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Supplementary Figures
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Supplementary Figure 1: Misclassification loss C in (7) and ψ in (6) as a function of
the margin xµ = (2y − 1)µ.
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Supplementary Figure 2: Analyses including non-voters. (a) Relation between connec-
tivity and global impact. (b) Relation between centrality and specific impact. (c) Com-
parison between connectivity of voters (dark grey bars) and non-voters (light grey bars).
Dem: Democratic candidates; Rep: Republican candidates, Ind: Independent candidates.
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Supplementary Figure 3: Analyses including only independents (a) Relation between
connectivity and global impact. (b) Relation between centrality and specific impact.
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Supplementary Figure 4: Analyses with imputed missing values (a) Relation between
connectivity and global impact. (b) Relation between centrality and specific impact.
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Supplementary Figure 5: Analyses on different numbers of attitude elements (a) Re-
lation between connectivity and global impact for the analysis including all attitude ele-
ments. (b) Relation between centrality and specific impact for the analysis including all
attitude elements. (c) Relation between connectivity and global impact for the analysis
including seven attitude elements. (d) Relation between centrality and specific impact
for the analysis including seven attitude elements.
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Supplementary Tables

Supplementary Table 1: Results of the Simulations for Each Network-Generating Al-
gorithm and Edge Weight Distribution.

Preferential attachment Small-world Random graph
Connectivity/impact correlations

Normal distribution mean r=-0.91 mean r=-0.91 mean r=-0.90
s.d. r=0.07 s.d. r=0.05 s.d. r=0.08

Power-law distribution mean r=-0.92 mean r=-0.91 mean r=-0.91
s.d. r=0.05 s.d. r=0.05 s.d. r=0.04

Uniform distribution mean r=-0.92 mean r=-0.89 mean r=-0.90
s.d. r=0.05 s.d. r=0.08 s.d. r=0.08
Centrality/impact correlations

Normal distribution mean r=0.72 mean r=0.51 mean r=0.57
s.d. r=0.18 s.d. r=0.33 s.d. r=0.27

Power-law distribution mean r=0.70 mean r=0.46 mean r=0.60
s.d. r=0.19 s.d. r=0.34 s.d. r=0.23

Uniform distribution mean r=0.68 mean r=0.49 mean r=0.60
s.d. r=0.24 s.d. r=0.29 s.d. r=0.25
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Supplementary Table 2: Number of participants per election and number of partici-
pants with missing values.

Election N complete N non-voters N with missing values N with missing values
sample (Democratic candidates) (Republican candidates)

1980 1,614 411 338 396
1984 2,257 539 583 435
1988 2,040 545 470 477
1992 2,485 562 567 358
1996 1,714* 374 239 318
2000 1,807 376 440 493
2004 1,212 231 282 195
2008 2,322 509 368 390
2012 5,914 1,141 557 644
Note. *Of these 1,714 participants, 1,316 participants also participated during the
election of 1992.
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Supplementary Table 3: Fit measures of the latent variable models.

Candidate One-factor model Hierarchical model
Carter 1980 χ(35) = 1030.53, CFI = 0.80, χ(30) = 528.58, CFI = 0.90,

RMSEA = 0.18 RMSEA = 0.14
Reagan 1980 χ(35) = 411.40, CFI = 0.91, χ(30) = 198.74, CFI = 0.96,

RMSEA = 0.12 RMSEA = 0.08*
Anderson 1980 χ(35) = 655.19, CFI = 0.75, χ(30) = 290.38, CFI = 0.90,

RMSEA = 0.18 RMSEA = 0.12*
Mondale 1984 χ(35) = 1410.69, CFI = 0.79, χ(31) = 859.75, CFI = 0.87,

RMSEA = 0.19 RMSEA = 0.15
Reagan 1984 χ(35) = 1730.83, CFI = 0.83, χ(31) = 1194.73, CFI = 0.88,

RMSEA = 0.19 RMSEA = 0.17*
Dukakis 1988 χ(35) = 1166.68, CFI = 0.81, χ(31) = 683.11, CFI = 0.89,

RMSEA = 0.18 RMSEA = 0.14
Bush 1988 χ(35) = 940.98, CFI = 0.87, χ(31) = 593.40, CFI = 0.92,

RMSEA = 0.16 RMSEA = 0.13*
Clinton 1992 χ(35) = 1536.91, CFI = 0.83, χ(31) = 995.36, CFI = 0.89,

RMSEA = 0.18 RMSEA = 0.15*
Bush 1992 χ(35) = 1304.31, CFI = 0.85, χ(31) = 840.63, CFI = 0.91,

RMSEA = 0.15 RMSEA = 0.13*
Clinton 1996 χ(35) = 1492.00, CFI = 0.83, χ(31) = 908.92, CFI = 0.90,

RMSEA = 0.19 RMSEA = 0.16*
Dole 1996 χ(35) = 1312.91, CFI = 0.80, χ(31) = 842.52, CFI = 0.87,

RMSEA = 0.19 RMSEA = 0.16
Perot 1996 χ(35) = 428.94, CFI = 0.78, Fit measures could not be computed*

RMSEA = 0.18
Gore 2000 χ(35) = 1401.65, CFI = 0.79, χ(31) = 837.05, CFI = 0.88,

RMSEA = 0.19 RMSEA = 0.16
Bush 2000 χ(35) = 1080.12, CFI = 0.84, χ(31) = 685.86, CFI = 0.90,

RMSEA = 0.18 RMSEA = 0.15
Kerry 2004 χ(35) = 771.78, CFI = 0.86, χ(31) = 458.36, CFI = 0.92,

RMSEA = 0.17 RMSEA = 0.14*
Bush 2004 χ(35) = 1100.80, CFI = 0.87, χ(31) = 661.61, CFI = 0.92,

RMSEA = 0.20 RMSEA = 0.16*
Obama 2008 χ(35) = 1373.76, CFI = 0.90, χ(31) = 642.16, CFI = 0.95,

RMSEA = 0.16 RMSEA = 0.12*
McCain 2008 χ(35) = 1553.26, CFI = 0.86, χ(31) = 863.92, CFI = 0.92,

RMSEA = 0.18 RMSEA = 0.14
Obama 2012 χ(35) = 5863.21, CFI = 0.91, χ(31) = 2428.10, CFI = 0.96,

RMSEA = 0.20 RMSEA = 0.14
Romney 2012 χ(35) = 5781.98, CFI = 0.88, χ(31) = 3021.35, CFI = 0.94,

RMSEA = 0.20 RMSEA = 0.15
Note. *The covariance matrices of the latent variables of these models were not positive
definitive. This indicates poor fit to the data.
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Supplementary Notes
Supplementary Note 1: Analytical Solutions of the Hypotheses
In the Ising model the intuition is that higher connection strength will allow for better
prediction. Here we show this intuition is correct.

Logistic regression and the Ising model. The Ising model is part of the exponen-
tial family of distributions1−3. Let G be a graph consisting of nodes in V = {1,2, . . . ,p} and
edges (s, t) in E ⊆ V ×V . To each node s ∈ V a random variable Xs is associated with values
in {0,1}. The probability of each configuration x depends on a main effect (external field)
and pairwise interactions. It is sometimes referred to as the auto logistic-function4, or a
pairwise Markov random field, to emphasise that the parameter and sufficient statistic
space are limited to pairwise interactions3. Each xs ∈ {0,1} has conditional on all remain-
ing variables (nodes) X\s probability of success πs := P(Xs = 1 | x\s). The distribution for
configuration x of the Ising model is then

P(x) =
1

Z(θ)
exp

∑
s∈V

msxs +
∑

(s,t)∈E
Astxsxt

 (1)

which is clearly of the form of exponential family. In general, the normalisation Z(θ)
is intractable, because the sum consists of 2p possible configurations for y ∈ {0,1}p; for
example, for p = 30 we obtain over 1 million configurations to evaluate in the sum in
Z(θ) (see3 for lattice [Bethe] approximations).

The conditional distribution is again an Ising model4,5

πs = P(xs = 1 | x\s) =
exp

(
ms +

∑
t:(s,t)∈EAstxt

)
1 + exp

(
ms +

∑
t:(s,t)∈EAstxt

) . (2)

It immediately follows that the log-odds4 is

µs(x\s) = log
(
πs

1−πs

)
=ms +

∑
t:(s,t)∈E

Astxt. (3)

Note that the log-odds θ 7→ µθ is a linear function, and so if x = (1,x\s) then µθ = xTθ.
Recall that θ 7→ µθ is the linear function µθs(x\s) =ms +

∑
t∈V \sAstxt of the conditional

Ising model obtained from the log-odds (3). Define µs := µθs(x\s). We use the notation that
the node of interest xi,s is denoted by yi and we let the remaining variables and a 1 for
the intercept be indicated by xi = (1,xi,\s), basically leaving out the subscript s to index
the node, and only use it whenever circumstances demand it. Let the loss function be the
negative log of the conditional probability π in (2), known as a pseudo log-likelihood4

ψ(x,µ) := − logP(y | x) = −xµ+ log(1 + exp(µ)). (4)

Monotonicity of prediction loss as a function of connectivity. In logistic regression
there is a natural classifier that predicts whether yi is 1 or 0. We simply check whether

10



the probability of a 1 is greater than 1/2, that is, whether πi > 1/2. Because µi > 0 if and
only if πi > 1/2 we obtain the natural classifier

C(yi) = 1{µi > 0} (5)

where 1 is the indicator function. This is 0-1 loss6. Sometimes the margin interpretation
is used where the log of the conditional probability πi,s is used with variables in {−1,1}
(see7) . Let z = 2y − 1 such that for x ∈ {0,1} we obtain z ∈ {−1,1}. The loss ψ (pseudo
log-likelihood) in (4) can then be rewritten as

ψ(zi ,µi) = log(1 + exp(−ziµi)). (6)

Often the logarithm with base 2 is chosen since then ψ(zi ,0) = 1. The classification trans-
lates to

C(zi) = 1{ziµi > 0}. (7)

Logistic loss ψ in (6) is an upper bound to C in (7), and is 1 at the value of the margin
ziµi = 0, as shown in Supplementary Figure 1. Here we use logistic loss ψ as defined in
(4) because it is more common. This function is strictly monotone decreasing.

It follows immediately from monotonicity that ψ(zi ,µ) > ψ(zi ,µ∗) if µ < µ∗. Of course,
we have the same for the 0-1 loss: 1{ziµi > 0} ≥ 1{ziµ∗i > 0} if µ < µ∗.

If the average degree of each node were subtracted from the Hamiltonian µs, then we
obtain the Ising model without an external field. If we have

ms = −1
2

∑
t:(s,t)∈E

Ast

then we see that

µs = −1
2

∑
t:(s,t)∈E

Ast +
∑

t:(s,t)∈E
Astxsxt =

∑
t:(s,t)∈E

Ast(xsxt − 1/2)

Switching to the labeling z = 2y − 1 ∈ {−1,1}, we obtain that the average is 0 (implying
ms = 0), and so the Hamiltonian consists only of the interactions

∑
t:(s,t)∈EAstzszt. And so

if Ast ≥ 0 for all s, t ∈ V then µ∗s > µs iff A∗st > Ast, i.e., the Hamiltonian is larger if and only
of the connectivity is larger. As seen above, this leads immediately to the monotonicity
above.

Closeness and correlations Let dst(r) = min{1/rsi + 1/rij + · · ·+ 1/rkt : ∀i, j,k ∈ V \{s, t}}
be the shortest distance in terms of Dijkstra’s algorithm8, where rij is the weight, in our
case a (polychromic) correlation that are all positive. Then closeness is defined as

cs(r) =

 ∑
t∈V \{s}

dst(r)


−1

The intuition is here that a node with high closeness will have connections or paths to
other nodes with high correlations (weights). To see the intuition, consider node s being
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connected only to node t with correlation rst. Then cs(r) = rst; if this correlation is high,
then so is the closeness of this node. If there is more than one connection, we see that
the shortest path dst(r) is low if all correlations rij are high (close to 1), implying that
closeness cs(r) is high.

Suppose we have two sets weights R1 and R2, inducing two graphs G1 and G2 with the
same nodes and edge sets but with different weights. We pick a path between nodes s and
t, denoted by Pst = {(x0 = s,x1), (x1,x2), . . . , (xk−1,xk = t)} of length k. Suppose that for this
path we have

k∑
i=0

r1,i−1,i ≥
k∑
i=0

r2,i−1,i

Then it follows that
k∑
i=0

1
r1,i−1,i

≤
k∑
i=0

1
r2,i−1,i

In other words, the higher the correlations the higher the closeness. This does not imply
that any randomly drawn node connected to a node with high closeness will have a high
correlation, only that on average the correlations will be higher if they are connected to a
node with high closeness than if they are connected to a node with low closeness.
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Supplementary Note 2: Alternative Analysis on Non-Voters
To investigate whether our results are robust to the inclusion of non-voters, we performed
the same analyses but now including non-voters and labelling them as voters against the
focal candidates. The results of this analysis mirrored the results reported in the Re-
sults section: The correlation between connectivity and average impact remained high
and significant (see Supplementary Figure 1a). The same holds for the correlation be-
tween centrality and impact (see Supplementary Figure 1b). The predicted impact re-
mained very close to the actual impact (deviation median=0.06, deviation interquartile
range=0.02-0.09) and outperformed both using the mean of all attitude elements (de-
viation median=0.10, deviation interquartile range=0.05-0.18, Wilcoxon-matched pairs
test: V=4006, P<0.001, CLES=69.5%) and using the means of the specific attitude
elements (deviation median=0.08, deviation interquartile range=0.04-0.15, Wilcoxon-
matched pairs test: V=5670, P<0.001, CLES=64.7%).

We also tested another prediction from our model regarding differences between vot-
ers and non-voters: That voters are expected to have a more densely connected network
than non-voters. As can be seen in Supplementary Figure 1c, attitude networks of vot-
ers were much more highly connected (mean=2.03, s.d.=0.43) than attitude networks of
non-voters (mean=2.38, s.d.=0.34, Student’s t-test: T=2.86, P<0.001, Cohen’s D=0.91).
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Supplementary Note 3: Alternative Analysis on Independents
As our analysis are correlational, it is important to exclude the possibility that third vari-
ables affected the relations tested in this paper. The most likely variable to be such a
confound is party identification. It is, for example, easy to imagine that party identifica-
tion might affect the connectivity of attitude networks, the valence of the attitude, and
for whom a person votes. We therefore reran our analyses including only participants,
who do not identify with any political party. The results of this analysis mirrored the
results reported in the Results section: The correlation between connectivity and average
impact remained high and significant (see Supplementary Figure 2a). The same holds for
the correlation between centrality and impact (see Supplementary Figure 2b). The pre-
dicted impact remained very close to the actual impact (deviation median=0.06, devia-
tion interquartile range=0.03-0.11) and outperformed both using the mean of all attitude
elements (deviation median=0.11, deviation interquartile range=0.05-0.17, Wilcoxon-
matched pairs test: V=4152, P<0.001, CLES=66.2%) and using the means of the spe-
cific attitude elements (deviation median=0.09, deviation interquartile range=0.04-0.16),
Wilcoxon-matched pairs test: V=5703, P<0.001, CLES=62.7%).
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Supplementary Note 4: Alternative Analysis on Missing Values
To investigate whether our results are robust to imputation of missing values, we
reran our analyses with imputing missing values using Predictive Mean Matching9,10.
The results of this analysis mirrored the results reported in the Results section: The
correlation between connectivity and average impact remained high and significant
(see Supplementary Figure 3a). The same holds for the correlation between central-
ity and impact (see Supplementary Figure 3b). The predicted impact remained very
close to the actual impact (deviation median=0.07, deviation interquartile range=0.03-
0.11) and outperformed both using the mean of all attitude elements (deviation
median=0.12, deviation interquartile range=0.05-0.19, Wilcoxon-matched pairs test:
V=3826, P<0.001, CLES=68.8%) and using the means of the specific attitude elements
(deviation median=0.09, deviation interquartile range=0.04-0.18, Wilcoxon-matched
pairs test: V=5526, P<0.001, CLES=64.9%).
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Supplementary Note 5: Alternative Analysis on Networks Based on Different Num-
bers of Attitude Elements
To investigate whether our results are robust to our choice of attitude elements, we reran
our analyses based on all available attitude elements (note that in this case the forecast
analyses are not possible because for these analyses the same number of attitude elements
for each election is necessary) and on the seven attitude elements that were assessed at
each election. The results of these analyses mirrored the results reported in the Results
section: For the analysis including all attitude elements, the correlation between connec-
tivity and average impact remained high and significant (see Supplementary Figure 4a).
The same holds for the correlation between centrality and impact (see Supplementary
Figure 4b).

For the analysis including the seven attitude elements that were assessed at each
election, the correlation between connectivity and average impact remained high and
significant (see Supplementary Figure 4c). The same holds for the correlation be-
tween centrality and impact (see Supplementary Figure 4d). The predicted impact re-
mained very close to the actual impact (deviation median=0.06, deviation interquartile
range=0.03-0.09) and outperformed both using the mean of all attitude elements (devia-
tion median=0.11, deviation interquartile range=0.06-0.18, Wilcoxon-matched pairs test:
V=1505, P<0.001, CLES=68.7%) and using the means of the specific attitude elements
(deviation median=0.09, deviation interquartile range=0.05-0.16), Wilcoxon-matched
pairs test: V=2341, P<0.001, CLES=65.2%).
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Supplementary Note 6: Alternative Analysis on Latent Variable Models
One might argue that the results reported in this article can also be expected when atti-
tudes are conceptualized as latent variables and the responses on attitude elements are
treated as indicators of the latent attitude. From this perspective, high (low) centrality
of attitude elements would indicate high (low) factor loadings on the latent variable atti-
tude and high (low) connectivity would indicate high (low) average factor loadings. In a
purely statistical sense, this objection would be correct as factor loadings also reflect how
much information a given attitude element holds on all other attitude elements. How-
ever, in our view the latent variable framework does not provide a sensible alternative
for a data-generating model of the hypotheses put forward here. For such a model, one
would have to assume that the latent variable attitude acts as common cause of the at-
titude elements. This assumption, however, is at odds with several key concepts in the
attitude literature11, such as cognitive consistency12, ambivalence13, and the idea that
attitudes are formed by attitude elements14,15.

To further rule out that the latent variable framework provides an alternative explana-
tion of our results, we investigated the fit of latent variable models on the data reported in
this article. For each attitude toward each candidate at each election, we fitted two latent
variable models. First, we fitted a one-factor model with all attitude elements loading
on this single factor representing a latent attitude. Second, we fitted a hierarchical factor
model with three or four first-order factors and one second-order factor representing a
latent attitude. We fitted the hierarchical factor model because earlier research indicated
that beliefs and feelings form different factors16 and that negative and positive attitude
elements form different factors17. In most of the data sets used here, no negative beliefs
were assessed. For these data sets, we fitted a hierarchical factor model with beliefs, neg-
ative feelings, and positive feelings loading on different first-order factors, respectively.
For the data sets in which negative beliefs were assessed, we fitted a hierarchical factor
model with negative beliefs, positive beliefs, negative feelings, and positive feelings load-
ing on different first-order factors, respectively. As can be seen in Supplementary Table 3,
both the one-factor models and the hierarchical models fitted poorly. The latent variable
framework thus appears to be an unlikely alternative explanation of our results.

This discussion on whether our results can also be explained by the latent variable
framework is somewhat reminiscent of the discussion regarding the idea that instabil-
ity of attitudinal responses is indicative of individuals holding nonattitudes18. Several
critiques of this idea pointed out that when measurement error is accounted for, indi-
viduals, who seemingly hold nonattitudes, show stable attitudes19−21. A similar critique
might apply to our findings. It is our view, however, that two findings speak against
this critique. First, if we assume that the intercorrelations of attitude elements are deter-
mined only (or foremost) by measurement error, then the factor models we fitted should
show good fit. This was clearly not the case. Second, systematic variation of intercorrela-
tions would not be expected from the measurement error perspective. Thus, our finding
that connectivity of attitudes correlates almost perfectly with the attitude’s impact on
behaviour would not be expected from the measurement error perspective.
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