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ABSTRACT The Thomas-Fermi-Mott equation is modi-
fied to take account of the fact that conduction electrons in a
metal may be considered to have an effective mass at wave-
numbers comparable with or less than the inverse Debye
screening length, but they should be considered to have the
free-electron mass at much larger wavenumbers. This modi-
fication allows for a more realistic calculation of the fusion rate
of deuteron pairs in palladium, this rate being 10-23 sec'1,
comparable with some experimental results. The Oppen-
heimer-Phillips process enhances the rate by a factor of 2.262.

In a recent article (1), we calculated the fusion rate of a pair
of deuterons in an interstitial trap in palladium metal, ob-
taining a rate A = 10-18 sec1. This rate was determined by
treating each deuteron as a composite particle, a bare deu-
teron plus the associated screening cloud of excess conduc-
tion electrons. The electrostatic repulsion energy of the
composite pair is the barrier through which quantum me-
chanical tunneling must take place for fusion to occur. Prior
to calculating this repulsion energy, one must determine the
additional one-electron potential energy in the metal resulting
from the presence of the two deuterons. This was calculated
via the Thomas-Fermi-Mott (TFM) equation, a variant of the
Thomas-Fermi equation, invented by Mott (2) to obtain the
potential resulting from a localized impurity in a metal. In
calculating the additional potential associated with a pair of
deuterons, we made the approximation that the potential
associated with the pair is simply the sum of the localized
potentials associated with each deuteron by itself. The rate
calculation was carried through with each of two different
choices for the single-deuteron potential: (i) the potential
associated with a single deuteron (Z = 1); (ii) one-halfof the
potential associated with a single a particle (Z = 2). For
reasons discussed in ref. 1, we believe the Z = 2 choice is the
more accurate approximation for purposes of calculating the
fusion rate.

In the present paper we repeat the calculation of ref. 1 with
one important change. Rather than use theTFM equation, we
use what we believe to be a more accurate equation for the
present problem. We refer to this as the modified Thomas-
Fermi-Mott (MTFM) equation, the development ofwhich we
now describe.
As in ref. 1, the basic input is the density of conduction

electrons, no = 0.67917 A-3, and the asymptotic Debye
screening length, AD = 0.14270 A; this latter is obtained from
the measured low-temperature electronic contribution to the
specific heat. In ref. 1 we took a simple model of 10
conduction electrons per atom in a single band with a Fermi
energy EF = 3.75371 eV and an effective mass ratio (m*/m)
= 7.50601. In reality, there are 5 different 4d bands, each with
the same EF, but with an effective mass ratio (m*/m) =
5-2/3(7.50601) = 2.56702, each band containing 2 conduction
electrons per atom. The former model is simpler, the latter

model is more realistic.¶ They would have given identical
results in the previous paper employing the TFM equation.

In using theTFM equation, the implicit assumption is made
that the conduction electrons can be treated as having a
constant effective mass independent of wavenumber. At
wavenumbers comparable with or smaller than KD AD
the inverse of the asymptotic screening length, it seems
reasonable to treat the screening electrons as having an
effective mass. At wavenumbers much larger than KD, how-
ever, it seems most reasonable to treat the electrons as having
the free electron mass. The MTFM approach that we now
propose is still simple but sufficiently realistic to automati-
cally achieve this variation of effective mass with wavenum-
ber.
As above, we assume 5 bands, with each band having 2

conduction electrons per atom. The total conduction electron
density is

4
no = 5 x 2 x - '3r(PF/h)3 = (/1'kF3 [1]

where PF = OkF is the Fermi momentum. As already stated,
we take the numerical value of no used in ref. 1. However, we
now assume each band has a nonparabolic energy-versus-
wave-vector curve. For values of k much larger than KD, we
want the energy E(k) to be parabolic with a free-electron
mass. For values ofk comparable with or smaller than KD, we
want E(k) to be approximately parabolic with an effective
mass m*. We take

[2]E(k) = [hi2k2/2m*(k)],

m*(k) = m{1- (1 - a)[1 + (ak/KD)2]-11-1,
where a is a parameter to be determined such that 0 < a <
1. Note that

m*(O) = ma-1, m*(oo) = m. [4]

The ratio of effective masses at k = KD and k = 0 is given by

R(a) = [m*(KD)/m*(0)] = (1 + a)(1 + a)-'. [5]

We have chosen the dependence ofm*(k) upon the parameter
a so that m*(k) will be relatively insensitive to the value of k
in the range 0 ' k ' KD. We see that R(O) = R(1) = 1, while
the minimum value of R(a) occurs at a, = ( - 1) and has
the value

Rmipn = R(al) = 2a, = 0.828427. [6]

Abbreviations: TFM, Thonas-Fermi-Mott; MTFM, modified Tho-
mas-Fermi-Mott; OP, Oppenheimer-Phillips.
$In order that no and AD be the same in both models, it is necessary
that EF = (PFZ/2m*) be ttie same but the Fermi momentum PF be
smaller by a factor of 51/3 in the 5-band model, so that m* must be
smaller by a factor of 52/3.
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In other words, m*(KD) never gets smaller than about
(5/6)m*(0). Fig. 1 shows a plot ofm*(k)/m versus k/KD, for the
value of a = 0.3804356 as obtained in Eq. 19.
The total number of allowed states per unit volume (in-

cluding spin degeneracy) in all 5 bands having energy less
than E(k) is given by

n(k) = (5/3i7r2)k3. [7]

The total number of allowed states per unit energy per unit
volume at energy E(k) is

N(k) = (dn/dk)(dE/dk)-'. [8]

The parameter a will be chosen, as in equation 6 of ref. 1, to
ensure that

Aj2 KD = 41re2N(kF), [9]

As already stated, we take the numerical value of AD used in
ref. 1.
We define

F - (aO/AD) = 3.708479,

where ao = 0.5292 A is the Bohr radius, and

ED-(K24/2m) = - r2Eo = 187.1071 eV,D 2

[10]

Eq. 7 gives

n(E) = (2aY)-3/2(5/31T2)f (aE - 1) + (

[16]

Eq. 8 gives

N(k) = (dn/dE)

= (2a)-Y/2(5/4ir'2){1 + (aE- 1 + 2a-1)
V(aE - 1)2+ 4E

x (aE-1)+ (aE-1)2+4EJ

= (5/2ir2)k{1 - (1 - a)(1 + a2k2)2}. [17]

Eqs. 13 and 17 give

(1 - a) = (1 + a2kF2)2{1 - (20/7r)(kF/r)}. [18]

Eq. 1 gives kF = 0.226934, Eq. 18 gives

a = 0.3804356.
[11]

where EO = (W2/ma') = (e2/ao) = 27.21 eV is the Hartree
energy. At this point it is convenient to express distance in
units of AD, and (temporarily) energy in units of ED. In these
units,

AD= 1, no = 1.97356 x 10-3.

Eqs. 1, 7, and 8 remain unchanged. Eq. 9 becomes

N(kF) = (r/8sr),

while Eqs. 2 and 3 become

E(k) = k2{1 - (1 - a)(1 + a2k2)-1}.

[19]

Thus

[m*(0)/m] = a- = 2.628566,

[m*(KD)/m*(O)] = (1 + a2)(1 + a)-' = 0.82925,

[12] EF = E(kF) = 1.982821 x 10-2 [20]

(this last being equivalent to 3.71000 eV).
[13] For a spherically symmetric problem, Poisson's equation

in conventional units is

V2V = r-1(d/dr)2(rV)[14]

Inverting this, we have

k2 = (2ar)-'{(aE - 1) + (aE-1)2 + 4EJ.

S

0 2 4 6 8 10
k/KD

= -41re2[n(EF - V) - no],

[15]
where

V= -e2r-14.
In terms ofthe dimensionless units we have been using, these
become

(d/dr)2k = 4vrr[n(EF - V) - no]

v = -(2/r)r-14.

[21]

[22]

Define

G =(20/37r)r312 = 0.297142706

G2 - (r/2a) = 4.873990454

G3=(2F/a2) = 51.24641308

FIG. 1. Plot of m*(k)/m versus k/KD.
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Table 1. Parameters for the analytic representations of ) and )

Case i ai Ai C, Di
Z = 1 1 1.0 0.5257392 0.1876645 0.1382009

2 2.4258593 0.3982298 0.6464533 0.1923548
3 5.1761412 0.0739773 0.1617771 0.0141636
4 101.402959 0.0020537 0.0041051 0.0002138

Z = 2 1 1.0 0.4240103 0.0877642 0.0898924
2 2.3613116 0.4775152 0.6938484 0.2692140
3 4.9027188 0.0957208 0.2128855 0.0224605
4 118.328328 0.0027537 0.0055019 0.0004486

1
D= - rEF

2
= 3.676625963 X 10-2

and

q=,+Dr. [24]

Using Eqs. 16 and 21, along with these definitions, we find
after some algebra the working MTFM equation

(d/dr)24i =

~~~~~~~~~~3/2

Gjr-112[(4 - G2r) + - G2r + + G3ri/ - G4r. [25]

The right-hand side of this equation vanishes when = 0,
since

3/2

G4 = G, -(G2- D) (G2-D)2+G3D [26]

In numerically evaluating the right-hand side of Eq. 25, there
is considerable partial cancellation, leading to loss of signif-
icant figures. This is why the values in Eqs. 23 contain a large
number of significant figures.

It is now convenient to redefine the units of energy. We
express energy in units of

(2/F)ED = TEO = 100.90772 eV, [27]

so that Eq. 22 becomes

V(r) = -r-1%(r) [28]

and

D=EF. [29]

Note that all the constants Gi and D still have the numerical
values given in Eqs. 23. Eqs. 24 and 25 remain unchanged.
From this point on, the procedure of the present paper is

completely equivalent to that of ref. 1, so that there is no need
to repeat the details. The MTFM equation is solved numer-

ically for both cases Z = 1 and Z = 2. The resulting values
of +(r) are fitted accurately by a sum of four exponentials,
using the constants ai and Ai listed in Table 1. The constants
ai, Ci, and Di are used in fitting the related quantity +(r). The

Table 2. Pair fusion rate and related quantities
Case 21ri1 F, cm-3 A, sec-1

Z = 1 Without OP 87.0036 2.8110 x 1028 0.06813 x 10-24
With OP 85.0483 0.8999 x 1028 0.15413 X 10-24

Z = 2 Without OP 82.9736 2.9747 x 1028 4.0564 X 10-24
With OP 81.0184 0.9523 x 1028 9.1757 X 10-24

fusion rate of a pair of deuterons in palladium can be written
in the form

A = AFe-2T [30]

where A = 1.478 x 10-16 cm3/sec, F, as defined in equation
29 of ref. 1, is a quantity of the order of 1028 cm-3, and e-2"
is the Gamow penetration factor. The quantities (27riq), F,
and A are listed in Table 2, calculated both ignoring and
considering the Oppenheimer-Phillips (OP) process (3),
whereby the potential barrier is lowered somewhat at sepa-
ration distances of the order of 10-12 cm because of the
mutual polarization of the two deuterons. Note that for both
Z = 1 and Z = 2 the OP process enhances A by a factor of
2.262 and somewhat increases the 3H/3He branching ratio
associated with the deuteron-deuteron nuclear reaction. The
most accurate value of A is believed to be the case Z = 2
including the OP process. This value of A = 0.918 x 10-23
sec1 is five powers less than the value obtained in ref. 1, but
this value does agree with the experimental values of Jones
et al. (4).
The calculations reported here may be viewed by some as

a vain attempt on the part of the authors "to revive a dead
horse," in view of the recent outpouring of negative publicity
concerning cold fusion and the sometimes vicious attacks on
its proponents. Nevertheless, we feel obligated to report that
our calculations suggest that the results ofJones et al. (4) can
be explained without invoking any physics more esoteric than
that of screening of positive charges by conduction electrons.
The Thomas-Fermi approach that we have used is much
more accurate for determining the screening of a deuteron in
a metal, where many electrons make partial contributions,
than is the case for an isolated neutral deuterium atom, where
only one electron is involved. Unlike the atom, the screening
in the metal at large distances is given correctly, where the
conduction electrons behave as having an effective mass. At
the same time, at distances appreciably smaller than the
asymptotic screening length AD, the screening results from
electrons with a free-electron mass. An important part of our
treatment is the recognition that the barrier to be penetrated
by quantum mechanical tunneling is that associated with a
pair of composite particles, each particle being a bare deu-
teron plus an associated screening cloud of electrons. On the
basis of our calculations, we conclude that it would be wrong
to say that the fusion phenomenon is impossible.
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