Supplementary Note 1: Mathematical rationale

We assume that gene expression is log-linear in environmental effects, as in
common approaches to modeling expression,

logt? =~aei + Bung + Buxensei + p + € (1)
el ~ N(0,v%) (2)

where all parameters should additionally be indexed by the particular locus s,
but we omit this for clarity. Here t¢ is the “true” expression of the alternative
allele in individual 4, n¢ is the haplotype of a candidate regulatory SNP (note we
only consider the top eSNP), 42 is the allele specific effect of the environment e,
B is the main effect of the SNP in phase with a, and 8}« is an interaction term.
Note that including v¢ means that we model allele specific effects of environment
without explicitly needing to test a candidate SNP. €} is noise resulting from
both technical factors such as PCR amplification, as well as other unexplained
inter-individual variation, e.g. resulting from unmeasured covariates. We do
not need to assume the variance v is equal for both alleles. Given these latent
expression levels we model the observed read counts as Poisson distributed,

y3 ~ Pois(t$)

yi ~ Pois(t;) (3)
where y¢ and y are the alternative and reference read counts respectively for
individual 7. Since our intention is to use only the allele specific signal, we

condition on the total read count n; = y{ + vy, which results in the alternative
read count being binomially distributed, i.e.

y?‘tv ng ~ Bin(ni’ t? (t? + tl)) (4)

From Equation 1 we can obtain an expression for the p parameter of the binomial
in Equation 4

/(@7 +67) = o((ve —ve)ei + Bu(ni — i) + Buxe(ni® — nj)ei + (u* — p") + )
5)
€ =€ +e ~N(0,v*+0") (6)

—~

assuming independence between €? and €, and the logistic function o(§) =
1/(1 4 e~%). Noting that n¢ — n! = +h; is the heterozygosity of the candidate
SNP, defining 8. :=v¢ — v, and p := p® — ", and considering the symmetrized
likelihood for min(y¢, ') we obtain our likelihood model

min(y{, y; )| B8, i, €; ~ Binomial [n;, o(Bee; + B"h; + B9 eih; + p+ )] (7)

By evaluating absolute allelic imbalance by taking the minimum between
y$ and y; we are able to address individuals with opposite directions of allelic
response, handling both unphased data along with the possibility of distinct
causal variants between individuals.



1.1 Overdispersion model

The noise €;5 in Equation 7 is distributed as N (0, vs) where v, = v + v%. Note
we have reintroduced the indexing with respect to the locus s. Since v and v}
are clearly not identifiable under our likelihood model, we work directly with
the overdispersion variance v instead.

We explored several prior specifications for v,. The first was to assume
constant vs = v for all loci s. This still resulted in significant inflation of
p-values under permutations, even if not to the same extent as the binomial
GLM. The second was to allow vg to be different for each locus and use the
conjugate prior, which is an inverse-gamma on v, or equivalently gamma on the
precision 1/vs ~ G(a,b), where {a,b} are the shape and rate respectively. This
was the setting we chose because p-values under permutations are not inflated
(see Supplementary Figure 6). Thirdly, observing that MCMC estimates of vy
showed a relationship with log average read depth t, at locus s, we tested a
model logvs, ~ N(mts + ¢,r). While this approach finds a somewhat larger
number of associations, nominal p-values are still slightly overinflated under the
null. While this can be resolved by running permutations for the top nominal
associations, we chose to avoid the additional computational burden. None-the-
less, this option is included in the EAGLE software.

Supplementary Note 2: Simulation study

In order to test EAGLE vs. naive methods for associating environmental
factors and allelic imbalance we performed an extensive simulation study. In
order to render our simulations as realistic as possible we use real data from the
DGN cohort as much as possible. In particular, we test the same exonic SNPs,
with the same number of heterozygous individuals, the same total expression
read counts and simulate overdispersion of alternative allele counts using pa-
rameters estimated from the true data. Our simulation procedure, repeated for
each exonic SNP s, is as follows:

1. Fit the EAGLE model with no covariates and no min:

Y|, €; ~ Binomial [n;, o (1 + €;)]
€ilvs ~ N(0,vs)
vsla, b~ G(a,b) (8)
where @ = 1.1,b = 3 x 1073 are the hyperparameters learned across all
exonic SNPs. EAGLE provides an estimate of u, denoted niu, and the

variational posterior distribution ¢s(1/vs) = G(1/vs,as,bs), with corre-
sponding expected posterior random effect variance 9, := E,[v,s] = bs/as.

2. For each heterozygous individual we simulate allelic read counts y*™ as

yfim‘f[ﬁu7 €; ~ Binomial [n;, o (@i + Bz2; + €;)]
€i|ﬁs ~ N(O’ﬁS) (9)



where (3, is a “true” effect size that we choose (or set to zero for no effect)
and z; is the environment (time of day in all simulations presented herein).

Having simulated new alternative allele count we test for association using EA-
GLE, a binomial GLM, or Spearman correlation. The binomial GLM is equiva-
lent to EAGLE with no overdispersion, i.e. v; = 0, and is implemented using the
R glm function. Spearman correlation is calculated between allelic imbalance
(defined as |4 — y;/n;|) and the environment, ;.

We did not attempt to use simulations to compare EAGLE to standard
interaction QTL testing since these methods condition on different data, and
such a simulation would therefore require making significant assumptions about
unknown effects on NGS read counts. In particular the relative effect sizes and
noise levels for the simulated allelic ratios and total expression would determine
which approach performs best.

Supplementary Note 3: Pathway enrichment

We sought to characterize the properties of the genes whose genetic reg-
ulation is modulated by each environment. Since the number of genome-wide
significant associations remains relatively modest even with the improved power
from EAGLE, we performed enrichment analysis using the top 50 associations
for each environment (the results are relatively robust to the number of top
associations used, Supplementary Figure S9b). We first tested these associa-
tions against a curated set of pathways taken from GO, KEGG and BioCarta
(restricted to those with fewer than 100 genes), using a standard hypergeomet-
ric test with the entire set of genes tested by EAGLE as the background. The
strongest enrichment is for smoking and the BioCarta CCR5 pathway. CCR5
itself has been implicated in smoking induced emphysema (Ma et al., 2005).

Supplementary Note 4: Transcription factor en-
richment

Since our hypothesis is that GXE interactions for gene expression are often
driven by allele specific binding of environmentally-responsive transcription fac-
tors, we tested for enrichment of transcription factor binding sites (TFBS) prox-
imal to environment-associated genes. We inferred transcription factor binding
sites in seven cell type were inferred from DNase-seq measurements using a mod-
ified version of CENTIPEDE (Pique-Regi et al., 2011). CENTIPEDE relies on
two observations: (1) chromatin around motif instances bound by transcription
factors typically has higher DNase I sensitivity than chromatin around unbound
motif instances, and (2) each transcription factor has a characteristic DNase I
cleavage profile around bound motif instances. Based on these observations,
given a putative bound motif instance, CENTIPEDE models the number of
reads mapped to each base pair along a window around the motif site as a



mixture of two components (bound vs unbound), and infers the probability
that each site is bound. Specifically, conditional on being bound (or unbound),
CENTIPEDE models (1) the total number of DNase-seq reads using a negative
binomial distribution, and (2) DNase-seq read counts in a window around the
putative binding site using a multinomial distribution conditioned on the total
number of reads, with independent sets of parameters for bound and unbound
sites.

However, when multiple replicate DNase-seq measurements are available for
the same cell type, CENTIPEDE has often been applied after pooling replicates.
If there is substantial heterogeneity in DNase-seq data between replicates, then
pooling replicates tends to introduce more variation in the total read counts and
read count profiles, limiting the ability of CENTIPEDE to accurately identify
TF binding sites. We used a modified version of CENTIPEDE by modeling the
data from each replicate separately. Specifically, we model the total number of
DNase-seq reads at bound and unbound sites using separate negative binomial
distributions for each replicate. Since we expect the DNase cleavage profile at
bound sites to remain the same across replicates, we use the same multinomial
distribution to model the DNase-seq read count profiles for all replicates.

We combined predicted TFBS from the following seven cell types (ENCODE
Project Consortium, 2004):

1. CD20+_-RO01778 B-cells

2. GM12878 lymphoblastoid cell line (CEPH/Utah)

3. Hmveclbl lung-derived blood microvascular endothelial cells
Hpaf pulmonary artery fibroblasts (blood)

Primary Thl T-cells

Primary Th2 T-cells

Primary Th17 T-cells

® N o o e

Regulatory T cells

Since we only expect to see GXE when there is corresponding genetic varia-
tion, we filtered for TFBS within 5kb of each gene that also contained at least
one variant previously identified in the 1000 Genomes Project, resulting in an
average of 7.7 TFBS per gene across 282 TF motifs. We again used a hyperge-
ometric test for enrichment for each environment (Supplementary Figure S9c).
While no associations were significant at 10% FDR using Benjamini-Hochberg,
it is notable that the strongest association (nominal p = 10~%) is for smoking-
associated genes and the transcription factor TBX4. TBX4 is known to be
regulated by SOX9, variants in which influence lung function specifically in
smokers (Melén and Bottai, 2012). Additionally, genes showing a GxE inter-
action for blood pressure medication are enriched in binding of SP1, which is
known to respond to antihypertensive drugs (Negoro et al., 1995) and regulates
angiotensin receptor transcription (Kubo et al., 2003; Rohrwasser et al., 2002).



Supplementary Note 5: trans-eQTL enrichment

Further, we investigated additional evidence for co-regulation of EAGLE
hits of each environment based on trans-eQTLs. DGN’s relatively large sample
size enables the detection of inter-chromosomal trans-eQTLs (138 unique trans-
eQTL genes at 5% FDR, Battle et al. (2014)). Applying a relaxed threshold of
p < 1072 yielded a trans-network with 55,313 edges involving 48,163 SNPs and
7473 genes. We investigated whether the top 50 genes associated by EAGLE
for each environment tend to share distal regulatory SNPs in this network.
Against an empirical null distribution generated by randomly sampling sets
of 50 genes from those tested for each environment, we found the number of
SNPs regulating more than one of the 50 genes is significantly increased (p <
0.05) for age, exercise, family history of depression and opiate use. The trans-
network involving SNPs regulating more than one gene in the top 50 list for
exercise is shown in Supplementary Figure S9d. Interestingly all five of the
genes (IFIT2, MX2, TF144L, ADAR, RSAD2) implicated in this network are
interferon inducible, highlighting the impact of exercise on immune response
(Walsh et al., 2011).

Supplementary Note 6: Confounding and stan-
dard interaction QTL testing

Total gene expression suffers from high confounding. Results from EAGLE
or standard methods could represent interactions with (potentially unmeasured)
factors that are correlated with the tested environmental variables. EAGLE
however should be less susceptible to false positives from some technical con-
founders (Supplementary Figure 1). We here use a second simulation study to
test the hypothesis that this is a key reason we fail to detect many GxE effects
on the transcriptome using standard interaction QTL testing. It is extremely
challenging to remove the influence of hidden technical confounding without
subtracting true biological signal.

1. Gene expression was quantified as logy(2+ (5 x 107)¢;q/T;) where T is the
total number of mapped reads for sample 4, ¢;q are the counts for gene d.
These values are quantile normalized to a Gaussian (for each gene) to give
expression values y;4.

2. Principal component analysis (PCA) is performed on the matrix Y.

3. For each gene d we fit a Bayesian regression model
K
Yia = Boti + > Bsgis + Y Brtiik + €
s k=1

B, Bs, B ~ N(0,03)
€ ~ N(0,02) (10)



where z is the environment, g;s is the genotype of cis-SNP s for this gene
(taking SNPs within 100kb), u;; is the principal component % for indi-
vidual ¢ and K denotes the number of confounders factors (PCs) that
contribute highly to expression (we take K = 20). We analytically in-
tegrate over the ’s and optimize 0'% and o2 (using L-BFGS) to obtain

MLEs 63 and 7 and posterior means of the 3’s, denoted by B.

4. We generate simulation expression values as

K/
Yt = Giw i+ Pati + D Bagis + Y Prwik + €
S k=1
Ba:a Bsaﬁk ~ N(Ou 6?})
e~ N(0,62) (11)

where v is the true GxE effect size (set to 0 or 0.1 with equal probability
in our simulation), s’ indexes the lead eSNP and K’ < K is the number
of confounding PCs we include in the simulated data.

5. We then use standard interaction QTL testing, combined with Bonferroni
correction across cis-SNPs, to detect the “true” simulated GxE associa-
tions.

In particular we vary the number of confounding PCs included in the simulation,
K’, finding, as expected, that performance is highly sensitive to the amount of
confounding included in the simulation (Supplementary Figure 11).

Supplementary Note 7: Obtaining interaction p-
values from Fairfax et al.

The Fairfax et al. (2014) study does not provide test statistics for interac-
tion terms, and the raw data is not available. However, we can approximate
interaction p-values using the t-statistics provided for eQTL testing in the naive
and stimulated conditions respectively. Let ¢y and ¢; be the t-statistics for a
particular SNP-gene pair in the naive and stimulated state respectively. Under
the additive linear model used by Fairfax et al., ty and ¢; both have non-central
student-t distributions with degrees of freedom (d.o.f.) v = n — 2, where n is
the number of samples (228 in this case), and p; = % where o is the true noise
standard deviation (assumed equal for both perturbed and unperturbed state,
as with standard interaction testing), j; is the true effect size (with ¢ € {0,1}

denoting the two states ) and ¢ = y/[(XTX)~1];; comes from the Fisher infor-



mation matrix (with X the design matrix), i.e.

t 7 (12)
z~ N(0,1), (13)
v~ X (14)

To test the null hypothesis that 8y = (51 we consider the test statistic tA = t1—tg.
Unfortunately the difference of two independent non-central t-variates does not
have a standard form, so we resort to approximating tg,t; by Gaussians with
means and variances

E[ti]zm\/gw, (15)

Var [t;] = M — Hiv (F((V_l)/2)>2

v—2 2 U T(v/2) (16)

Under the null gg = p1 so Efta] = Eft1] — E[to] = 0. To calculate Var [ta] =
Var [to] + Var [t1] exactly we would need pi9, 1. Since we don’t know these we
approximate it by the observed t-statistic, i.e. using p; ~ t; in Equation 16.
Using the resulting approximation VarA[tA] we obtain p-values as

Fn—a(—tal/y/ Var [ta]) (17)

where F,(-) is the student-t cdf with p degrees of freedom. To confirm that

Var [ta] is good approximation we simulated a SNP with minor allele frequency
(MAF) 0.20 in N = 228 individuals in two conditions, with varying shared
effect sizes 8 and noise standard deviation 0.3. We calculated t-statistics using
an additive linear model for both conditions and investigated the distribution
of tA under these simulations. Using 1000 simulations we first confirmed that
ta is approximately normally distributed (Shapiro-Wilk test p = 0.32). We
then compared the standard deviation of the sampling distribution for ¢A under
simulations vs. that calculated using Equation 16, finding excellent agreement
across a range of effect sizes (Supplementary Figure 13a). For shared § = 5
we confirmed that the corresponding p-values calculated using Equation 17 are
well calibrated (Supplementary Figure 13b).

Supplementary Note 8: The regulation of Ceslf
by PPAR«

PPARa had an allele-specific effect on Ceslf expression, suggesting differ-
ent genetic backgrounds may explain variability in reports of the strength of
PPAR«’s regulatory effect (Zhang et al., 2012; Jones et al., 2013). This result
highlights the importance of considering different genetic backgrounds when
mapping the regulatory targets of transcription factors.



Supplementary Note 9: PPARa TFBS enrich-
ment

In order to test whether the genes EAGLE detected as having allele-specific
responses to PPAR« agonists had an enrichment of appropriate binding motifs
we first scanned the Rattus norvegicus rnb genome using FIMO (Grant et al.,
2011) Version 4.11.1, part of the MEME online suite (Bailey et al., 2009), for
the motifs for PPARy:RXR (MA0065.2) and PPARy (MA0066.1) obtained
from the JASPAR core motif database (2016 server). PPARa and PPAR~y have
similar binding behavior, with both typically binding as a heterodimer with
RXR. The default p-value threshold of 10~* was used in FIMO. We fit a Poisson
GLM where the response was the number of occurrences within a window w of
the TSS of each gene tested by EAGLE, and the single covariate was whether
the gene was associated by EAGLE (at an FDR of 10%). The window size w
was varied as shown in Figure 3c of the main paper, and we report the Wald
test statistic (z-score).

Supplementary Note 10: Filtering criteria

We use the following criteria to choose which loci (exonic SNPs) to test:

e The SNP must not show significant mapping bias, based on simulated
reads (see Battle et al. (2014) for simulation details)

e We require at least 20 individuals to be heterozygous at this locus (since
the homozygotes do not contribute to the likelihood).

e At least 10 of these heterozygotes must not have the same environmental
factor (this covers both continuous and discrete, or even mixed, environ-
mental covariates)

e Fewer than half the heterozygotes have monoallelic expression, with the
later defined as either fewer than three reads, or fewer than 1%, mapping
to one allele. The rationale for this filter is that extensive monoallelic
expression is typically an indicator of more complex events than simple cis-
regulation. For example, we have observed imprinted genes or genes with
common deletions of an exon manifest as monoallelic expression present
in many individuals. Additionally, mapping errors that escape standard
filters may also appear as monoallelic expression. Even the strongest cis-
eQTLs we find in DGN do not completely suppress expression of one allele
in heterozygotes.

We do not use an explicit filter on the total number of reads since our count
based likelihood will naturally put less weight on individuals with few total
reads.



Having chosen which loci to test we chose what covariates to include in the
model. In all cases the null model Hy will include an intercept term and the
alternative H; will include an intercept term and the environmental covariate,
i.e.

Hy :min(yf, y7 )|, €; ~ Binomial [n;, o(u + €;)]
Hy :min(yf, y;)|B, p, €; ~ Binomial [n;, o (Bee; + 1 + €;)] (18)

For the 70% of testable genes where we have a cis-eQTL from total expression
analysis with a Bonferroni corrected p-value less than 1073, we consider includ-
ing h;s, a binary variable indicating whether this lead eSNP is heterozygous in
individual ¢. This term is included in both hypotheses if, out of the heterozy-
gotes at s, there are at least 5 homozygotes and 5 heterozygotes at the eSNP,
Le. min(Y., ey Pisy D opep. (1 — his)) > 5 where H; is the set of individual
heterozygous at s. We then have

Ho :min(y{, y)|p, B, €; ~ Binomial [n;, o(8"h; + p+ €;)]

Hy :min(yf, y})|B, 1, €; ~ Binomial [n;, o(Bee; + B"h; + p+ €)] (19)
Finally, we add an interaction term between the lead eSNP and the environ-
mental factor to the alternative model if no group is created with fewer than 5
individuals, so that

Hy :min(y{, y; )|u, B, €; ~ Binomial [ni,a(ﬁhhi +u+e)

Hy :min(y,y!)|B, 1, €; ~ Binomial [n;, o(Bee; + B"hi + B9 eih; + i+ €;)]
(20)

Supplementary Note 11: Parameter estimation
and inference

Here we describe how we estimate parameters under our model and calculate
the required marginal likelihoods to perform likelihood ratio testing. The overall
testing strategy is

1. Jointly fit the null model for all loci and the noise shape and rate hyper-
parameters {a, b}

2. Holding {a, b} fixed, fit the alternative model for all loci

3. Perform likelihood ratio testing using the approximate marginal likeli-
hoods obtained from Step 1 and 2

Our strategy for steps 1 and 2 is to approximately integrate over the overdisper-
sion noise € and the per locus overdispersion parameter vs, while optimizing the
fixed effect regression coefficients (the intercept, environment coefficient, and
possibly eSNP heterozygosity and interaction terms), and noise hyperparame-
ters {a, b}.



11.1 Variational EM algorithm

We use variational expectation-maximization (EM, Jordan et al., 1999) to opti-
mize S, ls, a,b in the M-step while integrating out the overdispersion noise €;4
and random effect variance v using Nonconjugate Variational Message Passing
(NCVMP, Knowles and Minka, 2011) in the E-step.

Likelihood. For notational clarity it will be convenient to introduce the aux-
iliary variable g;s = Bsx; + ps + €is ~ N(Bsx; + s, vs), where x; is the vector of
fixed effect covariates (potentially including environment, heterozygosity of the
lead eSNP, and an interaction term, see Section 10) so that the data likelihood
is
[T o(gi)v 11 = o(gia)]™ 4 =t fia(gis)- (21)
2,8

The log likelihood is then

> gisis — nislog(1 + €%%) (22)

s

Variational approximation. We assume a fully factorized variational ap-
proximation [, ¢s(1/vs) []; ¢is(gis) where we use a Gaussian variational distri-
bution g;s(gis) = N(mis, v;s) on each g;s, and a gamma distribution ¢s(1/vs) =
G(1/vs,as,bs) on the random effect precisions 1/vs, where ag, by are shape and
rate parameters respectively.

E-step: random effects. The updates for the variational posterior on g,
ie. qis(gis) = N(mys,vis) are

1 1 1
Vis v}s D
m; my B+ p
g —4 4 o Te (23)
Vis v D

where the first term in both updates come from the Gaussian approximation
to f;s provided by NCVMP, i.e. N(m?,v}s), the second term comes from the
linear regression, and 1/7s := (1/vs), is the expected random effect precision
(reciprocal variance) under the current gs(vs). The NCVMP message (Gaussian
approximation) to g;s from f;s is N (mjf7 v;}s), calculated as follows (suppressing
the indexing over i and s),

1
1,48
v dv
d
my_m 45 (24)

vf vy %

10



where S := [ ¢(g)log f(g)dg = E,[log f(g)]. See Knowles and Minka (2011) for
details. The term log f(g) is

gy —nlog(l+e9) (25)

Taking the expectation w.r.t. ¢(g) for the first term is straightforward but the
second we lower bound as follows (Saul and Jordan, 1998):

1
Eq[log(1 + €9)] < 5042@ + log(1 + emt(1-20)v/2) (26)
where o € [0,1] is an additional variational parameter we optimize using the

fixed point update a < o(m+ (1 —2a)v/2). It is then easy to show the updates
are

L nolm+ (1= 20)0/2)[1 — o(m + (1 — 2a)v/2)]

Uy
M ™y no(m+ (1 - 2a)v/2) (27)
Uy vf

E-step: random effect variance. The updates for the random effect vari-
ance posterior distribution gs(1/vs) = G(1/vs,as,bs) are

1
as ¢ a+ 5N, (28)

N,
bs <+ b+ % ZEq [(gis - (ﬁsxz + ,U/S))Q]
i=1

N

=b+ % > [(mis = (Bewi + 1s))” + vis] (29)
i=1

where N, is the number of individuals testable at exonic SNP s.
M-step: fixed effects. The updates for 5, are straightforward: letting
Xs = [xs,1] then

)—1~T

[637 /J/S]T — (izis X M:s

We precompute Cholesky factors of X%, for efficiency.
M-step: overdispersion hyperparameters. The updates for a, b are equiv-

alent to fitting the parameters of a gamma distribution, expect that we have
uncertainty in the data. Define

1S 1<
¢ :=log (S Zas/bs> -3 Z [ (as) — log b (30)

=1

11



where 1 is the digamma function and S is the total number of tested sites
(exonic SNPs). Then the maximum likelihood shape a is approximately

a%3—§+\/(§—3)2+24§ (31)

12¢

(see Minka (2002) for details). Using Equation 31 as an initialization we proceed
with a Newton-Raphson update

a<—a—

log(a) — ¥(a) - ¢ .
R AC)
which we run to convergence (defined as absolute change in a less than 1076,

which typically takes fewer than 20 iterations). Given the MLE of a the MLE
of b is simply

1S B
b a (S ;as/bs> (33)

Calculating the variational lower bound. Variational EM provides an
approximation to the marginal likelihood P(y|3, i, a, b) through the lower bound

log P(y|B, i, a,b) > Eq[log P(y, g,v|8, 1, a,b)] + Hq] (34)

where the entropy H[g] = —E,[logq(g,v)]. The right hand side of Equation
34 is optimized (maximized) w.r.t. to ¢ (in the E-step) and 8, p,a,b (in the
M-step) by the variational EM procedure. Since ¢ is a product of univariate
Gaussian and gamma distributions calculating Hq] is straightforward:

H[q] = ZHG(asybs) +ZHN(misans) (35)
Hg(a,b) := —logb+log[l'(a)] + (1 — a)y(a) (36)
Hy(m, v) = %[log(%rv) +1] (37)

The data term E4[log P(y, g,v|5, i, a, b)] is

a

Z (alogb —logT'(a) + (a — 1)(¢(as) — logbs) — bb:

S

1 1 lag -
+ 3 { - Jlog2m+ 5 ((an) ~ logh) — 5 7% [ — B7E.)? + vl

1
+ MisYis — Nis |:2Ct?5’l)is +log (1 4+ exp (mys + (1 — 20[2»5)1)1'5/2))] }) (38)

where the three lines correspond to the gamma prior on 1/vs, the likelihood for
gis and the data likelihood f;s respectively. Adding Equation 35 and 38 gives

12



the global lower bound which we use to assess convergence of the variational
EM algorithm (we require a change less than 0.1). Extracting only the terms
for a specific exonic SNP s provides an approximation of log P(y.s|8s, a, b), with
g.s and vy integrated out, which we use as the likelihood in our likelihood ratio
test.
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Environment

Non-zero counts

Description

Sex

Age

Number cigarettes per day
Smoked same day

Time of day

Blood pressure medication
Exercise

OBCP

Antidepressants
Benzodiazepine

Ace inhibitors
Cholesterol lowering

Anti histamine

Thyroid medication

PPI

NSAIDs

Beta blockers

MDD

Family history depression
Diuretic medication
Opiates

Cardiac medication
Steroid medication
Decongestant medication
Bupropion

Oral hypoglyemic

SNRI

BMI

Alcohol use

Cannabis use

274 (males)

922 (continuous)
118

101

922 (continuous)
183

166

84

219

63

66

114

99

88

84

65

58

459

452

54

55

49

53

51

53

46

46

922 (continuous)
36

32

Over-the-counter birth control medication

Protein pump inhibitors
Nonsteroidal anti-inflammatory drug

Major depressive disorder

Serotonin-norepinephrine reuptake inhibitor
Body mass index

Table 1: Environmental factors tested across the N = 922 individuals.
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Environment Gene EAGLE p QTL p Notes

Sex TLR5 3.9 x107¢ 0.993 Innate pathogen recognition. LoF variant has sex specific influence on
BMI (Al-Daghri et al., 2013)

Age THEMIS 84 %1077 1.000 Regulation of T-cell maturation.

Smoke before INPP4A 2.9 x 1077 0.049 Phosphatidylinositol signaling pathway enzyme. Influences asthma sus-
pectibility: (Sharma et al., 2008; Aich et al., 2012)

Time of day NCAPH2,5C0O2 1.5 x 1075 1.000 SCO2: cytochrome c oxidase. Circadb: p=1e-18

Time of day NCR3 8.9 x 1077 1.000 Natural killer cell cytotoxicity receptor.

Time of day HLA-DOB 1.8x 107" 1.000 Major histocompatibility complex. Immune activity varies with circa-
dian rhythym.

Time of day OLFM4 1.2x107° 1.000 Stem cell marker.

Blood pressure meds NPRL3 2.1x107° 1.000 Homeostasis of fluid volume. Expressed in the vasculature. Associ-
ated with mean corpuscular hemoglobin concentration (MCHC). (Chen
et al., 2013; van der Harst et al., 2012)

Exercise 1IF144L 5.2 x 1077 1.000 Interferon-induced protein 44-like

Exercise SESN3,RP11-712B9.2 1.1 x 10~¢ 1.000 Sestrin stress-induced protein. Reduces intracellular oxygen, regulates
blood glucose. Influenced by exercise (Liu et al., 2015)

Exercise DYSF 1.5x 107%  1.000 Linked with skeletal muscle repair. (Biondi et al., 2013)

Exercise CLECI12A 4.2 x 1076 1.000 Suppresses monocyte immune cells. Associated with RA (Michou et al.,
2012)

Antidepressants ABCAT 3.4x107%  0.786 ATP-binding cassette sub-family A member 7. LoF variants double
Alzheimer’s risk (Steinberg et al., 2015)

Antidepressants NKG7 8.8 x 107° 0.014 Natural Killer Cell Granule Protein.

Ace inhibitors STEAP4,AC003991.3 7.2 x 107¢ 1.000 Metalloreductase

Thyroid meds PHGDH 1.9 x 107° 1.000 Serine biosynthesis

Fam. hist. depression FCGR2B 1.5 x 1076 1.000 Inhibits antibody production in B-cells.

Fam. hist. depression CHIT1 4.5 x 1077 1.000 Secreted by macrophages

Fam. hist. depression ABCAT 1.5x 1076 1.000 See above

Fam. hist. depression ABCA7 3.8x 107 1.000  See above

Opiates ARHGEF18 44 %1077 0.134 Rho/Rac guanine nucleotide exchange factor (GEF) 18

Opiates ZFAT,ZFAT-AS1 1.4 x 1077 0.734 Correlates with activity with morphine in mice (Philip et al., 2010)

Decongestant meds CDH23,C100rf54 4.9x107%  0.296 Expressed in the neurosensory epithelium.

Decongestant meds FES,AC068831.1 4.4 %1078 1.000 Tyrosine-protein kinase with various roles including mast cell signalling

Decongestant meds ZMAT?2 3.6 x 107¢ 0.536 Zinc finger, matrin-type 2

SNRI FADS1,FADS2 1.8x107%  0.248 Fatty acid desaturase 1/2

SNRI EIF4E3 7.0x107%  0.103 Eukaryotic translation initiation factor 4E

BMI GSTO1 5.6 x 1078 1.000 glutathione S-transferase omega 1. Cellular redox homeosta-
sis, metabolism (Pastore and Piemonte, 2012). Upregulated in
macrophages recruited to adipose during obesity (Lumeng et al., 2007)

BMI LGALS3 4.7 x107° 0.359 Lectin, Galactoside-Binding, Soluble, 3. Cardiovascular disease role
(Boer et al., 2009). -/- mice are obese (Pejnovic et al., 2013)s

BMI CD93 1.6 x 107°  0.506 C-type lectin transmembrane receptor. Weak (le-4) association with
total fat (Zhao et al., 2007)

BMI KIAA0930 2.5x107°  1.000 Weak BP association (4e-3) (Rice et al., 2000)

BMI NUP210 3.0x107° 0.517 Nucleoporin 210kDa. Upregulated in macrophages recruited to adipose
during obesity (Lumeng et al., 2007).

BMI C9orf78 1.1x107%  0.517 Weak (p=0.003) assocation with total cholesterol (Pollin et al., 2004)

BMI C90rf78,USP20 4.3 x107° 1.000

BMI AHSP 1.5 x 1075 0.062 Alpha hemoglobin stabilizing protein. Protects hemoglobin from oxi-
dation (Mollan et al., 2013)

BMI ITK 1.0 x 1075 1.000 Interleukin-2-inducible T-cell kinase

BMI VNN1 3.8x107° 0914 Regulates cholesterol levels (Jacobo-Albavera et al., 2012)

Table 2: Putative GxE interactions detected by EAGLE, at an FDR of 0.1. If
the tested SNP lies in an exon of two different overlapping genes then both genes
are listed. QTL p is the Bonferroni corrected p-value from standard interaction

QTL testing.



Environment Gene p-value Chromosome ASE Position Candidate position
Number cig per day IL10RA 4.8 x 1072 11 117864113 117709028
Smoked same day INPP4A 7.8 x 1073 2 99149946 98761589
Blood pressure medication FAAH 4.4 %1072 1 46870761 46927103
Blood pressure medication CPT1B 1.9x 1072 22 51015838 51057923
Exercise IF144L 2.3 %1073 1 79095581 79167440
Exercise DYSF 6.7 x 1073 2 71688249 71703945
Antidepressants NKG7 4.7 x 1072 19 51875946 51823015
NSAIDs TAPBPL 9.8 x 1073 12 6567907 6585610
NSAIDs SSNA1 3.6 x 1073 9 140084376 140356374
Opiates ARHGEF18 3.8 x 1077 19 7537107 7538117
Opiates ZFAT 8.9 x 1073 8 135612745 136017930
Decongestant medication CDH23 8.6 x 1074 10 73510469 73517225
Decongestant medication ZMAT?2 4.3 %1073 5 140086062 140115433
BMI GSTO1 1.6 x 1073 10 106022789 106033903
BMI VNN1 2.3 x107* 6 133035098 132996866
Table 3: Candidate variants detected using two stage analysis. We first detected
potential GXE interactions using EAGLE with a lenient FDR of 0.2, resulting
in a shortlist of 57 gene-environment pairs. We then tested SNPs within 1Mb of
each gene’s TSS using both standard interaction testing and EAGLE including
heterozygosity of the SNP. We combined p-values from these two tests using
Fisher’s combined test. The resulting significant p-values are reported here,
after Bonferroni correction across the tested SNPs.
Environment Gene Chr Candidate GWAS trait GWAS p-value GWAS SNP LD
position position
Blood pressure meds TACC3 4 1721654 Height 2.0x 1071 1701317 0.4
Age THEMIS 6 128269592 Multiple sclerosis 6.0 x 107° 128278798 0.42
Age THEMIS 6 128269592 Celiac disease 4.3 x 1071 128282758 0.43
Time of day NCR3 6 31461132 Hodgkin’s lymphoma 7.0 x 10716 31446796 0.52
Time of day NCR3 6 31461132 Autoimmune thyroiditis 7.5 x 1078 31448625 0.54
Time of day NCR3 6 31461132 Celiac disease 1.5 x 10734 31448625 0.54
Time of day NCR3 6 31461132 Multiple schlerosis 6.0 x 107%° 31448625 0.54
Time of day NCR3 6 31461132 Psoriasis 1.7 x 107 31448625 0.54
Time of day NCR3 6 31461132 Rheumatoid arthritis 2.4 x 10710 31480272 0.4
BMI LGALS3 14 55879277 Protein biomarker for LGALS3 2.0 x 107'%® 55614636 0.55
BMI AHSP 16 31276811 Systemic lupus erythematosus/ 1.0 x 1071 31326706 0.9
systemic sclerosis
BMI AHSP 16 31276811 Systemic lupus erythematosus 2.0x 1072 31313253 0.87
Antidepressants ABCA7 19 1127615 Crohn’s disease 8.0 x 10722 1124031 0.82
Decongestant meds FES 15 91543761 Breast cancer 4.0 x 1078 91512067 0.43
Decongestant meds  FES 15 91543761 Type 2 diabetes 2.0 x 10710 91521337 0.72
Decongestant meds C200rf3 20 25178119 Allergic rhinitis 1.0 x 1076 25206654 0.67
Decongestant meds C200rf3 20 25178119 Liver enzyme levels (alkaline 7.0 x 107%° 25298087 0.56

phosphatase)

Table 4: GWAS variants in LD with candidate variants from EAGLE.
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Percent intergenic bases -

Percent usable bases -

Percent mRNA bases -

Percent coding bases -
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Supplementary Figure 1: Proportion variance explained (PVE) by technical
covariates and confounders for allelic imbalance and total expression, across all
genes. We define allelic imbalance as |3 — y/n| where y is the alternative read
count and n is the total read count, where we only consider individuals with
at total read count n > 30, and we subsample down to n = 30. For total
expression we calculated PVE for each gene for the same individuals we could
test for allelic imbalance (i.e. individuals with a heterozygous exonic SNP and
n > 30), in order to match power between the two phenotypes. The confounders
include sequencing depth, PICARD quality measures, and estimates of cell type
proportions (estimated as previously described in Battle et al. (2014)).
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Supplementary Figure 2: EAGLE improves power to detect aseQTLs. Here
we tested whether the lead eSNP from total expression analysis was also an
allele specific expression QTL (aseQTLs), using both EAGLE and Spearman
correlation of allelic imbalance, defined as |3 — y/n|, vs. a binary variable
indicating whether the eSNP is heterozygous. By explicitly modeling the count
nature of the data EAGLE improves power over Spearman correlation.
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Supplementary Figure 3: EAGLE has better sensitivity and specificity than
using a binomial GLM or Spearman correlation between allelic imbalance and
environment. We simulated allelic reads at all exonic SNPs tested in the DGN
cohort, maintaining the true total counts but sampling the alternative allele
count using a maximum likelihood estimate of the overdispersion and varying
the true effect size for the time of day environment (see Supplementary Methods
Section 2 for simulation details). a. ROC curves are shown for Spearman
correlation with allelic imbalance defined as |% — y/n|, a binomial GLM, and
EAGLE. Across all effect size settings EAGLE outperforms the binomial GLM
and Spearman correlation. The binomial GLM has performance here close to
that of EAGLE, but is extremely poorly calibrated (see Supplementary Figure
S5). b. Relative increase in sensitivity (true positive rate) of EAGLE and the
binomial GLM relative to Spearman correlation at a fixed FPR of 0.01 (it is not
straightforward to estimate the corresponding FDR without knowing the true
underlying proportion of non-null associations). The difference in sensitivity
initially increases with effect size, and then slowly decreases. c. Distribution of
absolute effect sizes for detected associations at FDR 0.1 and 0.5 in DGN. The
bulk of the absolute effect sizes fall in the range 0 to 0.4, confirming that the
effect sizes used in the simulation are realistic.
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Supplementary Figure 4: Using Spearman correlation with the continuous mea-
surement of allelic imbalance gives false positives in the presence of main effects.
We simulated alternative allele counts, with no true effect of environment on
allelic imbalance (see Supplementary Methods Section 2), 1000 times for an ex-
onic SNP in the DDIT4 gene, whose total counts have moderate (R? = 0.072)
but significant (p = 2 x 1078) correlation with time of day. Due to not explicitly
modeling the binomial sampling process, the Spearman method is highly anti-
conservative, and this is not alleviated using permutations to obtain empirical
p-values (“Spearman (empirical)”). This is because permuting the allelic imbal-
ance values does not break the relationship between the environment and total
count, and due to binomial sampling samples with higher total counts will have
allelic ratios closer to 0.5. In contrast, the binomial GLM and EAGLE, which
directly model the binomial sampling, are relatively robust to this form of con-
founding. Even EAGLE is not completely calibrated in this simulated setting
where there is a very strong main effect of the environment on total expression.
However, there is only overinflation for moderate p-values, which are not crit-
ical for Benjamini-Hochberg FDR, control, and b) as shown in Supplementary
Figure S6, the EAGLE p-value distribution for true data is conservative. While
for this particular exonic SNP the binomial GLM is reasonably calibrated, it is
not in general (see Supplementary Figure S5).
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Supplementary Figure 5: Binomial GLM p-values are highly over-inflated in
both simulations and permutation analyses. a,b. We simulated allelic reads at
all exonic SNPs tested in the DGN cohort (Supplementary Note 2) with no true
effect of the environment (time of day) on allelic imbalance. The binomial GLM
has an excess of extremely small p-values, Spearman is well-calibrated in the ab-
sence of main effects (although EAGLE is has better power, see Supplementary
Figure S3), and EAGLE is slightly conservative. c. The inflation of p-values un-
der the binomial GLM is particularly problematic for exonic SNPs with higher
average read depth. d. Permutation analysis also shows the inflation of p-values

under a binomial GLM.
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Supplementary Figure 6: EAGLE is conservative under permutations. We per-
muted all 30 environmental factors independently at each tested exonic SNP.
The resulting p-value distribution is somewhat conservative, confirming our find-
ings from the simulation study (Supplementary Figure 5). Based on this analysis
we estimate EAGLE’s nominal FDR of 10% corresponds to a true FDR of 4.9%
and 8.7% for exonic SNPs with read depth below and above 300 respectively.
Left: All exonic SNPs. Right: Exonic SNPs with average read depth > 300.
Top/bottom: different zoom levels.
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Supplementary Figure 7: Our simulation study (with no true effect) shows that
EAGLE is conservative. EAGLE tests absolute allelic imbalance by modeling
min(y,n — y). This accounts for the possibility of the causal variant(s) being
in different phase with the tested exonic SNP across different individuals. An
alternative, which we do not employ in this study, would be to model the di-
rection of allelic imbalance by not applying the min transformation, which we
show here results in a well-calibrated rather than conservative test.
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Environment

Supplementary Figure 8: Thousands of genes are environmentally responsive.
We used Spearman correlation to test the association of 30 environmental factors
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Supplementary Figure 9: Pathway, transcription factor binding site and trans-
eQTL network enrichment of genes with GxE interactions for each environment
reveals shared regulation. Uncorrected p-values are shown. a. The strongest

associations between the top K

KEGG and BioCarta pathways with fewer than 100 genes.

50 genes for each environment and GO,

b. The number

of significant pathways is relatively robust to K, the number of top associated
genes used. c. Enrichment of CENTIPEDE predicted TFBS within 5kb of the
TSS of the top 50 genes associated with each environment. d. Co-regulation of
genes modulated by exercise. We tested the top 50 genes associated with each
environmental factor for co-regulation in a trans-eQTL network learnt from

total expression analysis (taking all trans-eQTLs with p < 107°

). Shown are

trans-eQTLs regulating at least two genes in the top 50 list for exercise.
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Supplementary Figure 10: a. We initially assessed replication by splitting the
DGN cohort into two equal halves (approximately matching gender and age),
calling GxE associations in one half, and checking for replication in the other
half. The proportion of associations replicating at nominal p-value threshold of
0.05 is shown as a function of the p-value threshold used in the discovery set.
Despite halving the sample size, using EAGLE we see striking replication as
the discovery threshold is increased. In comparison, using standard interaction
QTL testing no replication is observed. b. EAGLE associations discovered
in DGN show replication in CARTaGENE, a cohort of 724 French-Canadian
individuals. Plots show the proportion of GxE associations which replicate
in CARTaGENE at nominal p < 0.05, as a function of the p-value threshold
in DGN. Dashed lines denote two standard deviations of the null distribution
where the discoveries are randomly chosen (calculated using the hypergeometric
distribution). Out of the six environmental factors recorded in both DGN and
CARTaGENE, four show significant replication with improving replication for
increasingly stringent discovery thresholds. Associations for alcohol do not to
replicate well, but alcohol in particular may be problematic since in DGN this
variable represents whether the individual consumed alcohol before the blood
draw, whereas in CARTaGENE this represents average alcohol consumption.
Associations for hypertension medication do not show significant replication,
although there is an upturn in the replication rate for the most statistically
significant discoveries.
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Supplementary Figure 11: Standard interaction QTL testing is sensitive to con-
founding. We performed a second simulation study using total expression to
assess the influence of confounding on standard interaction QTL testing. We
use principal components of the gene expression matrix as our potential con-
founders. In order to simulate data with structured noise matching that in the
true data, the effect on the true gene expression values of local cis-SNPs, the
environment (time of day) and confounding was assessed using a Bayesian re-
gression model. Gene expression values were then generated from this model,
including a varying number of confounders (PCs), and with or without a true
GxE effect. The ROC curves here show that as more confounding is included
in the simulations, the sensitivity and specificity of standard interaction QTL
testing falls dramatically.
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Supplementary Figure 12: The two stage analysis, where we first use EAGLE
to identify genes whose allelic expression is associated with an environmental
factor, and second test for candidate variants, is robust to both the initial FDR
threshold used and the cis-window size used in step 2. We show the proportion
of nominally significant associations after Bonferroni correction across cis-SNPs.
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Supplementary Figure 13: Interaction p-values can be approximated using the
t-statistics reported by Fairfax et al. a. The sampling distribution for ta. To
approximate p-values for a significant interaction term in two conditions from
t-statistics we use the test statistic tA = ¢t1 — tg. Under the null distribution
that the effect size and noise variance in each condition is equal, we can analyt-
ically approximate the sampling variance of tA. To confirm the validity of this
analytical calculation we compare to empirical simulations, and find excellent
agreement even for large shared effect sizes. b. Testing ta is well calibrated.
We simulated a SNP with a MAF of 0.2 in N = 228 individuals, noise s.d. of 0.3
and a shared effect size of 5 in two conditions. We calculated p-values according
to our procedure for the Fairfax et al. data. The qgplot here confirms that the
resulting p-values are well calibrated.
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Supplementary Figure 14: EAGLE detects allele-specific responses to treatment
of rat livers with various toxicants. a. EAGLE detects 442 associations (10%
FDR) between allelic imbalance and treatment, across seven toxicant classes,
despite moderate sample sizes. c¢. Shown here are EAGLE-testable orthologous
rat genes to mouse genes known to respond to PPAR« either from knock-out
experiments or agonist treatment, positioned according to their functional roles.
EAGLE associations and differential expression (using Spearman correlation)
were called at 10% FDR.
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