SUPPLEMENTARY DATA for

The Cannabinoid Receptor Interacting Proteins 1 of zebrafish are not required for morphological development, viability or fertility.

Laura Fin, Giorgia Bergamin, Roberto A. Steiner and Simon M. Hughes*

Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL UK.

Figure S1

Position of <u>sequencing</u> and <u>HRM</u> primers and <u>upstream gRNA</u> on *cnrip1a*:

1 1	TATGCTC <mark>TGGATTACGGTATGGGTGTGA</mark> TAATGTGTGATGATGACGTCACGGCATCTCTCAAACAGCTTCCTGGGAGCAT ATACGAGACCTAATGCCATACCCACACTATTACACACTACTACTGCAGTGCCGTAGAGAGTTTGTCGAAGGACCCTCGTA	
	MADV	
81	CGGTCCTGCATCCGTCGAGTGACACCGGGAGCCCTGGAAACACACCGACCTCCGTTATCCAGCAGTCATGGCTGACGTTC	
81	GCCAGGACGTAGGCAGCTCACTGTGGCCCTCGGGACCTTTGTGTGGCTGGAGGCAATAGGTCGTCAGTACCGACTGCAAG	
	P A V I N I A V S L K I Q P N D G P V F Y K V D G T R	
161	CCGCGGTAATAAACATCGCCGTTTCGTTGA <mark>AAATCCAGCCCAATGACGGA</mark> CCCGTGTTTTATAAGGTGGACG <mark>GGACGAGG</mark>	
161	GGCGCCATTATTTGTAGCGGCAAAGCAACTTTTAGGTCGGGTTACTGCCTGGGCACAAAATATTCCACCTGCCCTGCTCC	2
0.4.1		
241	TTCGGACGACGACGACGACGACGACGACGACGACACCGAGGGGGG	2
241	AAGCCTGTCTGGTCCTGCTAGTTTAACGACTGCCCTAGCTTTATGTTT <mark>TAGCTCCACTAGTGCTTTGG</mark> CCCGTCGCGGCT	3
	Α	
321	GGCCACGTAAGTCCGTCTGATATTGGATTTCTTTTACAATGTAAATAATATGTTTGTCATTAGAAACAAGGTCGAAAGGT	
321	CCGGTGCATTCAGGCAGACTATAACCTAAAGAAAATGTTACATTTATTATACAAACAGTAATCT TTGTTCCAGCTTTCCA	
401	GCACCCTGCCTGATAAAATATATTACATAGATACAGTATATACACGTAAGAAATATGTACA 461	
401	CGTGGGACGGACTATTTTATATAATGTATCTATGTCATATATGTGCATTCTTTATACATGT 461	

Position of <u>sequencing</u> and <u>HRM</u> primers and <u>downstream gRNA</u> on *cnrip1a* map:

1 1	${\tt TATGCTC} {\tt TGGATTACGGTATGGGTGTGA} {\tt TAATGTGTGATGATGACGTCACGGCATCTCTCAAACAGCTTCCTGGGAGCAT ATACGAGACCTAATGCCATACCCACACTATTACACACTACTACTGCAGTGCCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTAATGCCATACCCACACTATTACACACTACTGCCAGTGCCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTACTACTGCAGTGCCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTACTACTGCAGTGCCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTACTACTGCAGTGCCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTACTACTGCAGTGCCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTACTACTGCAGTGCCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTACTACTGCAGTGCCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTCGTAGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGACCTGCGTAGAGGACCCTCGTA ATACGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGAGTTTGTCGAAGGACCCTCGTA ATACGAGAGTTTGTCGAAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGGAGTTTGTCGAAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGGACCCTCGTAGAGAGACGACCCTCGTAGAGGACCCTCGTAGAGAGACGACGACGACGAGAGAGTTGTGTGAGAGGACCCTCGTAGAGAGACGACGACGACGACGACGACGACGACGACGAGAGAGAGGACCCTCGGAGAGACGACGACGACGACGACGACGACGACGACGACG$
81 81	M A D V CGGTCCTGCATCCGTCGAGTGACACCGGGGAGCCCTGGAAACACACCGACCTCCGTTATCCAGCAGTCATGGCTGACGTTC GCCAGGACGTAGGCAGCTCACTGTGGGCCCTCGGGGACCTTTGTGTGGCTGGAGGCAATAGGTCGTCAGTACCGACTGCAAG
161 161	PAVINIAVSLKIQPNDGPVFYKVDGT CCGCGGTAATAAACATCGCCGTTTCGTTGAAAATCCAGCCCAATGACGGAC <mark>CCGTGTTTTATAAGGTGGACGG</mark> GACGAGG GGCGCCATTATTTGTAGCGGCAAAGCAACTTTTAGGTCGGGTTACTGCCTGGGCACAAAATATTCCACCTGCCCTGCTCC
	FGQTRTIKLLTGSKYKIEVITKPGSAE
241	TTCGGACAGACCAGGACGATCAAATTGCTGACGGGATCGAAATACAAAATCGAGGTGATCACGAAACCGGGCAGCGCCGA
241	AAGCCTGTCTGGTCCTGCTAGTTTAACGACTGCCCTAGCTTTATGTTTTAGCTCCACTAGTGCTTTGGCCCGTCGCGGCT
	Α
321	GGCCACGTAAGTCCGTCTGATATTGGATTTCTTTTACAATGTAAATAATATGTTTGTCATTAGAAACAAGGTCGAAAGGT
321	CCGGTGCATTCAGGC AGACTATAACCTAAAGAAAATGTTACATTTATTATACAAACAGTAATCT TTGTTCCAGCTTTCCA
401	сол состе о тол в л л л л л л л л л л л л л л л л л л
401	GCACCCTGCTGCTGCTGATAAAATATATTACATAGATACAGTATATACACGTAAGAAATATGTACA 401
4 U I	CETE GGAUGGAUTATTTTATATATGTATUTATGTUATATATGTGUATTUTTTATAUATGT 461

Position of sequencing and <u>HRM</u> primers and gRNA on *cnrip1b* map:

321GGAGCAGTGGAGCGACGTGAGTGAATTAATGATCATTTGTTTATGTGTAAGTGAAATGATAGACTATCTTTGATTATAT400321CCTCGTCACCTCCGCTGCACTCACTTAATTACTAGTAAACAAATAACAAATTCACTTTACTATCTGAT400

Fig. S1. Position of primers and gRNAs on *cnrip1a* **and** *cnripb*. Position of CRISPR target sites on the exon 1 and intron 1 of *cnrip1a* and *cnrip1b*, sequences and features of sequencing and HRM primers for each chosen CRISPR target site and their positions on the respective gene sequences. Accession numbers: *cnrip1a* (GenBank AN: NM_001003607.2; Uniprot AN: <u>Q6DBX3</u>), *cnrip1b* (GenBank AN: XM_679802.4; Uniprot AN: <u>E9QJH9</u>). For each gene the amino acid sequence in bold corresponds to the translated region of the first exon of the gene. gRNAs are highlighted and primers underlined and colour coded in pairs.

Figure Number and	Wild-type	Heterozygote	Mutant sibling
panel or Experiment		sibling	
2a 8ss	10 + 15	n/a	n/a
2a 15ss	10 + 12	n/a	n/a
2a 24hpf wholemount	30 + 20 + 20	n/a	n/a
flatmount	5 + 6	n/a	n/a
2a 48hpf	30 + 15 + 15	n/a	n/a
2b 15ss	10 + 10	n/a	n/a
2a 24hpf	30 + 25 + 14	n/a	n/a
2a 48hpf	20 + 10 + 15	n/a	n/a
·			
3b 24hpf	8/42 (19%)	24/42 (57%)	10/42 (24%)
3b 48hpf	14/53 (26%)	27/53 (51%)	$12/53 (23\%) X^2 = 0.54$
3c 24hpf	10/36 (28%)	19/36 (53%)	7/36 (19%)
3c 48hpf	11/40 (27.5%)	21/40 (52.5%)	$8/40(20\%)$ $X^2 = 0.56$
	, ,		
<i>cnrip1a^{kg98/+}</i> incross survival	(3 + 3 + 6)/	(9 + 11+ 10)/	(4 + 5 + 3)/
(63 + 140 + 28)/	(15 + 20 + 20)	(15 + 20 + 20)	(15 + 20 + 20)
(67 + 157 + 30) (91%)	(22%)	(55%)	(22%) $X^2 = 0.78$
cnrip1a ^{kg96/+} incross survival	(5 + 8 + 4)/	(11 + 12 + 8)/	(4 + 5 + 3)/
(54 + 107 + 80)/	(20 + 25 + 15)	(20 + 25 + 15)	(20 + 25 + 15)
(57 + 124+ 89) (89%)	(28%)	(52%)	(20%) $X^2 = 0.64$
cnrip1b ^{kg101/+} incross survival	(7 + 5 + 4)/	(13 + 7 + 12)/	(5 + 3 + 4)/
(105 + 52 + 86)/	(25 + 15 + 20)	(25 + 15 + 20)	(25 + 15 + 20)
(109 + 65+ 92) (91%)	(27%)	(53%)	(20%) $X^2 = 0.67$
cnrip1a ^{kg98/+} incross	0/50 (M	Nutants found at 6 months a	$t \frac{11}{31} (X^2 = 0.17))$
morphogenesis			
<i>cnrip1a^{kg96/+}</i> incross		0/50 (Not assessed at	adults)
morphogenesis			
<i>cnrip1b^{kg101/+}</i> incross	0/50 (1	Mutants found at 4 months a	at 1/13 (X ² = 0.15))
morphogenesis			
<i>cnrip1a^{kg98/kg98}</i> MZ incross	n/a	n/a	50/50 normal to 5 dpf
<i>cnrip1b^{kg101/kg101}</i> MZ incross	n/a	n/a	50/50 normal to 5 dpf
cnrip1a ^{kg98/+} ;cnrip1b ^{kg101/+}	cnrip1a+/+;cnrip1b+	/+, +/+;+/-, +/+;-/-, +/-;+/+, +/	'-;+/-, +/-;-/-, -/-;+/+, -/-;+/-, -/-;-/-
incross survival at 11	Expected: 2.06	3, 2, 5, 4.12 2.06 4.12	9, 5, 1, 6, 2 825 412 206 412 206
months: (all ~100 appear	$\frac{1}{10} = \frac{1000}{1000} \frac{1}{1000} \frac{1}{1$		te still brooding at 18 months)
wild-type)			
4b morphology	n/a	n/a	10/10
4c morphology	n/a	n/a	10/10
4b,c behaviour	n/a	n/a	67/67
4d morphology	n/a	n/a	10/10 + 2/2
4d behaviour	n/a	n/a	45/45
4d survival to 5 dpf	n/a	n/a	67/67 + 45/45
4d survival to 3 months	n/a	n/a	40/54 (75%)

Table S1. Quantitative evidence for reproducibility of results

Double numbers separated by '+' indicate replicate experiments on separate lays.

2a 8ss - number of embryos with not-spatially-restricted expression.

2a 15ss - number of embryos with not-spatially-restricted expression and concentration of signal in hindbrain spots and ventral regions.

2a 24 hpf- number of embryos with elevated expression in bilateral neural clusters in telencephalon, midbrain, hindbrain and spinal cord and lateral expression in cranial ganglia.

2a 48 hpf - number of embryos with most intense signal in brain, weak expression in retina and little expression in pectoral fin bud, trunk and tail.

2b 15ss - number of embryos with not-spatially-restricted expression.

2b 24 hpf- number of embryos with widespread expression and more intense signal in head and eyes. 2b 48 hpf - number of embryos with predominant cranial expression and weak pectoral fin bud expression. 3b,c - numbers of genotyped embryos with, respectively, strong (wild-type), medium (het) and weak (mutant) expression/total embryos analysed (%). X² test results are given for each mutant in rightmost column showing Mendelian frequencies.

Single mutant incross survival: Values in left column represent numbers of embryos surviving at 48 hpf out of total in each lay. Values in columns 2-4 represent numbers of embryos of each genotype out of total genotyped at 48 hpf in three separate lays. X^2 test result is given in rightmost column showing Mendelian frequencies. MZ = maternal zygotic mutants.

Single mutant incross morphogenesis: Values represent the number of affected embryos observed/ total screened daily until 5 dpf and weekly thereafter for consistent defects affecting brain, eye, heart or general body size and morphology and behaviour. The entire lay was not retrospectively genotyped, but mutants were found at expected Mendelian frequencies in genotyped individuals, as described in parantheses. 4b morphology - fraction of 25 hpf embryos observed under dark field that showed normal mid-hindbrain border fold, somite morphology, overall body shape, heart beat, eye size and shape.

4c morphology - fraction of 27 hpf embryos with normal eye size, retinal folding, lens size and position, ear size and morphology, somite number, chevron shape, size, morphology and apposition, notochord refractivity, size, regularity and vacuolation, red blood cell formation in ventral tail.

4b,c behaviour - fraction of 25-27 hpf embryos with spontaneous movements in chorion and response by movement to dish tap and/or poke of chorion with forceps, normal heartbeat and circulation through tail. 4d survival – fraction exiting chorion by 4 dpf

4d morphology - fraction of 8 dfp embryos with normal eye size, pigmentation, lens position and size, fin length and shape, ear morphology, size and presence of otic vesicles, melanophore and xanthophore frequency, distribution and shape, notochord structure, swim bladder inflation and jaw shape.

4d behaviour - fraction of 8 dpf embryos with normal swimming (spontaneous and response to tank tap), eye movements (spontaneous and response to shadow), fin burst movements (spontaneous), gut food content and peristalsis, air gulping to inflate swim bladder.

Feature	IMAGE ID: 7149263	IMAGE ID: 8760081	
cDNA coding for	Cnrip1a	Cnrip1b	
Insert size	850 bp	1015 bp	
Region covered	50% 5'UTR. Coding exons 1-3. 30% 3'UTR	60% coding region of Exon 1. Coding exons 2+3. 350 bp 3'UTR.	
BLAT result	3 regions of Chr 1 >99%	3 regions of Chr 13 >99%	
Restriction sites	SfilA and SfilB	Notl and EcoRV	

Table S2. IMAGE clones encoding *cnrip1a* and *cnrip1b*.

Table S3. Primer	pairs for RNA	polymerase site in	nsertion (ISH	probes generation)	١.
					/=

Gene
cnrip1a
cnrip1b

T7 (Fwd sense, negative control) and T3 (Rev antisense) consensus sequences are shown in bold font.

Table S4. Reaction mixture composition and amplification cycle parameters for RNApolymerase site insertion.

Reagent	Quantity	Reaction cycle	
DNA template	50 ng		
10X Reaction Buffer	2.5 µl		
dNTPs mix	0.4 µl	95°C for 4 minutes	
	(0.4 mM)	95°C for 30 seconds	
Forward primer	1.25 µl	63°C for 30 seconds	
	(0.5 µM)	72°C for 2 minutes	Cycles
Reverse primer	1.25 µl	72°C for 7 minutes	
	(0.5 µM)		
Vent DNA polymerase	0.5 µl (1 U)		
MilliQ water	to 25 µl		

Annealing temperature for primers (63°C) was calculated using the NEB Tm calculator (http://tmcalculator.neb.com).