

Figure S1. Expression of *Yap/Taz* and their functions. (related to Figures 1 and 2)

(A and B) Yap and Taz in situ hybridization.

(C) YAP immunostaining in the lingual CL (liCL).

(D-F) K14CreER activity in uninduced laCLs (D) and in tamoxifen-induced laCLs at 18 and 48 hours post injection (E and F), as indicated by the expression of the Cre-responsive reporter allele, $R26^{mT/mG}$. White arrowhead in (D) marks the occasional GFP-positive cells due to CreER leakage in uninduced laCLs.

(G-J') K14CreER ablates YAP and TAZ effectively. Closed and open red arrowheads, respectively, mark normal and reduced immunostaining. GFP labels Cre active cells.

(K and L) 3 out of 12 *Yap^{cKO}* samples exhibit tissue loss in the laCL (open cyan arrowhead) one week after Cre induction.

(M and N) 4 days after Cre induction, TA and SR regions begin to disintegrate in *Yap/Taz^{cKO}* IaCLs (open cyan arrowheads).

(O and P) 7 days after Cre induction, a large hole develops in *Yap/Taz^{cKO}* laCLs (open cyan arrowheads).

(Q and R) μ CT analysis confirms that one week after Cre induction, a large hole is formed in the *Yap/Taz*^{cKO} dental epithelium (open cyan arrowhead in R).

(S and T) liCL similarly disintegrates in the absence of Yap/Taz (open cyan arrowhead).

(U-W) Time course of TUNEL staining in *Yap/Taz^{cKO}* laCLs. Green arrowheads mark increased TUNEL signals.

(X) Quantification of number of TUNEL+ cells in GFP+ and GFP- population in Yap/Taz^{cKO}.

(Y-AB) GFP immunostaining and fluorescent *in situ* hybridization of *Amelx* and *Ambn* show increased *Amelx* and *Ambn* transcripts in Cre-recombined *Yap/Taz^{cKO}* cells.

Representative images are shown. Dashed lines outline the dental epithelium. Scale bar in AB represents 130 µm in (A, B, K-R, and U-W) and 50 µm in (C-J', S, T, and Y-AB).

Figure S2

Figure S2. Gene expression and mTOR signaling downstream of YAP/TAZ. (related to Figure 3)

(A-D) Average pixel intensity of RHEB and pS6K1 immunostaining between control and Yap/Taz^{cKO} laCLs (A and C) and average pixel intensity of RHEB and pS6K1 immunostaining between Cre-recombined (GFP+) and non-recombined (GFP-) cells in Yap/Taz^{cKO} laCLs (B and D) are compared.

(E-J) p4EBP is normally expressed in TA and inner SR cells (E and E') but downregulated when *Yap* and *Taz* are deleted (F-G'). The percentage of p4EBP positive area in TA and inner SR regions (H), average pixel intensity of p4EBP immunostaining between control and *Yap/Taz*^{cKO} laCLs (I), and average pixel intensity of p4EBP immunostaining between Cre-recombined (GFP+) and non-recombined (GFP-) cells in *Yap/Taz*^{cKO} laCLs (J) are quantified.

(K-N) BrdU labeling and GFP lineage tracing in *Rptor^{cKO}* laCLs reveals the absolute requirement for *Rptor* in expanding dental progenitor cells. GFP-positive Cre-recombined cells are mostly non-proliferative; this is quantified in (N). Closed white arrowhead in L' marks the proximal boundary of Cre-positive cells and open white arrowhead in M' marks the dramatic loss of GFP+ *Rptor*-deleted progeny in *Rptor^{cKO}* laCLs.

(O-R) P-Cadherin (PCAD) is reduced in *Yap/Taz*^{cKO} TA and inner SR cells (open red arrowhead in P) when compared to the control (red arrowhead in O). The corresponding quantification is shown in (Q and R).

Representative images and quantitative data are shown. Dashed lines outline laCLs. Scale bar in P represents 50 μ m in (E-G, K-M, O and P), 9.76 μ m in (E'-G'), and 130 μ m in (K'-M'). All data are presented as mean ± SD. *p<0.05; **p<0.01; ***p<0.001.

Figure S3

Figure S3. Quantification of YAP and CDC42-GTP immunostaining. (related to Figures 4,5, and 6)

(A and B) Average pixel intensity of nuclear YAP between control and *Fak*^{cKO} laCLs (A) and average pixel intensity of nuclear YAP between Cre-recombined (GFP+) and non-recombined (GFP-) cells in *Fak*^{cKO} laCLs (B) are compared.

(C) Average pixel intensity of nuclear YAP in control and *Itga3*^{cKO} laCLs is quantified.

(D and E) Average pixel intensity of CDC42-GFP between control and *Fak*^{cKO} laCLs (D) and average pixel intensity of CDC42-GFP between Cre-recombined (GFP+) and non-recombined (GFP-) cells in *Fak*^{cKO} laCLs (E) are compared.

(F and G) Average pixel intensity of nuclear YAP between control and *Cdc42^{cKO}* laCLs (F) and average pixel intensity of nuclear YAP between Cre-recombined (GFP+) and non-recombined (GFP-) cells in *Cdc42^{cKO}* laCLs (G) are compared.

(H) Average pixel intensity of nuclear YAP in control and okadaic acid-treated laCLs is quantified. All data are presented as mean \pm SD. *p<0.05; **p<0.01; ***p<0.001.

Figure S4

Figure S4. Expression of TAZ in different mutants. (related to Figures 4 and 5)

(A-D') TAZ is normally restricted in the cytoplasm in the IaCL (A and A') but translocates to the nucleus in *Fak*^{cKO} (B and B'), *Itga3*^{cKO} (C and C'), and *Cdc42*^{cKO} (D and D') mutant IaCLs.

(E) Quantification of TAZ/DAPI overlap in mutant laCLs.

(F-J) BrdU labeling in control and *Fak/Taz^{cKO}* laCLs (F-H). Open yellow arrowheads in (G and H) mark non-proliferative Cre-recombined GFP+ cells. Quantification is made by calculating the percentage of BrdU-positive (+) cells per section in control and *Fak/Taz^{cKO}* laCLs (I) and by comparing the percentage of BrdU+ cells between Cre-recombined (GFP+) and non-recombined (GFP-) cells in mutant laCLs (J).

(K-O) H&E staining of control and *Fak/Taz^{cKO}* IaCLs at different timepoints. Open red arrowheads mark tissue loss in the mutants.

Representative images and quantitative data are shown. Dashed lines outline laCLs. Scale bar in O represents 50 μ m in (A-D', F-H, and K-O). Quantitative data are presented as mean ± SD. *p<0.05; **p<0.01; ***p<0.001.

Figure S5

Figure S5. LATS1/2, but not MST1/2, function in parallel to CDC42. (related to Figure 6 and 7)

(A and B) Western blot analysis and corresponding quantification show that levels of pLATS1 and pNDR1/2 remain unchanged in *Cdc42^{cKO}* laCLs.

(C) pPAK1/2 level is decreased in Cdc42^{cKO} laCLs.

(D) Immunostaining of pYAP-S127 in laCLs.

(E and F) Deletion of *Lats1/2* results in expansion of the TA region, which can be marked by PCAD (red arrowhead in F).

(G and H) RHEB expression is upregulated in the OEE region of *Lats1/2^{cKO}* laCLs (white arrowhead).

(I-K) MST1/2 expression in control and *Mst1/2^{cKO}* IaCLs. GFP marks cells that have undergone Cre recombination.

Representative images, cropped blots and quantitative data are shown. Dashed lines outline the dental epithelium. Scale bar in K represents 50 μ m in (D, G, and H) and 130 μ m in (E, F, and I-

K). Quantitative data are presented as mean \pm SD. **p<0.01

Figure S6. Overexpression of *Yap*^{S127A}. (related to Figures 6)

(A-C) Overexpression of Yap^{S127A} does not effectively drive nuclear YAP in the OEE. Representative images are shown. Dashed lines outline laCLs. Scale bar in (C) represents 50 μ m in (A-C).

Name	Size	ES	NES	Nom P-Val	FDR Q-Val	FWER P-Val
Mitotic Spindle	45	0.3849198	1.9285586	0.002074689	0.08329048	0.079
Mtorc1 Signaling	41	0.37824142	1.877489	0.00533049	0.0646663	0.119
Xenobiotic	27	0.40863594	1.7669948	0.007650273	0.12305588	0.297
Metabolism						
Estrogen	21	0.40807262	1.6800778	0.02027027	0.1707811	0.484
Response_Late						
Epithelial	32	0.35450116	1.6387851	0.027262814	0.17580047	0.566
Mesenchymal						
Transition						
Oxidative	32	0.3431483	1.5768838	0.04849138	0.22019507	0.724
Phosphorylation						
Myc Targets V1	51	0.30922395	1.5741473	0.03305785	0.19229464	0.729
E2f Targets	48	0.30326316	1.54611	0.045454547	0.19782263	0.778
G2m Checkpoint	44	0.31142673	1.5308156	0.061458334	0.19116285	0.802

Table S1. Gene Set Enrichment Analysis (GSEA) results for downregulated genes. Related to Figure 2.

ES, enrichment score; NES, normalized enrichment score; Nom P-Val, nominal p-value; FDR Q-Val, false discovery rate q-value; FWER, familywise-error rate.

Experiments	Chemicals	Targets	Working concentration	Culture time
Functional test of mTOR signaling in laCLs (Figures 3N- 3P)	Rapamycin	mTORC1	1 μM	24 hours
Screening	(-)-Blebbistatin	Non-muscle myosin II	50 µM	24 hours
upstream	Erlotinib HCI	EGFR	10 µM	24 hours
regulators of YAP	Ki16425	LPA receptor	10 µM	24 hours
(Figures 4A-4F)	Latrunculin A, Latrunculia magnifica	Actin polymerization	0.5 µM	24 hours
	PF-573228	Focal adhesion kinase (FAK)	5 µM	24 hours
	PP2	SRC kinase	20 µM	24 hours
	Y-27632	Rho-associated protein kinase (ROCK)	50 µM	24 hours
Functional test of PP1A in YAP localization (Figures 6K-6M)	Okadaic acid, Prorocentrum sp.	Protein phosphatase 1 and 2A (PP1 and PP2A)	0.05 µM	12 hours

Table S2. Chemical concentrations and culture time. Related to Figures 3, 4, and 6, and STAR Methods.

Target	Forward	Reverse
Genotypin	g	
Cdc42	ATGTAGTGTCTGTCCATTGG	TCTGCCATCTACACATACAC
Cre	GCAAAACAGGCTCTAGCGTTCG	CTGTTTCACTATCCAGGTTACGG
dnRock2	ACTCATCTCAGAAGAGGATCTG	TTAGCTTGGCTTGTTTGGAGC
Fak	GAGAATCCAGCTTTGGCTGTT	GAATGCTACAGGAACCAAATAAC
ltga3	TGATGACTATACCAACCGGAC	ACTCCAAGCCACATATCCTC
Lats1	TTGTTGCTGGTGTTGTTTCC	ATGAATGAACCTGAGGCTGC
Lats2	ATCCTAGCACTCAGGAGGCA	ACACATTCCCCTCCACTGAC
Mst1	CCTGCTTCAGTGTTGGCTCTTGATTTTC	TAGACCAGCCAGGGCTAGAGTGAAACC
	СТ	TTG
Mst2	GTTCAGGGTCCCACCAAGAGTCGCTTC	TGTCTAGCTGCTGATGACACTGAACTT
	ATT	CTGGC
R26 ^{mT/mG}	CTCTGCTGCCTCCTGGCTTCT	CGAGGCGGATCACAAGCAATA
R26-rtTA	AAAGTCGCTCTGAGTTGTTAT	GCGAAGAGTTTGTCCTCAACC
		GGAGCGGGAGAAATGGATATG
Rac1	TCCAATCTGTGCTGCCCATC	GATGCTTCTAGGGGTGAGCC
RhoA	AGCCAGCCTCTTGACCGATTTA	TGTGGGATACCGTTTGAGCAT
Rptor	CTCAGTAGTGGTATGTGCTCAG	GGGTACAGTATGTCAGCACAG
Taz	CCCACAGTTAAATGCTTCTCCCAAGAC	GGCTTGTGACAAAGAACCTGGGGCTAT
	TGGG	CTGAG
Yap	ACATGTAGGTCTGCATGCCAGAGGAGG	AGGCTGAGACAGGAGGATCTCTGTGAG
Yap ^{S127A}	CCCTCCATGTGTGACCAAGG	GCACAGCATTGCGGACATGC
	GCAGAAGCGCGGCCGTCTGG	
qPCR		
Ambn	GAGCTGATAGCACCAGATGAG	CGGTTGGAAATTGTGGATCAG
Amelx	GCATACACTCAAAGAACCATCAAG	CACCTCATAGCTTAAGTTGATATAACC
Cdh3	CTTGATGCCAACGATAACGC	ACTGTCAGCCTCTGTACCTC
Ppia	CAAACACAAACGGTTCCCAG	TTCACCTTCCCAAAGACCAC
Rheb	GCAGATACCTATTATGTTGGTTGG	AGCAGTTTGATTTTCTTTAGCAGA
Yap	CAGACGCTGATGAATTCTGC	GGATGTGGTCTTGTTCTTATGGT.

 Table S3. Primer sequences. Related to STAR Methods.

Primary	Sources	Dilutions	Secondary antibodies used
antibodies			
Immunostaining			
Ameloblastin	Santa Cruz (sc-50534)	1:100	Goat anti-rabbit 555 (1:500)
Amelogenin	Santa Cruz (sc-32892)	1:100	Goat anti-rabbit 555 (1:500)
BrdU	Abcam (ab6326)	1:200	Goat anti-rat 555 (1:500)
CDC42-GTP	NewEast (26905)	1:50	Biotinylated anti-mouse (1:1000)
GFP	Abcam (ab13970)	1:500	Goat anti-chick 488 (1:500)
ITGA3	Aggarwal et al., 2014	1:100	Biotinylated anti-rabbit (1:1000)
Ki67	Thermo (RM-9106)	1:100	Goat anti-rabbit 555 (1:500)
p4EBP	Cell Signaling (2855)	1:100	Biotinylated anti-rabbit (1:1000)
P-cadherin	Thermo (135800)	1:200	Biotinylated anti-mouse (1:1000)
pFAK	Assay Biotech (A0925)	1:100	Biotinylated anti-rabbit (1:1000)
pMerlin	Rockland (600-401-414)	1:100	Biotinylated anti-rabbit (1:1000)
pS6K1	Assay Biotech (A0533)	1:100	Biotinylated anti-rabbit (1:1000)
pSRC	Signalway (11091)	1:100	Biotinylated anti-rabbit (1:1000)
pYAP-S127	Cell Signaling (4911)	1:100	Biotinylated anti-rabbit (1:1000)
RHEB	ProSci (3501)	1:50	Biotinylated anti-rabbit (1:1000)
SerpinH1	ABclonal (A-2517)	1:100	Biotinylated anti-rabbit (1:1000)
TAZ	Sigma (HPA007415)	1:100	Biotinylated anti-rabbit (1:1000)
YAP	Cell Signaling (4912)	1:100	Biotinylated anti-rabbit (1:1000)
YAP (human)	Abcam (ab52771)	1:100	Goat anti-rabbit 555 (1:500)
Western Blot			
4EBP	Cell Signaling (4923)	1:500	Anti-rabbit HRP (1000)
Ameloblastin	Santa Cruz (sc-50534)	1:300	Anti-rabbit HRP (1000)
Amelogenin	Santa Cruz (sc-32892)	1:300	Anti-rabbit HRP (1000)
CDC42	Santa Cruz (sc-87)	1:300	TrueBlot anti-rabbit, HRP (1:1000)
GAPDH	Acris (ACR001P)	1:3000	Anti-mouse HRP (1000)
Merlin	Cell Signaling (12888)	1:500	Anti-rabbit HRP (1000)
NDR1	Santa Cruz (sc-46184)	1:300	Anti-goat HRP (1000)
p4EBP	Cell Signaling (2855)	1:500	Anti-rabbit HRP (1000)
PAK1/2/3	Cell Signaling (2604)	1:500	Anti-rabbit HRP (1000)
pLATS-T1079	Bioss (bs-7913R)	1:500	Anti-rabbit HRP (1000)
pMerlin	Cell Signaling (13281)	1:500	Anti-rabbit HRP (1000)
pNDR1/2	Biorbyt (orb335842)	1:500	Anti-rabbit HRP (1000)
PP1	Santa Cruz (sc-7482)	1:300	TrueBlot anti-mouse, HRP (1:1000)
PP2A	Santa Cruz (sc-6110)	1:300	SmartBlot anti-goat, HRP (1:1000)
pPAK1-S423	Cell Signaling (2601)	1:500	Anti-rabbit HRP (1000)
pS6K1	Cell Signaling (9205)	1:1000	Anti-rabbit HRP (1000)
pYAP-S127	Cell Signaling (13008)	1:500	Anti-rabbit HRP (1000)
pYAP-S397	Cell Signaling (13619)	1:500	Anti-rabbit HRP (1000)
S6K1	Cell Signaling (2708)	1:500	Anti-rabbit HRP (1000)
Immunoprecipitation			
CDC42-GTP	NewEast (26905)	1.5 µg/IP	n/a
YAP (63.7)	Santa Cruz (sc-101199)	2 µg/IP	n/a

Table S4. Antibody sources and concentrations. Related to STAR Methods.

Table S5. Numbers of samples used for quantification. Related to STAR Methods.

Experiments	Sample origins	N numbers
Colony formation	Control and Yap/Taz ^{cKO}	3 experiments performed with 4 laCLs from 2
assay		animals used per experiment
BrdU labeling	Control and Yap/TazcKO	3 animals per genotype, with the middle 3 sections
		used for each laCL
	Control and Rptor ^{cKO}	3 animals per genotype
	Control and Fak/TazcKO	3 animals per genotype
Ki67 staining	Control and Rapamycin	3 laCLs per condition, with the middle 3 sections
	treated	used for each IaCL
TUNEL	Control and Yap/Taz ^{cKO}	3 animals per genotype
Microarray	Control and Yap/TazcKO	3 experiments with 8 laCLs from 2 males and 2
		females per genotype in each experiment
qPCR	Control and Yap/Taz ^{cKO}	6 experiments with 1 animal used per genotype in
		each experiment
YAP	Control and FakcKO	6 animals per genotype
immunostaining	Control and <i>Itga3</i> ^{cKO}	3 animals per genotype
	Control and Cdc42 ^{cKO}	6 animals per genotype
	Control and Okadaic	3 IaCLs per condition
	acid treated	
	Electroporated samples	135 cells from 9 laCLs for Yap; 166 cells from 13
		laCLs for Yap ^{S127A} ; 161cellsl from 11 laCLs for
		Yap ^{S397A} ; and 128 cells from 9 laCLs for
		hYap ^{S127A,S397A}
TAZ	Control and <i>Fak</i> cKO	3 animals per genotype
immunostaining	Control and <i>Itga3</i> ^{cKO}	3 animals per genotype
	Control and Cdc42 ^{cKO}	3 animals per genotype
Immunostaining for	Control and mutants	3 animals per genotype
RHEB, pS6K1,		
p4EBP, CDC42-		
GFP, and PCAD		
Immunoblotting	Control and	3 experiments with 7 animals used per genotype in
	corresponding mutants	each experiment
Co-	Control and	3 experiments with 14 animals used per genotype
immunoprecipitation	corresponding mutants	in each experiment