- 1 Supplementary Information for Scientific Reports
- 2 Soil microbial quantification approaches coupling with relative abundances reflecting the changes of
- 3 taxa in different locations

Zhaojing Zhang^{1,2}, Yuanyuan Qu^{1,*}, Shuzhen Li^{1,2}, Kai Feng², Shang Wang², Weiwei Cai^{2,3}, Yuting Liang⁴, Hui
Li⁵, Meiying Xu⁶, Huaqun Yin⁷ & Ye Deng^{2,8,*}

6 ¹State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of 7 Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China. ²Key Laboratory of 8 Environmental Biotechnology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 9 100085, China. ³State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology 10 (SKLUWRE, HIT), Harbin 150090, China. ⁴State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil 11 Science, Chinese Academy of Sciences, Nanjing 210008, China. ⁵State Key Laboratory of Forest and Soil Ecology, 12 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China. ⁶State Key Laboratory of 13 Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China. 7School 14 of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China. 8College of Resources 15 and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.

- 16
- *Correspondence and requests for materials should be addressed to Y. D. (email: <u>yedeng@rcees.ac.cn</u>) or Y. Q. (email:
 <u>qvy@dlut.edu.cn</u>)
- Ye Deng, Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Science, Chinese
 Academy of Sciences, Beijing 100085, China. Tel, +86-10-62840082.
- 21 Yuanyuan Qu, State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education,
- 22 China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
- 23 Tel, +86-411-84706250.

24	Supplementary Table S1	. Summary of soil	characteristics	of the two sam	pling sites in	this study.
					F 8	

Location	Elevation (m)	Latitude Soil pH	Soil a Ha	Soil moisture	Total carbon content	
Location	Elevation (m)		Soli pri	(%)	(TOC, mg/g)	
Beijing	810-1349	40°31'10"N	6.17±0.48	21.49±7.35	46.69±27.96	
Deijing	810-1349	115°49'32"E	0.1/±0.48	21.49±7.55	40.09±27.90	
Tibet	5088-5116	29°36'21"N	6.53±0.22	1.50±0.35	26.28±5.27	
Hoet	5000-5110	85°45'09"E	0.33±0.22		20.26-23.27	

^a Average individual soil variables (pH, moisture, and TOC) over 10 samples.

Dissimilarity	MRPP ^b		ANOSIM ^c		ADONIS ^d	
Beijing vs. Tibet	δ	Р	R	Р	F	Р
Total	0.715	0.002	0.288	0.002	0.14	0.001
Proteobacteria	0.708	0.003	0.269	0.005	0.139	0.001
Actinobacteria	0.693	0.003	0.233	0.007	0.122	0.003
Acidobacteria	0.713	0.002	0.256	0.002	0.139	0.002
Bacteroidetes	0.755	<0.001	0.347	0.001	0.146	0.002
Verrucomicrobia	0.698	<0.001	0.318	0.003	0.16	0.003
Planctomycetes	0.798	0.002	0.379	0.001	0.125	0.001
Chloroflexi	0.72	0.005	0.271	0.004	0.139	0.007
Gemmatimonadetes	0.715	<0.001	0.269	0.003	0.148	0.001
Crenarchaeota	0.699	0.002	0.223	0.01	0.142	0.004
Cyanobacteria	0.866	0.003	0.213	0.015	0.109	0.004

26 Supplementary Table S2. Dissimilarity tests of microbial communities from two sampling sites ^a.

^aDifferent statistical approaches were used with Bray-Curtis distances, and *P* values were of corresponding significance

28 tests.

^bMRPP, multiresponse permutation procedure.

30 °ANOSIM, analysis of similarity.

31 ^dADONIS, permutational multivariate analysis of variance with the Adonis function.

32 Supplementary Table S3. Spearman and Kendall rank correlation (r values, n=20) between different

33 measurements.

Spearman	ATP	FCM	aDCD	PLFA	MBC	
correlation	AIP		qPCR	РLГА		
ATP	1	0.839**	0.793**	0.496**	-0.179	
FCM		1	0.854**	0.518**	-0.245	
qPCR			1	0.504**	-0.181	
PLFA				1	-0.142	
MBC					1	
Kendall			DCD	DI DA		
	ATP	FCM	qPCR	PLFA	MBC	
correlation						
correlation ATP	1	0.642**	0.586**	0.311*	-0.132	
	1	0.642** 1	0.586** 0.670**	0.311* 0.364*	-0.132 -0.111	
АТР	1					
ATP FCM	1		0.670**	0.364*	-0.111	

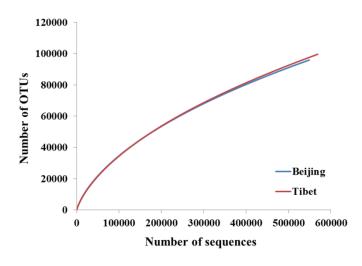
34

- 36 Supplementary Table S4. Correlation tests (r values, n=20) between different measurements and the
- 37 environmental factors.

Pearson correlation	Moisture	TOC
ATP	0.806***	0.708***
FCM	0.803***	0.697**
qPCR	0.679***	0.748***
PLFA	0.650**	0.626**
MBC	-0.245	0.041

: *P* < 0.01; * : *P* < 0.001

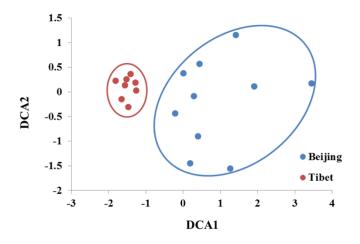
40	
•••	

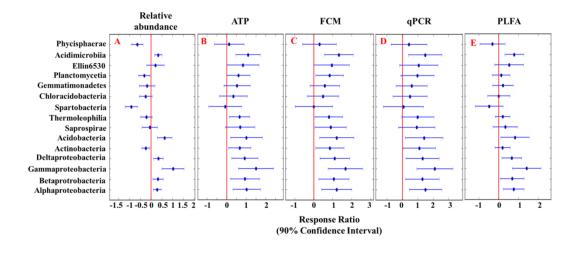

the major phyla based on the ATP measurement.

Pearson correlation	Moisture	TOC
Proteobacteria	0.784**	0.585**
Acidobacteria	0.698**	0.511*
Actinobacteria	0.741**	0.608**
Bacteroidetes	0.575**	0.528*
Verrucomicrobia	0.595**	0.508*
Chloroflexi	0.665**	0.512*
Gemmatimonadetes	0.651**	0.433
Planctomycetes	0.706**	0.577**
Cyanobacteria	-0.596**	-0.227

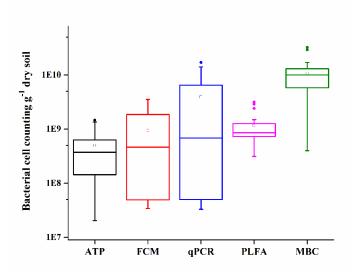
41

*: *P* < 0.05; **: *P* < 0.01




43 Supplementary Figure S1. Rarefaction curves based on 16S rRNA gene amplicon sequencing of soil microbial

44 communities.



46 Supplementary Figure S2. Detrended correspondence analysis (DCA) of microbial community composition in

Supplementary Figure S3. Response ratio for the differences between the relative abundances and absolute abundances of the major class in the two sampling sites. Significance was determined using the response ratio analysis at a 95% confidence level. The 95% CI of a response variable without overlapping with zero represent a significant result, otherwise, with non-significance. The vertical solid line was drawn when the variables of Beijing samples equaled with those of Tibet samples.

55 Supplementary Figure S4. Bacterial cell numbers assessed by five different methods in Beijing and Tibet sites.

56 Horizontal lines show median values, \square indicate mean values, boxes denote values comprised within the lower and

57 upper quartile of the data, the vertical lines represent ranges, and • indicate outliers.