# Direct and convenient measurement of plasmid stability in lab and clinical isolates of *E. coli*

# **Supplementary Information**

Siyi Chen, Mårten Larsson, Robert C. Robinson, and Swaine L. Chen

## **Supplementary Text**

#### Genetic verification of the function of components of the Alp16 parCMR system

To further demonstrate the power of this system for understanding novel plasmid loci contributing to stability, we replaced the R1 parCMR system with a predicted plasmid segregation system (Alp16 parCMR) from a very distantly related bacterium, Clostridium perfringens (Figure 1c in the main text). While the parM and parR protein coding genes could be re-encoded to use codons preferred by E. coli, by analogy to the R1 system, parC is predicted both to mediate transcription of parM and parR and to contain the specific DNA operator sequences required for ParR binding<sup>1</sup>. We thus first verified that the unmodified C. perfringens parC indeed mediated transcription in E. coli by 5'-RACE in a position similar to that reported for the R1 parC (Figure S3 and Table S2). By the Luria-Delbrück test, we found that the C. perfringens Alp16 parCMR mediated nearly 1-log better plasmid maintenance than pSLC-298  $(\Delta parCMR)$  (Figure 3e in the main text). As expected, introduction of an ATP binding site mutation in ParM (homologous to that used for the R1 ParM) resulted in stability very close to pSLC-298. Furthermore, measurement of stability in a matched pair of plasmids, in which an Xbal site was introduced to facilitate creation of a frameshift mutation in parR, showed that disruption of parR also gave a ~0.5 log reduction in plasmid stability (Figure 3e in the main text). We again tested the more convenient single colony assay; the results were qualitatively similar, though we now observed some quantitative variation in stability values. Interestingly, the difference in stability for plasmids carrying functional and nonfunctional systems was in all cases measured to be greater with the single colony assay. We suspected that the exaggerated effect may be due to higher growth rates of plasmid-free cells, which would affect the single colony but not the Luria-Delbrück assay. Indeed, we found that strains carrying pSLC-300 (with a D160E ParM mutation) grew slowly relative to plasmid-free cells (Figure S1b) and also had the greatest discrepancy between the single colony and Luria-Delbrück tests (Figure 3e in the main text). While the quantitative correspondence between the convenient single colony and Luria-Delbrück tests breaks down in the context of different growth rates, it would still be a simple and useful screening test for detecting impaired plasmid stability. Overall, this data argues strongly that the Alp16 parCMR is functional and operates via a similar mechanism to that of the R1 parCMR system. Thus, this synthetic plasmid system provides a promising platform for further studies of arbitrary plasmid maintenance systems.

#### Discussion of issues affecting expression control for heterologous parCMR systems

First, transcriptional signals are thought to be incorporated into the *parC* locus, and might be tightly intertwined with the ParR binding sites, which cannot be changed. Second, codon bias can influence final protein concentrations. Third, translational coupling between ParM and ParR may vary in efficiency and mechanism, especially when codons are optimized to the *E. coli* preference. Fourth, feedback regulation of transcription may be somewhat host-dependent; the model of ParR repressing the *parC* promoter in a negative feedback loop might also be variably effective in a different host. Finally, protein stability is also likely to be different, which may affect the optimal levels of transcription and translation. The latter is particularly difficult to predict, since mechanisms and critical concentrations for assembling different ParM filaments<sup>2, 3</sup> are different and may depend on plasmid size and host cell characteristics (such as size, ATP levels, or molecular crowding, among other parameters)<sup>4-6</sup>. Among these, we attempted only to control the second (we optimized the codon bias of *parM* and *parR* for *E. coli*) and third (we maintained the 1 bp overlap of the stop codon of *parM* with the start codon of *parR*). Interestingly, we found that Alp16 *parC*, with no modifications, functions to drive transcription of *parM* 

and *parR* in *E. coli*. By replacing the Alp16 *parC* with the R1 *parC*, not only was plasmid maintenance less faithful than a plasmid with no segregation system (Figure 3e in the main text), but growth rate was severely impacted as well. Loss of segregation function (to the level of a knockout such as pSLC-298) is expected due to the mismatch between R1 *parC* and Alp16 ParR. The more severe segregation phenotype, combined with the reduced growth rate, leads us to suspect that the R1 *parC* is driving expression levels of ParM and ParR beyond those effective for segregation and also beyond those easily tolerated by the cell. This implies that, when Alp16 *parM* and *parR* are being driven by Alp16 *parC*, appropriate negative feedback regulation may be occurring. An alternative to this conclusion is that Alp16 *parC* happens to be in the range that enables segregation function; but we feel this possibility is less likely. Finally, while we did not measure protein stability, clearly the increased plasmid stability conferred by Alp16 *parCMR*, coupled with our targeted mutations of *parM* and *parR*, argues that ParM and ParR protein stabilities are sufficient for function. Indeed, the fact that Alp16 *parCMR*, may be due to suboptimal expression arising from any of these issues.



## **Supplementary Figures and Tables**

а





С



**Figure S2. Verification of true plasmid loss by PCR and plasmid encoded antibiotic resistances.** Strains that grew on rhamnose could have either lost the entire plasmid or inactivated the negative selection cassette in some other fashion while retaining all or part of the plasmid. We used a PCR to the functional origin (*oriV-1*) of pEC958<sup>7</sup> (expected size 150bp) and sensitivity to antibiotics with plasmid-encoded resistance genes (kanamycin and tetracycline; the chloramphenicol resistance gene is not natively present on pEC958 but is introduced with and tightly linked to the negative selection cassette) to distinguish between these two possibilities. A negative *oriV-1* PCR and loss of resistance to these antibiotics was interpreted as loss of the entire plasmid. (a) PCR results for the *oriV-1* locus for colonies derived from SLC-906 (EC958,  $\Delta yigB$ ) strains that grew on rhamnose and controls. (b) PCR results for the *oriV-1* locus for colonies derived from SLC-906 (EC958,  $\Delta kan$ ) that grew on rhamnose. The antibiotic tested is indicated above each plate. (d) Summary of the results from these assays, demonstrating perfect concordance between the *oriV-1* PCR and the antibiotic resistance patch test among these 16 colonies derived from SLC-906 (top) and SLC-909 (bottom).

|      | +1 parC                                                                 |      |
|------|-------------------------------------------------------------------------|------|
| 4900 | AAGCGGCCGCACTAGTAAAAATAACTCCTTTCATCTAGGAAAGTACACTAAATCCTAAATAGAAAGAA    | 4969 |
| 4970 | TAAAATTTGCTAATATTACATTTCTGTTAAAAAGTCAATATATTTAATTGACTTTTTCAATAGCTTTGA   | 5039 |
| 5040 | TATCATAAAGCTATGAAAAGTTAATATTTCAAATAGAACTTTGTTCTATTTCGGATTTTAGTTCATCCAT  | 5109 |
| 5110 | TAAGTTTTCAAAGACGCCAATCGAAGTAAACTTAATGGATTTTTCCTTTTCCGTACTATTTAATTTAATT  | 5179 |
| 5180 | GAGTTAATAATACCATGTTAAAAAATAATTTTTCAAGAGAGTAAAATTATAGAAAATTTTACTCTCTTTTT | 5249 |
| 5250 | ттаттаатттсаатататдтататастдаатататасатататтдаааттаатаааататааттататат  | 5319 |
| 5320 | ACTTAGTATATACAAATTATATTTAGTATATATAGTATATACTAAAGTAAGAAAATTAAAGAGAATAA    | 5389 |
| 5390 | TAGTATTTCGAAGAAAGAATAGTATAAACTCAGTATATACATAATTAGGGGAGTTGTTTTTAGTATATAT  | 5459 |
| 5460 | CTAGTATATACTAAATTTATAAAAGATAATTAATTTTGAAAGGAGCATTAAAATGCTGAAACTGGGTATC  | 5529 |
| 5530 | GACCTGGGTAATGGCTACACCAAATTCAAAGGCTCCAAATTCGCGTCAAAAAACCAAAGTGGGCCGTCTGG | 5599 |
|      |                                                                         |      |

**Figure S3. Transcription start site of Alp16** *parCMR* in pSLC-302 in MDS42 host cells. Alp16 *parC* sequence and partial sequence of Alp16 *parM* is shown in the graph. Transcription of Alp16 *parCMR* in MDS42|pSLC-302 cells is found to start from position +563 of *parC*, 34bp upstream of *parM*. Nucleotide coordinates are based on the sequence of pSLC-302.

### Table S1. Plasmid copy number by qPCR

| Strain & Plasmid ID                | Plasmid Copy Number |
|------------------------------------|---------------------|
| MDS42                              | ND*                 |
| MDS42 pSLC-295 (R1 <i>parCMR</i> ) | 7                   |
| MDS42 pSLC-298 (Δ <i>parCMR</i> )  | 7                   |
| MDS42 pSLC-302 (Alp16 parCMR)      | 8-10                |

\*ND, not detected.

Table S2. Transcription start site of *parCMR* system in different plasmids in *E. coli*. The length of the R1 *parC* is 182 bp. The length of the Alp16 *parC* is 596 bp.

|           | Bacterial Strain and Plasmid | Partitioning System | Transcription Start Site  |                                     |
|-----------|------------------------------|---------------------|---------------------------|-------------------------------------|
| Strain ID |                              |                     | 5'-RACE Assay             | From literature                     |
| SLC-726   | MDS42 pSLC-295               | parCMR (R1)         | +115 in R1 <i>parC</i>    | +115 in R1 <i>parC</i> <sup>8</sup> |
| SLC-733   | MDS42 pSLC-302               | parCMR (Alp16)      | +563 in Alp16 <i>parC</i> | Not available                       |

| Strain ID | Bacterial Strain and Plasmid | Plasmid par Locus Relevant Genotype                          | Plasmid Source and Origin                                      |
|-----------|------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|
| SLC-202   | MDS42                        | -                                                            |                                                                |
| SLC-726   | MDS42 pSLC-295               | parCMR (R1)                                                  | This study, by gene synthesis (GenScript, Piscataway, NJ, USA) |
| SLC-729   | MDS42 pSLC-298               | ΔparCMR (R1)                                                 | Subcloning from pSLC-295                                       |
| SLC-730   | MDS42 pSLC-299               | ParM D170E (R1)                                              | Subcloning from pSLC-295                                       |
| SLC-733   | MDS42 pSLC-302               | parCMR (Alp16)                                               | This study, by gene synthesis (GenScript) and subcloning       |
| SLC-731   | MDS42 pSLC-300               | ParM D160E (Alp16)                                           | Subcloning from pSLC-302                                       |
| SLC-734   | MDS42 pSLC-303               | <i>parC</i> (R1) – <i>parMR</i> (Alp16)                      | Subcloning from pSLC-302                                       |
| SLC-735   | MDS42 pSLC-304               | <pre>parCMR (Alp16), w/ Xbal on parR (silent mutation)</pre> | Subcloning from pSLC-302                                       |
| SLC-736   | MDS42 pSLC-305               | parCMR (Alp16), w disrupted parR                             | Subcloning from pSLC-304                                       |
| SLC-896   | CFT073 pSLC-295              | parCMR (R1)                                                  | This study                                                     |
| SLC-897   | CFT073 pSLC-298              | ΔparCMR (R1)                                                 | This study                                                     |
| SLC-898   | UTI89 pSLC-295               | parCMR (R1)                                                  | This study                                                     |
| SLC-899   | UTI89 pSLC-298               | ΔparCMR (R1)                                                 | This study                                                     |
| SLC-904   | EC958 pSLC-341               | pEC958A, ccdA&ccdB::cat-rgnB-PrhaB-relE-tL3                  | This study                                                     |
| SLC-905   | EC958 pSLC-342               | pEC958A, sopA&sopB::cat-rgnB-PrhaB-relE-tL3                  | This study                                                     |
| SLC-906   | EC958 pSLC-343               | pEC958A, yigB::cat-rgnB-PrhaB-relE-tL3                       | This study                                                     |
| SLC-907   | EC958 pSLC-344               | pEC958A, A0138::cat-rgnB-PrhaB-relE-tL3                      | This study                                                     |
| SLC-908   | EC958 pSLC-329               | pKM208 amp::gent                                             | This study                                                     |
| SLC-909   | EC958 pSLC-345               | pEC958A, aac(6')-Ib-cr::cat-rgnB-PrhaB-relE-tL3              | This study                                                     |
| SLC-895   | EC958, plasmid pEC958A cured |                                                              | This study                                                     |

## Table S3. Bacterial strains and plasmids used in this study and their source

Table S4. Primers used in this study

| Primer ID | Sequence (5' – 3')                                               | Position                      | Reference              | Note                                                                                           |
|-----------|------------------------------------------------------------------|-------------------------------|------------------------|------------------------------------------------------------------------------------------------|
| 1         | CGGCCTTTCTGTTATCCGAA                                             | pSLC-295/pSLC-302 +4719       | This study             |                                                                                                |
| 2         | TAAAGCCTGGGGTGCCTAAT                                             | pSLC-295-7077/pSLC-302 -6869  | This study             |                                                                                                |
| 3         | GTGCCCCCGAGTTCTATAA                                              | -                             | This study             |                                                                                                |
| 4         | TTATAGAACTCGGGGGCAC                                              | -                             | This study             |                                                                                                |
| 5         | GCGCAATCACTTTCGTCTCT                                             | pSLC-295/pSLC-302 +4668       | This study             |                                                                                                |
| 6         | GTGACCTTCAGTTTTGCCGT                                             | pSLC-295 -7308/pSLC-302 -7100 | This study             |                                                                                                |
| 7         | ACCGAAGCAATGAATGAAGCA                                            | pSLC-295 +5842                | This study             |                                                                                                |
| 8         | GTTCTGCGCTTGTCCATCAT                                             | pSLC-295 -6079                | This study             |                                                                                                |
| 9         | GTATCGACCTAGGTAATGGC                                             | pSLC-302 +5525                | This study             |                                                                                                |
| 10        | GCAGGCAGATTTCGTAGTCC                                             | pSLC-302-5737                 | This study             |                                                                                                |
| 11        | TGGTGTAGCCATTACCTAGGTCGATACCCAGTTTCAG<br>CATTTATAAAACTCCTTATGGTG | -                             | This study             |                                                                                                |
| 12        | CGCCCAGTTCGTCAATGTAGTCTAGAATTTCTTTATCA<br>CTTTTGGTGT             |                               | This study             | pSLC-297 ParR Xbal Rev                                                                         |
| 13        | ACACCAAAAGTGATAAAGAAATTCTAGACTACATTGA<br>CGAACTGGGCG             |                               | This study             | pSLC-297 ParR Xbal Fwd                                                                         |
| 14        | ATGCTGAAACTGGGTATCGA                                             | pSLC-302 +5512                | This study             |                                                                                                |
| 15        | GCTGCCTCCTGTGTGAAATT                                             | pSLC-295 -7146/pSLC-302 -6938 | This study             |                                                                                                |
| 16        | GTTTGACACAATCGCGGAGA                                             | pSLC-302 -6246                | This study             |                                                                                                |
| 17        | CTTTCAGCTGTTCCGCGATT                                             | pSLC-302-6618                 | This study             |                                                                                                |
| 18        | AACATTACGCAATGGGATAATCT                                          | pSLC-302 +6010                | This study             |                                                                                                |
| 19        | GAAGCTGTTCGGGCTAATGT                                             | pSLC-295 -5193                | This study             | 5'-RACE assay, cDNA synthesis primer for<br>pSLC-295                                           |
| 20        | TAATTGTTCCGTCGCTTTCC                                             | pSLC-295 -5167                | This study             | 5'-RACE assay, nested reverse primer for<br>PCR amplification of cDNA sample from<br>pSLC-295  |
| 21        | GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG                             | -                             | 5'-RACE kit            | 5'-RACE assay, abridge anchor (forward)<br>primer for PCR amplification of all cDNA<br>samples |
| 22        | GGAGCCTTTGAATTTGGTGT                                             | pSLC-302 -5565                | This study             | 5'-RACE assay, cDNA synthesis primer for pSLC-302                                              |
| 23        | TCACCGACAATGTACGTGGT                                             | pSLC-302 -5678                | This study             | 5'-RACE assay, nested reverse primer 2 for pSLC-302                                            |
| 24        | CAGGAAACAGCTATGAC                                                | M13 reverse                   | TOPO TA<br>Cloning Kit | Forward primer for colony PCR and sequencing                                                   |

| Primer ID | Sequence (5' – 3')                          | Position                       | Reference   | Note                                     |
|-----------|---------------------------------------------|--------------------------------|-------------|------------------------------------------|
| 25        | GACCGGCAGCAAAATG                            | M13 forward (-20)              | ΤΟΡΟ ΤΑ     | Reverse primer for colony PCR and        |
|           |                                             |                                | Cloning Kit | sequencing                               |
| 26        | GAGGGGCGGCCAAGGGCGCCAGCCCTTGGACGTCCC        | pEC958+104760-pSLC-295-chlor   | This study  |                                          |
|           | CCTCGATGGAAGGGGCTGATAGAAACAGAAGCCACT        |                                |             |                                          |
| 27        | TGCCTTTAAGCGTGCATAATAAGCCCTACACAAATTG       | pEC958-105459-pSLC-295-relE    | This study  |                                          |
|           | GGAGTTAGACATCTTCTTCGTCTGTTTCTACTGGTATT      |                                | -           |                                          |
| 28        | ATTAATGAGGCTCCGGGTTC                        | pEC958+ 104724                 | This study  | Primer used for colony PCR and also      |
|           |                                             |                                |             | sequencing of SLC-909                    |
| 29        | GCCCTACACAAATTGGGAGT                        | pEC958-105437                  | This study  | Primer used for colony PCR and also      |
|           |                                             |                                | ,           | sequencing of SLC-909                    |
| 30        | ATGAAGCAGCGTATTACAGTGACAGTTGACAGCGAC        | pEC958+408-pSLC-295-chlor      | This study  |                                          |
|           | AGCTATCAGTTGCTGCTGATAGAAACAGAAGCCACT        |                                |             |                                          |
|           |                                             |                                |             |                                          |
| 24        | TTATATTOCCOACA ACATCA COTTA ATCOCOTTATTO A  |                                | This study  |                                          |
| 31        |                                             | pec958-933-pstc-295-rele       | This study  |                                          |
|           | GICATTICGCTICTCGTCTGTTCTACTGGTATT           |                                |             |                                          |
| 32        | ΔΩΤΟΘΩΑΤΟΟΑΤΑΟΘΑΔΑΟΘ                        | pEC958+200                     | This study  | Primer used for colony PCR sequencing of |
| 52        |                                             | p20530+200                     | This study  | SIC-904 checking true plasmid loss       |
| 22        | ΔΓΔΓΤΩΓΓΩΤΩΙΟ                               | nFC958-985                     | This study  | Primer used for colony PCB and also      |
| 55        |                                             |                                | This study  | sequencing of SLC-904                    |
| 3/        | ΑΤGAAACTCATGGAAACACTTAACCAGTGCATAAACG       | nFC958+3587-nSIC-295-          | This study  | sequencing of SEC-904                    |
| 54        |                                             | plc938+3387-p3lc-293-          | This study  |                                          |
| 25        |                                             | PECOES EOOA PSIC 20E rolE(PEV) | This study  |                                          |
| 55        |                                             | plc330-3334-p3lc-233-iele(REV) | This study  |                                          |
| 26        |                                             | pEC0E9+2644                    | This study  | Drimer used for colony DCP and also      |
| 50        |                                             | μετ930+3044                    | This study  | soquencing of SLC 005                    |
| 27        |                                             | 25058 6004                     |             | Sequencing of SLC-905                    |
| 3/        |                                             | μετασο-6094                    | This study  | sequencing of SLC 005                    |
| 20        | ΔΤC ΔCC Δ Δ ΔΤΔΤΔΤΤCCΔCTCCTΔΤΤΔΤΤΔΤΤΔΤCTTTC |                                |             | sequencing of SLC-305                    |
| 30        |                                             | pEC+67699-pSLC-295-Chlor(FWD)  | This study  |                                          |
|           |                                             |                                |             |                                          |
| 29        | TTATTTACGGTGTCTCCATATCCAGGGGGGGAACCGGA      |                                | This study  |                                          |
|           |                                             | pEC-68160-pSLC-295-relE(REV)   | This study  |                                          |
| 40        |                                             | nFC958+67599                   | This study  | Primer used for colony PCR and also      |
|           |                                             | p=030107333                    | This study  | and also                                 |

| Primer ID | Sequence (5' – 3')                                                              | Position                       | Reference  | Note                                                                    |
|-----------|---------------------------------------------------------------------------------|--------------------------------|------------|-------------------------------------------------------------------------|
| 41        | CCTGTTTTGTTTTCGCCATT                                                            | pEC958-68224                   | This study | Primer used for colony PCR and also sequencing of SLC-906               |
| 42        | ATGGAACTGAAGTGGACCAGTAAGGCGCTTTCTGATT<br>TGTCGCGGTTATTGCTGATAGAAACAGAAGCCACT    | pEC+117295-pSLC-295-chlor(FWD) | This study |                                                                         |
| 43        | CTACCTGTTTTCTCGTGTGTGCCACAGACGCAATACAT<br>AAATAGTCTGGCTTCTTCGTCTGTTTCTACTGGTATT | pEC-117570-pSLC-295-relE(REV)  | This study |                                                                         |
| 44        | TGTGACATCCGGACAGGTTA                                                            | pEC958+117205                  | This study | Primer used for colony PCR and also sequencing of SLC-907               |
| 45        | CGTTCAGCGGTAATTTTCGT                                                            | pEC958-117713                  | This study | Primer used for colony PCR and also<br>sequencing of SLC-907            |
| 46        | AACGCGAAGAACCTTAC                                                               | V6 (16s rRNA, <i>E. coli</i> ) | This study | <i>E. coli</i> 16s rRNA fwd primer used in qPCR for plasmid copy number |
| 47        | CCTTTGAGTTCCCGGCC                                                               | R2 (16s rRNA, <i>E. coli</i> ) | This study | <i>E. coli</i> 16s rRNA rev primer used in qPCR for plasmid copy number |
| 48        | GGGGATGGGTAAGGTGAAAT                                                            | pSLC-295+2457 fwd              | This study | Plasmid fwd primer used in qPCR for<br>plasmid copy number              |
| 49        | CGAAGTGATCTTCCGTCACA                                                            | pSLC-295-2821 rev              | This study | Plasmid rev primer used in qPCR for<br>plasmid copy number              |
| 50        | AATGATACGGCGAGACCTGGCCGGATCTGCCGGCGG<br>CCGC                                    | pAH152-Bsal-pKM208-Notl        | This study | Forward primer for amplifying <i>gen</i> from pAH152 <sup>9</sup>       |
| 51        | CTGCAGGCATGCAAGCTT                                                              | pAH152-sphI+5bp                | This study | Reverse primer for amplifying <i>gen</i> from pAH152 <sup>9</sup>       |
| 52        | TCACCGTAATCTGCTTGCAC                                                            | pAH152+2698                    | This study | Primer used for colony PCR of pSLC-329                                  |
| 53        | CATCATTCGCACATGTAGGC                                                            | pAH152-3052                    | This study | Primer used for colony PCR of pSLC-329                                  |
| 54        | AAAAATCAGCGCGCAAATAC                                                            | pEC-349                        | This study | Primer used for checking true plasmid loss                              |

## **Supplementary References**

- 1. Breuner, A., Jensen, R.B., Dam, M., Pedersen, S. & Gerdes, K. The centromere-like parC locus of plasmid R1. *Mol Microbiol* **20**, 581-592 (1996).
- 2. Gunning, P.W., Ghoshdastider, U., Whitaker, S., Popp, D. & Robinson, R.C. The evolution of compositionally and functionally distinct actin filaments. *J Cell Sci* (2015).
- 3. Jiang, S. et al. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation. *Proc Natl Acad Sci U S A* **113**, E1200-1205 (2016).
- 4. Ebersbach, G. & Gerdes, K. Plasmid segregation mechanisms. Annu Rev Genet 39, 453-479 (2005).
- 5. Polka, J.K., Kollman, J.M., Agard, D.A. & Mullins, R.D. The structure and assembly dynamics of plasmid actin AlfA imply a novel mechanism of DNA segregation. *J Bacteriol* **191**, 6219-6230 (2009).
- 6. Rivera, C.R., Kollman, J.M., Polka, J.K., Agard, D.A. & Mullins, R.D. Architecture and assembly of a divergent member of the ParM family of bacterial actin-like proteins. *J Biol Chem* **286**, 14282-14290 (2011).
- 7. Phan, M.D. et al. Molecular characterization of a multidrug resistance IncF plasmid from the globally disseminated Escherichia coli ST131 clone. *PLoS One* **10**, e0122369 (2015).
- 8. Gerdes, K. & Molin, S. Partitioning of plasmid R1. Structural and functional analysis of the parA locus. *J Mol Biol* **190**, 269-279 (1986).
- 9. Haldimann, A. & Wanner, B.L. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structurefunction studies of bacteria. *J Bacteriol* **183**, 6384-6393 (2001).