 

will be discussed in more detail below.   

The most common tools are based on matching spectra or exact masses from unknown 

compounds against spectral data deposited in some database. One example using this 

approach is MetaboSearch [111], which accepts either a list of m/z or the output of CAMERA 

as input and searches against four major metabolite databases, Human Metabolome 

DataBase (HMDB), Madison Metabolomics Consortium Database (MMCD), Metlin, and 

LipidMaps. Similarly,  PUTMEDID-LCMS [112] developed in the Taverna Workflow 

Management System, also integrates a step of compound mass spectra extraction to define 

a molecular formula from high resolution m/z that is then matched against a predefined list 

of molecular formulas to annotate compounds. MetAssign [113] is integrated in mzMatch 

and it considers the uncertainty related with metabolite annotation using a Bayesian 

clustering approach to assign peak groups, this approach has the advantage of providing a 

quantitative values for uncertainty/confidence in the outputs that can be used in further 

analysis. The program SIRIUS [114] is a Java-based software that combines high accuracy 

mass with isotopic pattern analysis to distinguish even molecular formulas in higher mass 

regions. Furthermore it also analyses the fragmentation pattern of a compound using 

fragmentation trees that can be directly uploaded to CSI:FingerID (described below) via a 

web service. MFSearcher [115] is a tool that efficiently searches high accuracy masses 
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against a database of pre-calculated molecular formulas with fixed kinds and numbers of 

atoms that are further queried against different databases, HR3 [116] is a similar tool for 

molecular formula calculation and query in external databases. It uses different sets of rules 

for heuristic filtering of candidate formulas instead of a pre-calculated database which 

makes it slightly slower than MFSearcher, but HR3 includes compounds with atoms that are 

not present in MFSeacher’s list as well as considering matches to the isotopic pattern within 

its annotations. MS-FINDER [117] is a C# program with a GUI providing a constraint-based 

filtering method for selecting structure candidates. The workflow begins with molecular 

formulas from precursor ions being determined from accurate mass, isotope ratio, and 

product ion information. Next, structures of predicted formulas are retrieved from 

databases, MS/MS fragmentations are predicted and the structures are ranked considering 

bond dissociation energies, mass accuracies, fragment linkages, and, most importantly, nine 

hydrogen dissociation rules. MS-FINDER provides an interesting theoretical background 

from which to interpret MS/MS spectra and its comparison to database matches. 

Additionally it was shown to be able to predict with 91.8% accuracy over 80% of the 

manually annotated metabolites in test samples [117]. MS2Analyzer [118] is a java software 

for identifying neutral losses, precursor ions, product ions and m/z differences from MS2 

spectra based on a list of predefined transitions. These features are essential for structure 

elucidation using mass spectrometry and the software provides a fast and high-throughput 

platform for extracting this data. MS2LDA [119] is based on latent Dirichlet allocation (LDA), 

an algorithm originally used for text mining that was adapted to generate a list with blocks 

of co-occurring fragments and losses providing results similar to MS2Analyzer but without 

the need of user specified precursor/product transitions. 

 Another level of biologically relevant information is added by many tools that incorporate 

pathway information to assist annotation and interpretation of results such as Metabolome 

searcher [120], a web-based application to directly search genome-constructed metabolic 

databases which includes MetaCyc with data on plant metabolism. MassTRIX [121] is a web 

interface that takes a mass peak list from HRMS as input and matches them against KEGG 

compounds database returning a pathway map with the matches, organisms can be 

selected and the output represents organism-specific and extra-organism items 

differentially colored to assist interpretation. MetabNet [122] is an R package to perform 

targeted metabolome wide association study of specific metabolites. This approach uses the 

correlation of all mass signals with the targeted metabolite across samples to build 

networks that can be visualized in pdf or exported to Cytoscape. This can be a very useful 

approach to identify related compounds and associate them to metabolic pathways. 

Similarly, ProbMetab [123] is an R package for probabilistic annotation of compounds based 

on the method developed by Rogers et al. (2009) [124] that incorporates information on 

possible biochemical reactions between the candidate structures to assign higher 

probabilities to compounds that form substrate/product pairs within the same sample. MI-

Pack [125], implemented in python, calculates differences in mass between all molecular 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



formulas annotated from HRMS and compares them to known substrate/product pairs from 

KEGG, but matches are considered based on the error between experimental and 

theoretical masses compared to a threshold defined by a calculated mass error surface. 

PlantMAT [126] is a particularly interesting tool specifically for the investigation of plant 

specialized metabolism, which uses an approach based on common metabolic building 

blocks to predict combinatorial possibilities of phytochemical structures used for annotation 

and as such is a highly effective way to search the chemical space surrounding a (set of) 

metabolite(s) 

Another more recent and promising approach made possible by the huge amount of data 

available uses algorithms, mostly based on machine learning, to predict molecular 

properties of unknown compounds from its tandem mass spectra. All the tools listed below 

provide similar web interfaces for putative metabolite identification differing mainly on the 

algorithms used to perform the identification and the overall performance. MetFrag [127] 

retrieves candidate structures either from databases based on exact mass or from user 

specified structure-data files (SDF), a data format based on MDL Molfile with focus on caring 

structural information. Candidate structures are fragmented using a bond dissociation 

approach and fragments are compared with the input spectra scoring matches based on a 

series of rules. The candidates can also be filtered to facilitate the analysis based on relevant 

factors such as metabolite origin, composition, LC retention time and metadata from the 

databases. Besides the Java web-interface a command line version and an R package are 

provided which are more suitable for batch processing and integration with other tools. In a 

very similar approach MolFind [128] retrieves candidates from databases based on exact 

mass, filters them by comparing experimentally measured retention index, ECOM50 (the 

energy in eV required to fragment 50% of a selected precursor ion) and drift time (for ion 

mobility MS) with predicted ones, and analysis CID of the best candidates using MetFrag. 

CFM-ID [129] is based on competitive fragmentation modeling, a probabilistic generative 

model that uses machine learning to learn its parameters from data. It can be used to 

predict spectra of known chemical structures, to annotate peaks in the spectra of a known 

compound or to predict candidate structures for an unknown compound by ranking 

candidates in terms of how closely the predicted spectra match the input. MAGMa [130], 

extends prediction based on substructure assignment by creating hierarchical trees of 

predicted substructures capable of explaining MSn data, where each level takes into account 

the restrictions imposed by the assignment of precursor and subsequent fragmentation. 

FingerId [131] developed a model based on a large dataset of tandem MS from MassBank 

and uses a support vector machine to predict the molecular fingerprint of the unknown 

spectra and compare this with the fingerprint of compounds in a large molecular database. 

CSI:FingerID [132] is a more recent tool based on fingerID that includes computation of 

fragmentation tree achieving one of the best search performances. Besides the web 

interface it can be also queried directly through Sirius but it currently does not support 

batch mode. CSI:IOKR was the last CASMI winner approach for the category “Best Automatic 
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Structural Identification—In Silico Fragmentation Only” [110]. It is based on the integration 

of CSI:FingerID with an Input Output Kernel Regression (IOKR) machine learning approach to 

predict the candidate scores [133]. CSI:IOKR outperforms other approaches in metabolite 

identification rate while considerably shortening running time, nevertheless, it is still not 

available as an implemented workflow. Finally MetFusion [134] is a Java web tool that 

combines spectra database matching against MassBank with the prediction based 

annotation provided by MetFrag.  

Data interpretation 

Interpretation of omics data is usually complicated by the amount and complexity of data. 

There are many tools to assist metabolomics data interpretation, particularly for its 

visualization by mapping metabolites into pathways and providing biological context, and 

for the integration with data from different platforms (e.g. transcriptomics, proteomics see 

Tohge et al. (2015) [15]  for details). As for metabolite annotation, these tools usually rely 

upon knowledge stored in metabolite and pathway databases, and many of them include 

some kind of statistical analysis such as pathway enrichment and correlation analysis. 

Visualization tools provide a simple mean of representing and mapping metabolic changes 

in tools like PATHOS [135], PathWhiz [136] and iPath [137]. They can often provide some 

kind of pathway structure analysis such as PathVisio [138], FunRich [139], BiNChE [140] and 

MPEA [141] that uses pathway enrichment analysis and PAPi [142] that calculates pathway 

activity scores to represent the potential metabolic pathway activities, and performs 

statistical analysis to investigate differences in activity between conditions. Tools like 

InCroMAP [143], IIS [144], KaPPA-View4 [145], MapMan [146], ProMeTra [147] which is 

integrated with MeltDB 2.0, Paintomics [148], VANTED [149], MBROLE [150] and IMPaLA 

[151] go one step further and integrate metabolomics processed data with other omics 

platforms, particularly transcriptomics, providing analysis and visualization of large 

integrated datasets to assist data interpretation. 

Few tools try to actually use mass spectra features to build the networks, which can also 

improve annotation of unknown compounds. MetaNetter [152] uses raw high-resolution 

data and a list of potential biochemical transformations to infer metabolic networks. 

MetaMapR [153] builds chemical and spectral similarity networks based on annotated and 

unknown compounds. ChemTreeMap [154] uses annotated structures and a computational 

approach to produce hierarchical trees based on compound similarity to assist visualization 

of chemical overlap between molecular datasets and the extraction of structure–activity 

relationships. MetFamily [155], groups metabolites in families based on an integrated 

analysis of MS1 abundances and MS/MS facilitating further data interpretation. MetCirc 

[156] is an R tool particularly useful for comparative analysis from cross-species and cross-

tissue experiments through computation of similarity between individual MS/MS spectra 

and visualization of similarity based on interactive graphical tools, and TrackSM [157] is a 
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Java tool that uses molecular structure similarities to assign newly identified biochemical 

compounds to known metabolic pathways. 

Databases 

It must be clear from previous sections that mass spectrometry based metabolomics, 

particularly metabolite annotation and data interpretation, relies heavily upon data from 

characterized mass spectra, molecular properties of analytes and metabolic pathways. 

While all the different techniques offer a lot of flexibility, metabolomics struggles with 

standardization and a great volume of metadata when compared with other omics 

techniques and still lags behind most of them in terms of public repositories of published 

data. Nonetheless there are a wealth of databases with useful information for mass 

spectrometry based plant metabolomics and we try to summarize some of the most 

relevant and the structure and functionalities of resources available. 

Chemspider [158], PubChem [159], ChEBI [160], ChEMBL [161],ChemBank [162], HMDB 

[163], MMCD [164] and MMsINC [165] are all large databases of small molecules with 

information such as chemical structure, molecular formula and molecular/exact mass, many 

of these databases complement each other and data exchange between them is very 

common, nevertheless it is important to be aware of the sources of data in each one of 

them and to which extent these data is curated, Chemspider for instance has more than 58 

million structures automatically retrieved from over 450 different sources, with only a 

fraction of this being manually curated by registered users while the majority of data only 

went through some sort of automatic curation and elimination of redundant entries. Overall 

such huge databases are particularly useful for looking for physico-chemical properties of 

identified metabolites and checking for possible candidates based solely on their mass. 

There are a few plant specific databases with curated information on chemical composition 

and distribution across different plant species as well, namely KNApSAcK [166] with 

information of more than 50,000 metabolites, and chemical composition of over 22,000 

species, the Universal Natural Products Database (UNPD) [167], with 229358 metabolite 

structures  Flavonoid viewer [168] with 6,902 molecular structures of flavonoids from 1,687 

plant species, Dr. Duke's Phytochemical and Ethnobotanical Databases 

(https://phytochem.nal.usda.gov/phytochem/search) with information on 29,585 chemicals 

of 3,686 medicinal plants,  BioPhytMol [169] a resource on anti-mycobacterial 

phytomolecules and plant extracts holding 2,582 entries including 188 plant families, 

comprised of 692 genera and 808 species, and 633 active compounds and plant extracts 

identified against 25 target mycobacteria, and EssOilDB [170] with 123,041 essential oil 

records from 92 plant families. These are very interesting resources for screening chemical 

composition of specific species and analyzing chemical distribution species wide, and all of 

the data in these databases is manually curated. From all this resources KNApSAcK is 

particularly useful not only for the large amount of data but also for providing an easy 

platform to access and extract information quickly. 
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Databases providing mass spectra of pure compounds under controlled conditions 

developed to allow search for common spectra features for the identification of unknown 

compounds are an essential resource for MS based identification of metabolites. As 

previously mentioned the great stability and reproducibility of GC-MS generates reliable 

fragmentation patterns and relative retention indexes that are very efficient for metabolite 

annotation by spectra matching. NIST is a very popular commercial library for GC-MS 

annotation, that also provide free access to some data through NIST Chem WebBook 

(http://webbook.nist.gov/chemistry/), containing mass spectra of 33,000 compounds. SDBS 

(http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi) with 25,000 mass spectra is the 

database from the National Institute of Advanced Industrial Science and Technology (AIST) 

from Japan. Both of them are limited in the fact that they do not offer an interface for 

spectra matching and the user have limited access to data, so those are only useful for 

checking the spectra of targeted compounds. Some more interesting freely-accessible plant 

specific GC-MS libraries include the Golm metabolome database [171] with a total of 26,590 

spectra and 4,663 analytes at the time this article was written and the VocBinBase [172] 

includes 1,537 unique mass spectra at the time this article was written. Both of these 

databases can be downloaded and integrated to processing tools for metabolite annotation 

based on spectra matching. Also worth mentioning is fiehnLib 

(http://fiehnlab.ucdavis.edu/projects/fiehnlib), however, access of the spectral data is 

highly limited for this resource. 

One of the greatest efforts in the field of metabolomics has been directed to the 

development of databases of mass spectra obtained from LC-MS analysis. The higher 

flexibility of this technique compared to GC-MS in terms of the chemical space that it can 

analyze comes with the drawback of a high sensitivity to multiple factors that can influence 

mass spectra quality and reproducibility. LC-MS databases are usually characterized by the 

greatest volume of metadata that accompanies the analytical data, and a more complex 

structure for search based in spectra features when compared to GC-MS databases. Some 

large general LC-MS databases include MassBank [173], a public repository of mass spectra 

with 41,092 spectra of 15,828 compounds obtained by 26 different systems (at the time of 

writing). This database is very accessible allowing search by submitted spectra or simply by 

typing in spectral features, mass or targeted compound name, it furthermore  allows users 

to directly extract spectra during data processing through many tools like RAMClustR, 

RMassBank and Mass++. METLIN [174] currently contains 961,829 molecules from which 

200,000 have in silico MS/MS data. Additionally over 14,000 metabolites were analyzed  and 

mass spectra at multiple collision energies in positive and negative ionization mode 

obtained. METLIN also integrates isoMETLIN [175] that allows the search of isotopologues 

for all METLIN metabolites based on m/z and isotopes of interest, and includes experimental 

data on hundreds of isotopic labeled metabolites that can be used to obtain information of 

precursor atoms in the fragments, both databases can be accessed after free registration 

and searching by mass is fast and easy with the advantage that it allows the user to select 
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possible adducts and spectra conditions and search directly the mass observed in the 

spectra. T3DB [176], is a database for toxin data, many of which are plant secondary 

metabolites, with MS, MS-MS and GC-MS spectra of 3,600 common toxic substances (at the 

time of writing). mzCloud is a new database with a more complex organizing structure that 

can improve and facilitate data interpretation, currently with 6,255 compounds analyzed in 

different conditions totalizing 1,913,621 spectra arranged in 9,896 tree structures. It allows 

the user to easily navigate through different spectra of a single compound through its tree 

structure and also includes visualization of predicted molecular formula of the fragments in 

the spectra (https://www.mzcloud.org/). Finally the recently developed MoNA 

(http://mona.fiehnlab.ucdavis.edu/) is intended to be a centralized, collaborative database 

of metabolite mass spectra and metadata, currently containing over 200,000 mass spectral 

records from experimental and in-silico libraries from different sources. The search is limited 

to name, compound class, molecular formula or exact mass of the metabolite, it can be 

filtered by type of spectra, and the results are presented as a single list of individual 

interactive spectra next to the metadata making it easy to navigate through different 

spectra. The great diversity of phytochemicals observed in plants represent an important 

portion of all these numbers, and a few plant specific databases are available such as 

Spektraris [177], a LC-MS of about 500 plant natural products that integrates accurate mass 

– time tag to incorporate retention time relative to an internal standard in a similar fashion 

as it is  usually done for GC-MS based annotation, therefore, in order to use this feature it is 

necessary to analyze samples with addition of the same internal standard used when 

developing the database entries. It is important to highlight that this kind of approach is 

much less effective for LC-MS where relative retention time is prone to larger variation.  MS-

MS Fragment Viewer (http://webs2.kazusa.or.jp/msmsfragmentviewer/) is a very small and 

not very frequently updated database containing FT-MS, IT- and FT-MS/MS spectral data on 

116 flavonoids. ReSpect [178] is a collection of MSn spectra data from 9,017 phytochemicals 

from literature and standards with searching functionalities very similar to MassBank, and 

WEIZMASS [179], a metabolite spectral library of high-resolution MS data from 3,540 plant 

metabolites that uses a probabilistic approach to match library and experimental data with 

the MatchWeiz software. WEIZMASS is available for implementation in R as a pipeline for 

metabolite identification which can be easily integrated with data processing. While this is a 

much less accessible tool for general use compared with other web based databases the 

results obtained are far more considerable and the effort required in its use is, therefore, 

more than compensated by the gains which it affords.  

A very common issue encountered in data from mass spectrometry is the presence of a 

variety of contaminants from sample preparation and analysis that can be challenging for 

data interpretation. MaConDa [180] provides a very useful database of common 

contaminants and adducts in mass spectrometry, containing over 200 contaminant records 

with origin of the contaminant, its mass and the adducts formed. MaConDa can be 

downloaded in different formats or accessed via the web browser. 
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Compound spectra databases are essential for identification of metabolites by mass 

spectrometry, but a significant effort has also been directed towards the development of 

repositories of experimental data on specific samples to facilitate dereplication studies and 

data analysis. These databases are often restricted to specific species, as it is the case for 

AtMetExpress [181], a LC-MS database of Arabidopsis with data on 20 different ecotypes 

and 36 developmental stages which allows users to download raw and processed data as 

well as query using mass chromatogram features in the web platform and visualize 

annotation and distribution of selected features. MeKO [182], is a GC-MS database of 50 

Arabidopsis KO mutants. All raw data can be downloaded as netCDF files and results from 

data analysis can be visualized in a very informative summary in the web browser that 

shows plant phenotypes, differentially accumulated metabolites indicated in a pathway map 

and log fold changes for most significantly changed metabolites. MoTo DB [183] is a LC-MS 

database of Solanum lycopersicum with information of annotated metabolites where the 

user can search for specific masses or a range of masses. The database is based on accurate 

mass and the user therefore does not have access to raw data and chromatograms. NaDH 

[184], a platform for integration and visualization of different omics datasets of Nicotiana 

attenuata including LC-MS data on 14 different tissues, allows search for spectra based on 

name and m/z and provides some interesting tools for data interpretation easily accessible 

directly from the metabolite entry including metabolite-metabolite and metabolite-gene 

coexpression analysis and visualization of metabolite expression across different tissues in a 

bar chart or eFP browser interface. The Optimas-DW software [185], is a data collection for 

maize data of 15 different experiments, the interface for metabolites allows easy browsing 

through all the metabolites and visualization of values for individual experiments in a table 

format but no access to raw data, and the SoyMetDB [186], a metabolomics database for 

soybean, with GC-MS and LC-MS data of four different tissues under two different 

conditions, which has a simple interface that provide search by metabolite name or 

browsing through the whole dataset, metabolite entries provide m/z, retention time as well 

as an apparent defunct link to a pathway viewer. Similar databases with relative broader 

spectra include the plant specific KOMIC Maket [187] currently warehousing  LC-MS data on 

74 samples from 17 species, in which the user can search for peaks and browse through 

samples and the interface shows retention times, m/z and annotation details classifying the 

annotation based on a grading system. MS2T [188] is an MSMS library created using a 

function for automatic Tandem MS acquisition from over 150 samples from 10 different 

plant species, the web platforms allows search by retention time, m/z and spectra similarity. 

PMR [189], is a database for plants and eukaryotic microorganisms which includes the 

earlier database of medicinal plants MPMR [190] and currently comprises of GC-MS and LC-

MS data on 24 species from different sources and experiments including different tissues 

and developmental stages. It has an easy and clear interface with summary of all the 

experiments once an individual species is selected including metadata and annotated 

metabolites. It additionally allows the download of all the results in csv format in the form 

of peak tables and it has some basic tool for comparative analysis where volcano plots can 
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be generated comparing different experiments. By contrast, the more general databases 

Bio-MassBank (http://bio.massbank.jp/), a repository of LC-MS and GC-MS data from 

biological samples, in contrast with the original MassBank in this database most of the data 

is tagged as “Unknowns” or are just putative metabolites, searching functions are similar to 

the original database but it includes a samples section where it is possible to access all the 

experiments available. MassBase ( http://webs2.kazusa.or.jp/massbase/) is a large 

repository providing raw and processed mass chromatograms  on 46,398 samples of over 40 

species, including several plants, analyzed by LC-MS, GC-MS and CE-MS. Metabolomics 

Workbench [191] is a repository of a variety of metabolomics experiments containing over 

60,000 entries, including raw and processed MS data, a section with detailed protocols for 

the experiments, and web tools for analysis and interpretation that can be used with any 

uploaded data. Similarly, Metabolights [192], is a cross species repository containing data 

from 190 mass spectrometry based metabolomics studies that is currently recommended as 

repository of experimental data by many journals, all experimental data can be downloaded 

from an ftp server and data submission is powered by the use of ISA software that assists in 

the reporting and management of metadata. MetabolomeXchange [193], is a data 

aggregation system that allows users to efficiently explore experimental metabolomics data 

from different databases including MetaboLights and Metabolomics Workbench providing 

an RSS feeding service to allow users to get updates over the datasets available. Similarly, 

GNPS [194], a plant natural product knowledge base for community-wide organization and 

sharing of raw, processed or identified tandem mass spectrometry data currently 

comprising of 221,083 MS/MS spectra from 18,163 unique compounds. The platform allows 

users to upload data and provides a series of tools for analysis and interpretation based on 

the data from the database. 

As previously mentioned, many resources that are particularly useful for data interpretation 

organize the data in pathways based on literature data, and often also provide tools for data 

visualization and interpretation. Many of these databases contain either generic pathways 

or combine different organisms, some examples are KEGG [195], which includes 504 

pathway maps with 17,891 compounds and 10,419 reactions for 4,607 different organisms, 

representing data in an interactive interface that links the entries to a great amount of 

external resources being one of the most popular sources of information on metabolic 

pathways One of the greatest issues of KEGG leading many user to misinterpreting their 

data is that it displays all genes in generic pathway maps of which some are characterized 

only by similarity, resulting in pathways that are not present in the analysed organism being 

represented. By contrast, WikiPathways [196], is a wiki-style website with 2,471 community 

curated pathways of 28 different organisms. Its interactive interface is similar to KEGG 

providing link with external resources for metabolites and enzymes. Similarly, kpath [197], is 

a database that integrates information related to metabolic pathways with 74,180 pathways 

13,153 reactions and 37,029 metabolites providing tools for pathway visualization, editing 

and relationship search. BioCyc [198], is a collection of 9,387 Pathway/Genome Databases, 
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and MetaCyc [198] is the largest curated database of experimentally elucidated metabolic 

pathways containing 2,491 pathways from 2,816 different organisms. KBase [199], 

meanwhile, is a data platform with data on plants and microbes that allow users to upload 

their own data and integrates data and tools for systems biology including 1,470 metabolic 

pathways with 33,773 reactions and 27,838 compounds, genome data on 60 different plant 

species and tools for assembly, annotation, metabolic modeling, comparative analysis, 

phylogenetic analysis and expression analysis. There are also a significant amount of plant 

specific data organized in databases like KaPPA-View4 [145], containing 153 pathways with 

1,427 compounds and 1,434 reaction from 10 species, allowing users to upload their own 

data and is able to represent gene-to-gene and metabolite-to-metabolite relationships as 

curves on a metabolic pathway maps to help in data interpretation. PlantCyc 

(http://www.plantcyc.org/) provides access to manually curated or reviewed information 

about metabolic pathways in over 800 pathways of 350 plant species, usefully the platform 

provides  “evidence codes”  to clearly indicate the type of support associated with each 

database item. MetaCrop [200], is a pathway database containing information about seven 

major crop plants and two model plants that allows integration of experimental data into 

metabolic pathways, as well as the automatic export of information for the creation of 

detailed metabolic models. Similarly, MetNetDB [201], contains integrative information on 

metabolic and regulatory networks of Arabidopsis and Soybean with metabolism, signalling, 

and transcriptional pathways being fully integrated into a single network and manually 

curated subcellular localization is represented in the pathway maps. The network 

information can be exported to other applications for network analysis such as exploRase, 

and Cytoscape/FCM. Like MetNetDB,  Gramene [202] is an integrated data resource for 

comparative functional genomics in crops and model plants that host pathway databases for 

rice, maize, Brachypodium, and sorghum as well as providing mirrors for MetaCyc and 

PlantCyc data. It is  worth mentioning a few resources that are focused on the reactions 

within the pathways offering detailed curated metabolic reactions, namely BioMeta [203], 

whose contents are based on the KEGG Ligand database with a large number of chemical 

structures corrected with respect to constitution and reactions’ stereochemistry being 

correctly balanced. BKM-react [204] is a non-redundant biochemical reaction database 

containing 18,172 unique biochemical reactions retrieved from BRENDA, KEGG, and 

MetaCyc databases that were matched and integrated by aligning substrates and products. 

Similar to this  MetRxn [205], also integrates information from BRENDA, KEGG and MetaCyc, 

combining also Reactome.org and 44 metabolic models in a standardized description of 

metabolites and reactions where all metabolites have matched synonyms, resolved 

protonation states, and are linked to unique structures, and all reactions are balanced.   

Together with the development of many prediction tools previously mentioned we watched 

in the last years the development of some interesting In Silico databases that are extremely 

useful for de novo metabolite identification such as MINE [206], a database developed by 

the integration of an algorithm called Biochemical Network Integrated Computational 
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Explorer (BNICE) and expert-curated reaction rules to predict chemical structures product of 

enzyme promiscuity, MetCCS [207] a database and algorithm for prediction of Collision 

Cross-Section values for metabolites in ion mobility mass spectrometry, a technique 

increasingly used to assist metabolite elucidation based on the drift speed of the ion that is 

proportional to its cross section, and the plant specific ISDB [208] an in silico database of 

natural products generated using CFM-ID [129] with input from the commercial Dictionary 

of Natural Products. 

Other programs of interest 

The complexity of metabolomics data experiments, particularly in terms of sample number 

and metadata pushed the development of many tools for experiment and metadata 

management, and while many of these functions are integrated in some of the databases 

previously discussed there are a few specialized tools such as QTREDS [209] and MASTR-MS 

[210], that are LIMS based software for assisting in organizing experimental design, 

metadata management and sample data acquisition , MetaDB [211] a web application for 

Metabolomics metadata management with interface to MetaMS data processing tool, and 

Metabolonote [212], a metadata database/management system. 

The enormous amount of data available for metabolomics raises many questions regarding 

how to easily access and unify all this data, taking into account the vast chemical space 

explored in these experiments. Many tools have been developed with the purpose of 

facilitating access to chemical data spread in the literature, from the development of 

identifiers to reduce duplication of information such as the SPLASH [213] hash designed for 

the MoNA database, to tools like Metmask [214], for managing different identifiers, 

Chemical Translation Service (CTS) [215], for translation of chemical identifiers, PhenoMeter 

[216] for querying databases based on metabolic phenotype and Metab2MeSH [217] for a 

more efficient literature search that automatically annotate compounds with the concepts 

defined in MeSH providing a fast link between compound and the literature. 

Different vendors usually export their data in proprietary formats which complicates data 

transfer across different platforms. Most proprietary software are able to convert files to 

.cdf format, but some tools from which the most popular is msConverter from Proteowizard 

(http://proteowizard.sourceforge.net/) can handle conversion from/to different formats 

including mzXML. mzTab is another format proposed by the Proteomics Standards Initiative 

targeting researchers outside of proteomics, it is supposed to contain the minimal 

information required to evaluate the results of a proteomics experiment making it more 

accessible to non-experts, jmzTab [218] is a java application that provides reading and 

writing capabilities and conversion of files to mzTab. The PeakML [219] file format is an 

initiative developed by the creators of mzMatch to enable the exchange of data between 

analysis software by representing peak and meta-information from each step in an analysis 

pipeline, as a proof of concept the R-package ‘mzmatch.R’ was developed to extend XCMS 

functionalities for storing and reading data in PeakML format. 
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All equipment for mass spectrometry comes with their own software for data visualization 

and some basic analysis but those are usually not designed to deal with the complexities of 

metabolomics datasets. There are some interesting open source alternatives such as 

BatMass [220] and Mass++ [221] for data visualization, and for generating images from raw 

data like SpeckTackle [222] that provides several pre-defined chart types easy to integrate 

into web-facing resources and RMassBank [223] capable of automatically generating 

MassBank records from raw MS and MS/MS data. 

Mass spectrometry imaging is a relative young technique that has being growing fast in 

importance providing high resolution special distribution of small molecules in molecular 

histology [224]. Few tools have been developed so far, namely EXIMS [225] for data 

processing and analysis, and OpenMSI [226], a web-based visualization, analysis and 

management tool. 

Lipidomics data requires a very specialized pipeline and therefore many tools were 

developed exclusively for this kind of analysis however we will only briefly summarize these 

here. ALEX [227], MRM-DIFF [228],  LICRE [229], LipidXplorer [230], LIMSA [231], VaLID 

[232], LOBSTAHS [233], Lipid-Pro [234], LDA [235] and LipidQA [236] are all tools for 

processing, annotating and analyzing lipidomics data. Lipids databases include LIPID MAPS 

[237], LIPIDBANK [238], LipidBlast [239], and in silico generated lipids database LipidHome 

[240], SwissLipids [241] and ARALIP 

(http://aralip.plantbiology.msu.edu/pathways/pathways). 

Future perspectives 

Many of the resources presented here were fruit of the efforts in setting the theoretical 

background for each step in the data processing and analysis workflow. However, more 

recent efforts are moving towards the development of integrated tools, which are often 

developed by the integration of already well established tools into a single pipeline in an 

attempt to accelerate the process and in a few cases providing an easier interface. XCMS 

online, for example, is a web platform providing most of the function from XCMS with 

additional capabilities for interactive exploratory data visualization and analysis in a much 

easier interface than the original software [242], HayStack [243], is a web platform that uses 

XCMS to process data and automatically generates total ion current chromatograms (TIC) 

and base peak chromatograms as well as offering an easy way of plotting extracted ion 

chromatograms (EIC) and some basic statistical tools such as  PCA scores plot, volcano plots, 

and dendrograms for group comparisons, SMART [244] is an R package that combines 

different tools such as XCMS and CAMERA with a series of common statistical approaches to 

provide an integrated pipeline for data processing, visualization, and analysis. MZmine 2 

[245] is another very popular tool with over 1000 citations,  it was originally developed for 

LC-MS data processing but it became one of the most popular platforms for development of 

integrated tools in Java providing a user-friendly, flexible and extendable software 

constantly updated and with a set of modules covering most steps of LC-MS processing and 
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data analysis workflow including several option of visualization tools. MetSign [246] is a 

MATLAB package providing tools for spectra deconvolution, metabolite putative assignment 

by matching m/z and peak isotopic distribution against its own database, peak list 

alignment, a series of normalization algorithms, statistical significance tests, unsupervised 

clustering, and time course analysis, all in a modular and interactive design presented with a 

wizard to facilitate the analysis workflow.  MultiAlign [247] is a software developed in the 

.NET platform using C++ and C# originally for proteomics but that can also be used for 

metabolomics comparative analysis, its functionalities include feature detection, alignment, 

several plotting options, normalization, and basic statistical comparisons, Metabolome 

Express [248] works as a web server to process, interpret and share GC/MS metabolomics 

datasets, whilst MAIT [249] is an R package aiming at providing an end-to-end 

programmable metabolomics pipeline with emphasis in metabolite annotation and 

statistics, it uses XCMS for peak detection, an approach based on CAMERA combined with 

an user defined table of biotransformations followed by database search for metabolite 

annotation and a series of statistical tests to identify statistically significant features 

containing the highest amount of class-related information. By contrast, MAVEN [250] is a 

software for data processing, analysis and visualization with some interesting features for 

pathway-based visualization of isotope-labeling data that can be helpful for the 

interpretation of this kind of experiment. MeltDB [251] is a java web based platform that 

integrates different algorithms for data processing, compound identification by spectra 

matching statistical analysis, data visualization and integration with transcriptomics and 

proteomics datasets via the ProMeTra software. It provides a tool for saving peaks of 

reference compounds directly in the MeltDB database, and allows storage and sharing of 

projects within the web server. MetaboAnalyst [252] is another java web platform with data 

processing and a comprehensive set of data analysis tools, it includes most common 

approaches for statistical analysis as well as modules for functional enrichment analysis, 

metabolic pathway analysis, time series and two-factor data analysis, biomarker analysis, 

sample size and power analysis, integrated pathway analysis, and image and report 

generation. The program mzMatch [219] is a popular Java toolkit for processing, filtering, 

and annotation, with particular focus on integration of processed data across different 

platforms and providing a customizable modular pipeline to facilitate the development and 

integration of different tools. It includes many other tools previously described here like 

mzmatchISO and metAssign and it is based entirely in the PeakML file format. The MarVis-

Suite [253] is a software for the interactive ranking, filtering, combination, clustering, 

visualization, and functional analysis of transcriptomics and metabolomics data sets, the 

clustering algorithm is based on one-dimensional self-organizing maps (1D-SOMs), and the 

software additionaly provides functions for metabolite annotation and pathway 

reconstruction. MetMSLine [254] is an R package that works with processed data providing 

a series of statistical analysis steps focusing on biomarker discovery combined with 

metabolite annotation based on exact mass matching against a target list of metabolites 

and MassCascade [255] is a Java library that takes advantage of the KINIME workflow 
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environment facilitating integration with other tools and making the tool user friendly, the 

core library contains a collection of data processing algorithms, a visualization framework 

and metabolite annotation functions, while the plug-in for KNIME allows easy integration 

with other statistical workflows. MASSyPup [256] does not actually integrate different 

procedures but it does provides an easy platform for accessing many different tools in the 

form of a Linux distribution that can be run directly from different media without 

installation. 

It is clear from this review the infinity of choices for performing a variety of functions and 

the fast pace by which they change and get outdated; hence it is an arduous task to keep 

updated of all of them. Some research groups, engaged in the development of 

metabolomics tools, have their own repositories like KOMICS [257], MetaOpen 

(http://metaopen.sourceforge.net/) and PRIMe [258], while OMICtools [259], NAR online 

Molecular Biology Database Collection and the Bioinformatics Links Directory provide 

unified repositories but still covering only a small portion of all the resources available. Tools 

developed for R have the advantage of counting with some well-established platforms such 

as Biocunductor [260] or CRAN. Nevertheless, with the rapid development of new tools it is 

of great interest for the metabolomics community to develop classification systems and 

repositories to catalog and provide a platform for submission, curation and feedback 

facilitating users’ access to the most appropriate and updated resources for each aim. 

Another clear observation that can be made from the proceeding sections is that the 

number of tools for analysis by far exceeds that of the number of data repositories whilst 

metabolomics is clearly difficult to fully standardize this is still a great shame. There are a 

number of clear reporting standards that should aid in this respect [261], furthermore, both 

the existing databases and carefully compared meta-analysis [22, 262], demonstrate that 

such approaches are indeed highly powerful in the enhancement of biological 

understanding. As such we feel that it is an urgent priority to focus efforts on the 

improvement of this feature of computational metabolomics since it will aid not only in the 

expansion of our coverage of the metabolite complement of the plant cell but also in the 

equally important task of interpreting the biological function of the individual metabolites 

themselves. 

Abbreviations 

ADAP Automated data analysis pipeline for untargeted metabolomics 

AIST National institute of advanced industrial science and technology 

ALEX Analysis of lipid experiments 

AMDIS Automated mass spectral deconvolution & identification system 

ANOVA Analysis of variance 

apLCMS Adaptive processing of high-resolution LC-MS data 

ARALIP Arabidopsis acyl-lipid metabolism 

ASCII American standard code for information interchange 

BKM-react BRENDA-KEGG-MetaCyc-reactions 
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BNICE Biochemical network integrated computational explorer 

CAMERA Collection of algorithms for metabolite profile annotation 

CDF Common data format 

CFM-ID Competitive fragmentation modeling for metabolite identification 

ChEBI Chemical entities of biological interest 

CID Collision-induced dissociation 

Cosmiq Combining single masses into quantities 

COVAIN Covariance inverse 

CRAN Comprehensive r archive network 

CSI:FingerID Compound structure identification: FingerID 

CTS Chemical translation service 

DIA Data independent acquisition 

DoE Design of experiments 

EIC Extracted ion chromatograms 

EssOilDB Essential oil database 

EXIMS Exploring imaging mass spectrometry data 

FT Fourier transform 

FTP File transfer protocol 

FunRich Functional enrichment analysis tool 

GC Gas chromatography 

GMD Golm metabolome database 

GNPS Global natural products social molecular networking 

GUI Graphical user interface 

HCS Hierarchical cluster analysis 

HMDB Human metabolome database 

HRMS High resolution mass spectrometry 

ICT Isotope correction toolbox 

IIS Integrated interactome system 

iMet-Q Intelligent metabolomic quantitation 

IMPaLA Integrated molecular pathway level analysis 

InCroMAP Integrated analysis of cross-platform microarray and pathway data 

IOKR Input output kernel regression 

iPATH Interactive pathways explorer 

IPO Isotopologue parameter optimization 

ISDB In-silico MS/MS database 

IT Ion trap 

KaPPA - view Kazusa plant pathway viewer 

KEGG Kyoto encyclopedia of genes and genomes  

KMMDA 
Kernel machine approach for differential expression analysis of mass 
spectrometry-based metabolomics data 

KomicMarket Kazusa omics data market 

kpath Khaos metabolic pathways 

LC Liquid chromatography 

LDA Latent Dirichlet allocation 

LDA Lipid data analyzer 

LIMS Laboratory information management system 
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LIMSA Lipid mass spectrum analysis 

LOBSTAHS Lipid and oxylipin biomarker screening through adduct hierarchy sequences 

m/z Mass-to-charge ratio 

MaConDa Mass spectrometry contaminant database 

MAGMa Ms annotation based on in silico generated metabolites 

MAIT Metabolite automatic identification toolkit 

MarVis-Suite Marker visualization suite 

MathDAMP  Mathematica package for differential analysis of metabolite profiles 

MAVEN Metabolomic analysis and visualization engine 

MBRole Metabolites biological role 

MeKO Metabolite profiling database for knock-out mutants in arabidopsis 

MetCCS Metabolite collision cross-section predictor 

MET-COFEA Metabolite compound feature extraction and annotation 

MET-COFEI Metabolite compound feature extraction and identification 

MET-IDEA Metabolomics ion-based data extraction algorithm 

METLIN Metabolite link 

MetNetDB Metabolic network exchange database 

MFSearcher Molecular formula searcher 

MIA Mass isotopolome analyzer 

MID Mass isotopomer distributions 

MINE Metabolic in silico network expansion databases 

MI-Pack Metabolite identification package 

MMCD Madison metabolomics consortium database  

MMSAT Metabolite mass spectrometry analysis tool 

Mona Massbank of north america 

Moto DB Metabolome tomato database 

MPA-RF Model population analysis - random forests 

MPEA Metabolite pathway enrichment analysis 

MPMR Medicinal plant metabolomic resources 

MRM Multiple reaction monitoring 

MRM-DIFF Multiple reaction monitoring based differential analysis 

MRMPROBS Multiple reaction monitoring based probabilistic system 

MS Mass spectrometry 

MS/MS Tandem mass spectrometry 

MS2T MS/MS spectral tag 

MS-DIAL Mass spectrometry – data independent analysis 

MSFACTs Metabolomics spectral formatting, alignment and conversion tools 

MUSCLE 
Multi-platform unbiased optimization of spectrometry via closed-loop 
experimentation 

NaDH Nicotiana attenuata data hub 

NIST National institute of standards and technology 

OpenMSI Open mass spectrometry imaging 

PAPi Pathway activity profiling 

PCA Principal component analysis 

PlantMAT Plant metabolite annotation toolbox 

PLS-DA Partial least squares discriminant analysis 
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PMR Plant/eukaryotic and microbial systems resource 

PRIMe  Platform for RIKEN metabolomics 

PTW Parametric time warping 

RAMSY Ratio analysis of mass spectrometry 

ReSpect RIKEN MSn spectral database for phytochemicals 

RSS Rich site summary 

RT Retention time 

SDBS Spectral database for organic compounds 

SDF Structure-data files 

SIM Single ion monitoring 

SIRIUS 
Sum formula identification by ranking isotope patterns using mass 
spectrometry 

SMART Statistical metabolomics analysis - an r tool 

SOM Self-organizing maps 

SoyMetDB Soybean metabolome database 

SPICA Selective paired ion contrast 

SPLASH Spectral hash 

T3DB Toxin and toxin target database 

TIC Total ion current 

TOF Time-of-flight 

UNPD Universal natural product database 

VaLID Visualization and phospholipid identification 

VANTED Visualization and analysis of networks containing experimental data 

vocBinBase Volatile compound binbase 

yamss Yet another mass spectrometry software 
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Figure 1 Typical mass spectrometry based metabolomics workflow. 
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