Supplementary informations

HpaB-Dependent Secretion of Type III Effectors in the Plant Pathogens Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria

Fabien Lonjon¹, David Lohou¹, Anne-Claire Cazalé¹, Daniela Büttner², Barbara Gomes Ribeiro¹, Claire Péanne¹, Stéphane Genin¹, Fabienne Vailleau^{1,*}

¹LIPM, Université de Toulouse, INRA, CNRS, INPT, Castanet-Tolosan, France
²Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, D-23 06099 Halle (Saale), Germany
*fabienne.vailleau@inra.fr Supplementary Table S1: Results of the interactions between *Ralstonia solanacearum* type III effectors and HpaB and HpaD proteins after yeast two-hybrid assays.

<i>R. solanacearum</i> type III effector	<i>R. solanacearum</i> corresponding gene	Interaction with HpaB in yeast	Interaction with HpaD in yeast
RipA1	RSc2139	-	-
RipA2	RSp0099	-	-
RipA3	RSp0846	-	-
RipA4	RSp0847	-	-
RipA5	RSp1024	-	-
RipB	RSc0245	-	-
RipG1	RSp0914	+	-
RipG3	RSp0028	-	-
RipG4	RSc1800	+	+
RipG5	RSc1801	+	-
RipG6	RSc1356	-	-
RipG7	RSc1357	-	-
RipH1	RSc1386	-	-
RipH2	RSp0215	-	-
RipH3	RSp0160	-	-
RipI	RSc0041	-	-
RipO1	RSp0323	+	+
RipP1	RSc0826	+	+
RipP2	RSc0868	Autoactivation	Autoactivation
RipQ	RSp1277	-	-
RipR	RSp1281	-	-
RipU	RSp1212	-	-
RipV1	RSc1349	-	-
RipW	RSc2775	-	-
RipZ	RSp1031	-	-
RipAD	RSp1601	-	-
RipAF1	RSp0822	+	+
RipAG	RSc0824	-	-
RipAJ	RSc2101	-	-
RipAK	RSc2359	+	-
RipAM	RSc3272	-	-
RipAN	RSp0845	-	-
RipAV	RSp0732	-	+
RipAW	RSp1475	+	+
RipAY	RSp1022	-	-
RipAZ1	RSp1582	-	-
RipTAL	RSc1815	-	+
RipTPS	RSp0731	+	+

	Characteristics	Source
R. solanacearum strains		
GMI1000	Wild-type strain	1
GMI1694	GMI1000 $hrcV$:: Ω mutant, Sp ^r	2
GRS266	GMI1000 $hpaD::\Omega$ mutant, Sp ^r	2
GRS474	GMI1000 <i>hpaB</i> ::Ω mutant, Sp ^r	3
X. campestris pv. vesicator	<i>ria</i> strains	
85-10	wild type strain; Rif ^r	4
85*	85-10 derivative containing the $hrpG^*$ mutation, Rif ^r	5
$85^{*}\Delta hpaB$	hpaB deletion mutant (deleted in codons 13 to 149) of strain 85*, Rif ^r	6
Yeast strain		
AH109	Matchmaker TM yeast strain	BD Biosciences, Palo Alto, CA, USA
E.coli strain		
BL21(DE3)	F^{-} omp T gal dcm lon hsdSB(r_{B}^{-} m_{B}^{-})	Invitrogen, Carlsbad, CA, USA
Rosetta	F- ompT hsdSB(rB- mB-) gal dcm (DE3) pRARE (CamR)	Invitrogen, Carlsbad, CA, USA
Plasmids used for cloning		
pACC61	pDONR207 derivative carrying <i>ripAZ1</i> , Gm ^r	This study
pACC73	pDONR207 derivative carrying <i>ripAF1</i> , Gm ^r	This study
pACC75	pDONR207 derivative carrying <i>ripO1</i> , Gm ^r	This study
pACC82	pDONR207 derivative carrying <i>ripZ</i> , Gm ^r	This study
pACC93	pDONR207 derivative carrying <i>ripAM</i> , Gm ^r	This study
pACC98	pDONR207 derivative carrying <i>ripH2</i> , Gm ^r	This study
pACC113	pDONR207 derivative carrying <i>ripAK</i> , Gm ^r	This study
pACC221	pDONR207 derivative carrying <i>ripAN</i> , Gm ^r	This study

Supplementary Table S2: Strains and plasmids used in this study.

pACC271	pDONR207 derivative carrying <i>ripAW</i> , Gm ^r	This study
pACC276	pDONR207 derivative carrying <i>ripQ</i> , Gm ^r	This study
pACC385	pDONR207 derivative carrying <i>ripAY</i> , Gm ^r	This study
pACC386	pDONR207 derivative carrying <i>ripH1</i> , Gm ^r	This study
pACC426	pDONR207 derivative carrying <i>ripR</i> , Gm ^r	This study
pACC429	pDONR207 derivative carrying <i>ripW</i> , Gm ^r	This study
pACC532	pENTR/D-TOPO derivative carrying <i>ripTAL</i> , Km ^r	Thomas Lahaye, Universität Tübingen
pACC542	pDONR207 derivative carrying <i>ripAG</i> , Gm ^r	This study
pACC546	pDONR207 derivative carrying <i>ripV1</i> , Gm ^r	This study
pACC588	pDONR207 derivative carrying <i>ripH3</i> , Gm ^r	This study
pACC648	pENTR/SD/D-TOPO derivative carrying <i>ripAD</i> , Km ^r	This study
pACC652	pDONR207 derivative carrying <i>ripAJ</i> , Gm ^r	This study
pBR356	Vector carrying <i>avrBs3A</i> 2 downstream of the lac promoter and the lacZ fragment flanked by <i>BsaI</i> sites	7
pDONR207	Gateway TM entry vector, Gm ^r Cm ^r	Invitrogen, Carlsbad, CA, USA
pENTR/SD/D-TOPO	Gateway [™] entry vector, Shine–Dalgarno sequence, Km ^r	Invitrogen, Carlsbad, CA, USA
pFL47	pENTR/SD/D-TOPO derivative carrying $hpaB_{Xcv85-10}$, Km ^r	This study
pFL92	pGEM-T derivative carrying ripP1 flanked by BsaI site	This study
pGAD	Matchmaker TM pGADT7 yeast expression vector made Gateway TM compatible, N-terminal AD fusion, Ap^r , Cm^r	8
pGBG	Matchmaker TM pGADT7 yeast expression vector made Gateway TM compatible, N-terminal BD fusion, Ap^r , Cm^r	8
pGEX	Gateway TM expression vector, N-terminal GST fusion, Ap ^r	Invitrogen, Carlsbad, CA, USA
pGEM-T	TA cloning vector, lacZα,f1 ori, Amp ^r	Promega, Madison, WI, USA
pLBy1	pDONR207 derivative carrying <i>hpaD</i> , Gm ^r	This study
pLBy3	pDONR207 derivative carrying <i>ripI</i> , Gm ^r	This study
I		

pLBy5	pDONR207 derivative carrying <i>hpaB</i> , Gm ^r	3
pLby7	pDONR207 derivative carrying <i>ripU</i> , Gm ^r	This study
pLBy13	pDONR207 derivative carrying <i>ripAV</i> , Gm ^r	This study
pMP12	pDONR207 derivative carrying <i>ripTPS</i> , Gm ^r	9
pMS130	pENTR/SD/D-TOPO derivative carrying <i>ripA2</i> , Km ^r	10
pMS132	pDONR207 derivative carrying <i>ripA5</i> , Gm ^r	10
pMS456	pDONR207 derivative carrying <i>ripA3</i> , Gm ^r	10
pMS457	pDONR207 derivative carrying <i>ripA1</i> , Gm ^r	10
pMS459	pENTR/SD/D-TOPO derivative carrying <i>ripA4</i> , Km ^r	10
pNP200	pDONR207 derivative carrying <i>ripG7</i> , Gm ^r	11
pNP329	pRCG derivative with the $ripG7$ promoter followed by a Gateway TM destination cassette and a triple HA epitope tag, Gm ^r Km ^r	8
pPR122	pDONR207 derivative carrying <i>ripG6</i> , Gm ^r	11
pPR126	pDONR207 derivative carrying <i>ripG4</i> , Gm ^r	11
pPR134	pDONR207 derivative carrying <i>ripG5</i> , Gm ^r	11
pPR156	pDONR207 derivative carrying <i>ripG3</i> , Gm ^r	11
pPR181	pDONR207 derivative carrying <i>ripG1</i> , Gm ^r	11
pSC192	pENTR/SD/D-TOPO derivative carrying ripB, Km ^r	This study
pTH19	Gateway [™] expression vector, N-terminal 6His tag, Ap ^r	Invitrogen, Carlsbad, CA, USA
Plasmids for yeast t	two hybrid	
pDL6	pGBG derivative carrying hpaB, Km ^r	This study
pDL7	pGBG derivative carrying <i>hpaD</i> , Km ^r	This study
pDL9	pGAD derivative carrying <i>ripI</i> , Amp ^r	This study
pDL10	pGAD derivative carrying $ripU$, Amp ^r	This study
pDL12	pGAD derivative carrying <i>ripAV</i> , Amp ^r	This study

pDL13	pGAD derivative carrying <i>ripAG</i> , Amp ^r
pDL14	pGAD derivative carrying <i>ripAD</i> , Amp ^r
pDL15	pGAD derivative carrying <i>ripAZ1</i> , Amp ^r
pDL16	pGAD derivative carrying <i>ripAJ</i> , Amp ^r
pDL17	pGAD derivative carrying <i>ripAF1</i> , Amp ^r
pDL18	pGAD derivative carrying <i>ripO1</i> , Amp ^r
pDL19	pGAD derivative carrying <i>ripZ</i> , Amp ^r
pDL20	pGAD derivative carrying <i>ripAM</i> , Amp ^r
pDL21	pGAD derivative carrying <i>ripH2</i> , Amp ^r
pDL22	pGAD derivative carrying <i>ripAK</i> , Amp ^r
pDL23	pGAD derivative carrying <i>ripAN</i> , Amp ^r
pDL24	pGAD derivative carrying <i>ripAW</i> , Amp ^r
pDL25	pGAD derivative carrying <i>ripQ</i> , Amp ^r
pDL26	pGAD derivative carrying <i>ripV1</i> , Amp ^r
pDL27	pGAD derivative carrying <i>ripAY</i> , Amp ^r
pDL28	pGAD derivative carrying <i>ripH1</i> , Amp ^r
pDL29	pGAD derivative carrying <i>ripR</i> , Amp ^r
pDL30	pGAD derivative carrying <i>ripW</i> , Amp ^r
pDL33	pGAD derivative carrying <i>ripA2</i> , Amp ^r
pDL34	pGAD derivative carrying <i>ripA4</i> , Amp ^r
pDL35	pGAD derivative carrying <i>ripA3</i> , Amp ^r
pDL36	pGAD derivative carrying <i>ripA5</i> , Amp ^r
pDL37	pGAD derivative carrying <i>ripA1</i> , Amp ^r
pDL38	pGAD derivative carrying <i>ripTPS</i> , Amp ^r
pDL40	pGAD derivative carrying <i>ripG4</i> , Amp ^r
•	

This study This study

pDL41	pGAD derivative carrying <i>ripG5</i> , Amp ^r	This study
pDL42	pGAD derivative carrying <i>ripG6</i> , Amp ^r	This study
pDL43	pGAD derivative carrying <i>ripG7</i> , Amp ^r	This study
pDL44	pGAD derivative carrying <i>ripB</i> , Amp ^r	This study
pDL45	pGAD derivative carrying <i>ripG1</i> , Amp ^r	This study
pDL46	pGAD derivative carrying <i>ripG3</i> , Amp ^r	This study
pDL47	pGAD derivative carrying <i>ripH3</i> , Amp ^r	This study
pDL48	pGAD derivative carrying <i>ripTAL</i> , Amp ^r	This study
pDL50	pGAD derivative carrying <i>hpaB</i> , Amp ^r	This study
pDL51	pGAD derivative carrying <i>hpaD</i> , Amp ^r	This study
pDL53	pGAD derivative carrying <i>ripP1</i> , Amp ^r	This study
pDL54	pGAD derivative carrying <i>ripP2</i> , Amp ^r	This study
pAD-T-Ag	AD-t-antigen fusion	BD Biosciences, Palo Alto, CA, USA
pAD-T-Ag pBD-p53	AD-t-antigen fusion BD-p53 fusion, Km ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA
pAD-T-Ag pBD-p53 Plasmids for GST-Pulld	AD-t-antigen fusion BD-p53 fusion, Km ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA
pAD-T-Ag pBD-p53 Plasmids for GST-Pulldo pDL175	AD-t-antigen fusion BD-p53 fusion, Km ^r wn pGEX derivative carrying <i>hpaD</i> , Amp ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA This study
pAD-T-Ag pBD-p53 Plasmids for GST-Pulldo pDL175 pDL188	AD-t-antigen fusion BD-p53 fusion, Km ^r wn pGEX derivative carrying <i>hpaD</i> , Amp ^r pGEX derivative carrying KQGS*, Apr	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA This study 8
pAD-T-Ag pBD-p53 Plasmids for GST-Pulldo pDL175 pDL188 pDL193	AD-t-antigen fusion BD-p53 fusion, Km ^r wm pGEX derivative carrying <i>hpaD</i> , Amp ^r pGEX derivative carrying KQGS*, Apr pTH19 derivative carrying <i>hpaD</i> , Amp ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA This study 8 This study
pAD-T-Ag pBD-p53 Plasmids for GST-Pulldo pDL175 pDL188 pDL193 pFL37	AD-t-antigen fusion BD-p53 fusion, Km ^r wm pGEX derivative carrying <i>hpaD</i> , Amp ^r pGEX derivative carrying KQGS*, Apr pTH19 derivative carrying <i>hpaD</i> , Amp ^r pTH19 derivative carrying <i>hpaB</i> , Amp ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA This study 8 This study This study
pAD-T-Ag pBD-p53 Plasmids for GST-Pulldo pDL175 pDL188 pDL193 pFL37 pFL67	AD-t-antigen fusion BD-p53 fusion, Km ^r wwn pGEX derivative carrying <i>hpaD</i> , Amp ^r pGEX derivative carrying KQGS*, Apr pTH19 derivative carrying <i>hpaD</i> , Amp ^r pTH19 derivative carrying <i>hpaB</i> , Amp ^r pGEX derivative carrying <i>ripAF1</i> , Amp ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA This study 8 This study This study This study
pAD-T-Ag pBD-p53 Plasmids for GST-Pulldo pDL175 pDL188 pDL193 pFL37 pFL67 pFL68	AD-t-antigen fusion BD-p53 fusion, Km ^r wm pGEX derivative carrying <i>hpaD</i> , Amp ^r pGEX derivative carrying KQGS*, Apr pTH19 derivative carrying <i>hpaD</i> , Amp ^r pTH19 derivative carrying <i>hpaB</i> , Amp ^r pGEX derivative carrying <i>ripAF1</i> , Amp ^r pGEX derivative carrying <i>ripAK</i> , Amp ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA This study 8 This study This study This study This study
pAD-T-Ag pBD-p53 Plasmids for GST-Pulldo pDL175 pDL188 pDL193 pFL37 pFL67 pFL68 pFL69	AD-t-antigen fusion BD-p53 fusion, Km ^r pGEX derivative carrying <i>hpaD</i> , Amp ^r pGEX derivative carrying KQGS*, Apr pTH19 derivative carrying <i>hpaD</i> , Amp ^r pTH19 derivative carrying <i>hpaB</i> , Amp ^r pGEX derivative carrying <i>ripAF1</i> , Amp ^r pGEX derivative carrying <i>ripAF1</i> , Amp ^r pGEX derivative carrying <i>ripAF</i> , Amp ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA This study 8 This study This study This study This study This study This study
pAD-T-Ag pBD-p53 Plasmids for GST-Pulldo pDL175 pDL188 pDL193 pFL37 pFL67 pFL68 pFL69 pFL70	AD-t-antigen fusion BD-p53 fusion, Km ^r pGEX derivative carrying <i>hpaD</i> , Amp ^r pGEX derivative carrying KQGS*, Apr pTH19 derivative carrying <i>hpaD</i> , Amp ^r pTH19 derivative carrying <i>hpaB</i> , Amp ^r pGEX derivative carrying <i>ripAF1</i> , Amp ^r pGEX derivative carrying <i>ripAF1</i> , Amp ^r pGEX derivative carrying <i>ripAF</i> , Amp ^r pGEX derivative carrying <i>ripG5</i> , Amp ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA This study 8 This study This study This study This study This study This study This study
pAD-T-Ag pBD-p53 Plasmids for GST-Pulldo pDL175 pDL188 pDL193 pFL37 pFL67 pFL68 pFL69 pFL69 pFL70 pFL71	AD-t-antigen fusion BD-p53 fusion, Km ^r pGEX derivative carrying <i>hpaD</i> , Amp ^r pGEX derivative carrying KQGS*, Apr pTH19 derivative carrying <i>hpaD</i> , Amp ^r pTH19 derivative carrying <i>hpaB</i> , Amp ^r pGEX derivative carrying <i>ripAF1</i> , Amp ^r pGEX derivative carrying <i>ripAK</i> , Amp ^r pGEX derivative carrying <i>ripG5</i> , Amp ^r pGEX derivative carrying <i>ripG1</i> , Amp ^r	BD Biosciences, Palo Alto, CA, USA BD Biosciences, Palo Alto, CA, USA This study 8 This study This study This study This study This study This study This study This study This study

pFL75	pGEX derivative carrying <i>ripAW</i> , Amp ^r	This study		
pFL76	pGEX derivative carrying <i>ripO1</i> , Amp ^r	This study		
pFL77	pGEX derivative carrying <i>ripW</i> , Amp ^r	This study		
pFL83	pGEX derivative carrying <i>ripP1</i> , Amp ^r	This study		
pFL84	pGEX derivative carrying <i>hpaB</i> , Amp ^r	This study		
pFL116	pTH19 derivative carrying $hpaB_{Xcv}$, Amp ^r	This study		
pGEX-RipP1	pGEX derivative carrying <i>ripP1</i> , Amp ^r	Laurent Deslandes, LIPM		
pGEX-RipP2	pGEX derivative carrying <i>ripP2</i> , Amp ^r	12		
Plasmids transformed in <i>l</i>	R. solanacearum			
pAM5	pLAFR3 carrying 2-kb fragment containing <i>hrpB</i> ,Tc ^r	13		
pEG11	pNP329 derivative carrying hpaB _{GMI1000} , Km ^r , Gm ^r	3		
pFL49	pNP329 derivative carrying $hpaB_{Xcv 85-10}$, Km ^r , Gm ^r	This study		
Plasmids transformed in X. campestris pv. vesicatoria				
pFL98	pBR356 derivative carrying <i>ripP1</i> , Gm ^r	This study		

	Gene	Recipient Plasmid	Plasmid ID	Primers	Primer Sequences
RipAZ1	RSp1582	pDONR207	pACC61	Oacc31	GGAGATAGAACCATGCCCCCATCGATCCG
				Oacc32	CAAGAAAGCTGGGTCTCMCACCGGGAATGCTTTCC
RipAF1	RSp0822	pDONR207	pACC73	Oacc19	GGAGATAGAACCATGGGTTTGCCACGGATC
				Oacc20	CAAGAAAGCTGGGTCTCMTCGCGTTGACGTGGACG
RipO1	RSp0323	pDONR207	pACC75	Oacc17	GGAGATAGAACCATGCCAAAAATCCCAAAAAACC
				Oacc18	CAAGAAAGCTGGGTCTCMGGCGGCGGGGGCTGGCC
RipZ	RSp1031	pDONR207	pACC82	Oacc23	GGAGATAGAACCATGCCGCGTTTTTCAAACTG
				Oacc24	CAAGAAAGCTGGGTCTCMTCGGCGCATCGACGGCG
RipAM	RSc3272	pDONR207	pACC93	Oacc11	GGAGATAGAACCATGAAACGAATCGACGTCCAC
				Oacc12	CAAGAAAGCTGGGTCTCMGGCCGGCCGCGTCGTTG
RipH2	RSp0215	pDONR207	pACC98	Oacc13	GGAGATAGAACCATGCTTGGCGGAAACATCACGGA
				Oacc14	CAAGAAAGCTGGGTCTCMATGCGCCCCCGGCGCGC
RipAK	RSc2359	pDONR207	pACC113	Oacc9	GGAGATAGAACCATGCGCCCTACCGCCCC
				Oacc10	CAAGAAAGCTGGGTCTCMCAGGTGCGCGATGGCTC
RipAN	RSp0845	pDONR207	pACC221	Oacc21	GGAGATAGAACCATGCGCCCCCTCTCTTTC
				Oacc22	CAAGAAAGCTGGGTCTCMGGCTTCCGGGGCGCCG
RipAW	RSp1475	pDONR207	pACC271	Oacc29	GGAGATAGAACCATGGTTTTCCTTGTCCGGAGC
				Oacc30	CAAGAAAGCTGGGTCTCMTCCGCCGCGCGCGGCGAC
RipQ	RSp1277	pDONR207	pACC276	Olb69	GGAGATAGAACCATGCTGCGAACCTCCCTTGAC
				Olb70	CAAGAAAGCTGGGTCTCMCACCATGTCGATGGCCG
RipAY	RSp1022	pDONR207	pACC385	Olb79	GGAGATAGAACCATGGAAAGAATCTCGACAA
				Olb80	CAAGAAAGCTGGGTCTCMGTCGGGTTTGGGC
RipH1	RSc1386	pDONR207	pACC386	Oacc3	GGAGATAGAACCATGGCAGGAGGACGAGTCG
				Oacc4	CAAGAAAGCTGGGTCTCMTCCGGCCGGGCGCACGC
RipR	<i>RSp12</i> 81	pDONR207	pACC426	Oacc57	GGAGATAGAACCATGAACATAAGAAAATACTTAC
				Oacc58	CAAGAAAGCTGGGTCTCMTTCCAGCGACTTGCTAC

RipW	RSc2775	pDONR207	pACC429	Oacc61	GGAGATAGAACCATGTCCATCCAGATTGATCGC
				Oacc62	CAAGAAAGCTGGGTCTCMGCCCGAGTAGGCCTTGTAG
RipTAL	Rsc1815	pENTR/D-TOPO	pACC532	Oacc177	CACCATGAGAATAGGCAAATCAAGCGGTTGGTTGAAC
				Oacc178	TCACGTTTCCAATATTTGCAGAAGCCAGTCG
RipAG	RSc0824	pDONR207	pACC542	Oacc1	GGAGATAGAACCATGGGATGCGTTAATGTC
				Oacc2	CAAGAAAGCTGGGTCTCMGTCAGAACGGCCGATC
RipV1	RSc1349	pDONR207	pACC546	Opr53	GGAGATAGAACCATGCCAACCCGCGTTCCGTCCCC
				Opr52	CAAGAAAGCTGGGTCTCMGCGGCTGCCTTGCGAA
RipH3	Rsp0160	pDONR207	pACC588	Olb53	GGAGATAGAACCATGTTGAAAGGACGTATCGACG
				Olb54	CAAGAAAGCTGGGTCTCMCCCGGAAGCCGGCAGCTTGA
RipAJ	RSc2101	pDONR207	pACC652	Oacc5	GGAGATAGAACCATGCGCCGGACGGCGACTTC
				Oacc6	CAAGAAAGCTGGGTCTCMCGCTGCGCGGGGGCTCGC
RipAD	Rsp1601	pENTR/SD/D-TOPO	pACC648	Oacc217	GGAGATAGAACCATGTTGAAAATAGGCCGTATC
				Oacc34	CAAGAAAGCTGGGTCTCMCCAGTCGAGCTGCGGATC
HpaB _{<i>Xcv</i> 85-10}	XCV0416	pENTR/SD/D-TOPO	pFL47	Of182	CACCATGAGCAGCGCGCGATTC
				Of183	TCAGGCGCGTAACCACAG
HpaD	Rsp0848	pDONR207	pLBy1	Olb17	GGAGATAGAACCATGCCCTCCGCCGAAACCG
				Olb18	CAAGAAAGCTGGGTCTCMATGCGCCTCCCACT
RipI	RSc0041	pDONR207	pLBy3	Olb9	GGAGATAGAACCATGCCTCTTACCAAGATCAATCCTTCGG
				Olb10	CAAGAAAGCTGGGTCTCMCTCGGTCGTCCG
RipU	RSp1212	pDONR207	pLby7	Olb83	GGAGATAGAACCATGTCACGCATCTTCAGGTC
				Olb84	CAAGAAAGCTGGGTCTCMGCGCGCCTCGTGCG
RipAV	RSp0732	pDONR207	pLBy13	Olb77	GGAGATAGAACCATGATCCCGAAAACACTC
				Olb78	CAAGAAAGCTGGGTCTCMCCCCACCGCCTC
RipB	Rsc0245	pENTR/SD/D-TOPO	pSC192	RipB-Fwd	CACCATGAAGGCCGTCACCCGA
				RipB-Rev	TCAGCGCGTACCCGGCGT
RipP1 flanked	Rsc0826	pGEM-T	pFL92	Ofl162	TTTGGTCTCTTATGAAAAGACTATTCAGAGCATTGG
by BsaI sites				Ofl163	TTTGGTCTCTGATCCGACTCCAGGGCATGTCGA

Supplementary Figure S1. (a) Amino acid sequence alignment of HpaB from *R. solanacearum* GMI1000 and its homologs in 10 other wild-type sequenced strains belonging to all four phylotypes. Sequences were aligned using multalin 5.4.1 (http://multalin.toulouse.inra.fr/multalin/). Conserved residues are colored in red. (b) Amino acid sequence alignment of HpaB from *R. solanacearum* GMI1000 and its homologs in *Acidovorax citruli* AAC00-1, *Xanthomonas campestris* pv. *vesicatoria* 85-10 and *Xanthomonas oryzae* pv. *oryzae* KACC10331. Sequences were aligned using multalin 5.4.1 (http://multalin.toulouse.inra.fr/multalin/). Conserved residues are colored in red.

Supplementary Figure S2. (a) Amino acid sequence alignment of HpaD from *R. solanacearum* GMI1000 and its homologs in 10 other wild-type sequenced strains belonging to all four phylotypes. Sequences were aligned using multalin 5.4.1 (http://multalin.toulouse.inra.fr/multalin/). Conserved residues are colored in red. (b) Amino acid sequence alignment of HpaD from *R. solanacearum* GMI1000 and its homologs in *Ralstonia sp* A12, *Ralstonia mannitolilytica* SN83A39 and *Burkholderiaceae bacterium* 26. Sequences were aligned using multalin 5.4.1 (http://multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin.toulouse.inra.fr/multalin/). Conserved residues are colored in red.

Supplementary Figure S3. HpaB is strictly required for *R. solanacearum* pathogenicity on tomato, not HpaD. *In vitro* growth in complete (a) or minimal medium (b), of the wild-type strain (red), and of the *hpaB* (blue) and *hpaD* (green) mutants. *In vitro* growth was investigated by monitoring OD_{600} during 25 hours starting at 0.1 as described in material and methods. These experiments have been repeated twice. (c) Kaplan-Meier survival analysis of 16 tomato inoculated plants. Gehan-Breslow-Wilcoxon test indicates that the wild-type strain curve (red) is significantly different from the *hpaB* mutant curve (blue) (p value < 0.001), contrary to the complemented *hpaB* curve (dotted blue) (p value = 0.0678). (d) Kaplan-Meier survival analysis of 16 tomato inoculated plants. Gehan-Breslow-Wilcoxon test indicates that the wild-type strain curve (red) is not significantly different from the *hpaD* curve (green) (p value = 0.2689). These experiments have been repeated three times.

Supplementary references

- Salanoubat, M. *et al.* Genome sequence of the plant pathogen *Ralstonia solanacearum*. *Nature* 415, 497–502 (2002).
- Cunnac, S., Occhialini, A., Barberis, P., Boucher, C. & Genin, S. Inventory and functional analysis of the large Hrp regulon in *Ralstonia solanacearum*: identification of novel effector proteins translocated to plant host cells through the type III secretion system. *Mol. Microbiol.* 53, 115–128 (2004).
- 3. Lonjon, F. *et al.* comparative secretome analysis of *Ralstonia solanacearum* type 3 secretion-associated mutants reveals a fine control of effector delivery, essential for bacterial pathogenicity. *Mol. Cell. Proteomics* **15**, 598–613 (2016).
- Kousik, C. S. & Ritchie, D. F. Response of Bell Pepper Cultivars to Bacterial Spot Pathogen Races that Individually Overcome Major Resistance Genes. *Plant Dis.* 82, 181– 186 (1998).
- Wengelnik, K., Rossier, O. & Bonas, U. Mutations in the regulatory gene *hrpG* of *Xanthomonas campestris* pv. *vesicatoria* result in constitutive expression of all *hrp* genes.
 J. Bacteriol. 181, 6828–6831 (1999).
- Büttner, D., Gürlebeck, D., Noël, L. D. & Bonas, U. HpaB from *Xanthomonas campestris* pv. *vesicatoria* acts as an exit control protein in type III-dependent protein secretion. *Mol. Microbiol.* 54, 755–768 (2004).
- Scheibner, F., Schulz, S., Hausner, J., Marillonnet, S. & Büttner, D. Type III-Dependent Translocation of HrpB2 by a Nonpathogenic *hpaABC* Mutant of the Plant-Pathogenic Bacterium *Xanthomonas campestris* pv. *vesicatoria*. *Appl. Environ. Microbiol.* 82, 3331– 3347 (2016).

- Lohou, D. *et al.* HpaP modulates type III effector secretion in *Ralstonia solanacearum* and harbours a substrate specificity switch domain essential for virulence. *Mol. Plant Pathol.* 15:601-614 (2014).
- Poueymiro, M. *et al.* Two type III secretion system effectors from *Ralstonia solanacearum* GMI1000 determine host-range specificity on tobacco. *Mol. Plant-Microbe Interact.* 22, 538–550 (2009).
- 10. Solé, M. *et al.* The awr gene family encodes a novel class of *Ralstonia solanacearum* type III effectors displaying virulence and avirulence activities. *Mol. Plant-Microbe Interact.*25, 941–953 (2012).
- Remigi, P., Anisimova, M., Guidot, A., Genin, S. & Peeters, N. Functional diversification of the GALA type III effector family contributes to *Ralstonia solanacearum* adaptation on different plant hosts. *New Phytol.* **192**, 976–987 (2011).
- Tasset, C. *et al.* Autoacetylation of the *Ralstonia solanacearum* effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. *PLoS Pathog.* 6, e1001202 (2010).
- 13. Guéneron, M., Timmers, A. C., Boucher, C. & Arlat, M. Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the *hrp*-secretion apparatus of *Ralstonia solanacearum*. *Mol. Microbiol.* **36**, 261–277 (2000).