Supplemental Figures

Figure S1. Changes in spectroscopic properties accompanying successive freeze/thaw events for a single sample of HydF. **A**. UV-visible absorbance changes for freshly purified HydF (152 μ M protein at 2.34 ± 0.10 Fe/dimer; black), freshly purified enzyme following a single freeze-thaw event (red), and freshly purified enzyme following a second freeze-thaw event (blue). ϵ values are reported for total Fe concentration in sample. **B**. The corresponding circular dichroism spectra for the UV-vis spectra represented in panel **A** (color scheme is consistent); $\Delta \epsilon$ values shown are for total iron content in samples.

Figure S2. Changes in visible absorbance and oligomeric state upon sample handling of freshly purified HydF. **A**. UV-visible absorbance spectra for freshly purified HydF (black, peak fraction, 99 μ M protein at 2.18 ± 0.08 Fe/dimer) and freshly purified HydF after concentration (green, side fractions pooled and concentrated, 102 μ M protein at 2.48 ± 0.06 Fe/dimer). Side fractions were pooled together and concentrated using a Minicon B15 sponge well concentrator prior to UV-Vis and gel filtration analysis without undergoing a freeze/thaw event. **B**. The corresponding gel filtration data for the samples in **A** (color scheme is consistent between panels); for Panel B, the solid trace represents the signal at 280 nm, and the dashed trace represents the signal at 426 nm.

Figure S3. Representative CW X-band EPR spectra for freshly purified HydF. **A**. EPR spectra for freshly purified HydF (red, 111 μ M protein at 2.50 ± 0.08 Fe/dimer) relative to freshly purified HydF that has been concentrated (black, 102 μ M protein at 2.48 ± 0.06 Fe/dimer; see data and sample description provided in Figure S2). **B**. Photoreduced EPR spectra of the samples represented in panel **A** (red, 110 μ M protein at 2.50 ± 0.08 Fe/dimer; black, 97 μ M protein at 2.48 ± 0.06 Fe/dimer). All spectra recorded at 12 K with 1 mW microwave power.

Figure S4. CW EPR (X-band) temperature relaxation profiles for HydF. **A**. Temperature relaxation profile for freshly purified HydF (111 μ M protein at 2.50 ± 0.08 Fe/dimer) at 1 mW microwave power setting. The magnitude of the signal intensity (S.I., defined as the absolute value of the g ~ 2.00 peak-to-peak feature) at each temperature value is provided. **B**. Temperature relaxation profile for as-isolated HydF (600 μ M protein at 1.14 ± 0.08 Fe/dimer) at 1 mW microwave power setting.

Figure S5. EPR spectra showing the effects of exogenous reducing agents on freshly purified HydF. **A**. The enzyme freshly purified in the absence of reducing agents (black), in the presence of 5 mM dithiothreitol (red), and in the presence of 5 mM dithionite (blue). All samples used 104 μ M protein at 2.18 ± 0.08 Fe/dimer. Freshly purified and DTT spectra were recorded at 16 K, while the DT treated sample was recorded at 10.5 K. **B**. The signal of the DTT treated sample at 16 K (black) and 30 K (red) at 1 mW microwave power.

Figure S6. Low temperature CW (X-band) EPR spectroscopy of as-purified PFL-AE (1.68 mM protein with 2.70 \pm 0.10 Fe/protein). **A**. Temperature relaxation profile (black, 12K; red, 20 K; blue, 30 K; magenta, 40 K). **B**. Overlay of the [3Fe-4S]⁺ (black) and [2Fe-2S]⁺ (red) cluster signals in PFL-AE at low power settings. The [3Fe-4S]⁺ cluster signal was recorded at 12 K and 63 μ W microwave power using a gain setting of 1x10². The [2Fe-2S]⁺ cluster signal was recorded at 30 K and 63 μ W microwave power using a gain setting of 1 x 10³. The red asterisk denotes residual [3Fe-4S]⁺ content in the 30 K spectrum.

Figure S7. Low temperature CW X-band EPR spectra of as-reconstituted HydE. **A**. Temperature relaxation behavior of as-reconstituted enzyme. The $[3Fe-4S]^+$ component of the signal at 12 K rapidly relaxes as temperature is raised concomitant with the intensification of the $[2Fe-2S]^+$ component. **B**. The effects of increasing microwave power (12 μ W – 50 mW) on the

 $[3Fe-4S]^+$ and $[2Fe-2S]^+$ cluster signals of as-reconstituted HydE at 12 K. The red highlighted spectrum shows the $[2Fe-2S]^+$ component signal at 63 µW whose signal intensity increases and then decreases as a function of power (red arrows); the blue highlighted spectrum is at 6 mW power where the $[2Fe-2S]^+$ component signal exhibits substantial saturation effects. The signal intensity of the $[3Fe-4S]^+$ cluster, which steadily grows as a function of increasing power, is highlighted by the black arrows. **C**. The effects of increasing microwave power (12 µW – 50 mW) on the $[2Fe-2S]^+$ cluster signal of as-reconstituted HydE at 30 K. The signal intensity of the $[2Fe-2S]^+$ cluster, which steadily increases as a function of increasing power, is highlighted by the black arrows. For all panels, HydE enzyme was 344 µM protein at 7.64 ± 0.10 Fe/protein.

Figure S8. Low temperature, CW X-band EPR spectra of HydF as a function of varying microwave power settings. A. The [2Fe-2S]⁺ cluster signal in freshly purified HydF as a function of increasing microwave power (31 μ W – 50 mW) recorded at 30 K (111 μ M protein at 2.50 ± 0.08 Fe/dimer). The signal intensity of the [2Fe-2S]⁺ cluster, which steadily increases as a function of increasing power, is highlighted by the black arrows. **B**. The [2Fe-2S]⁺ cluster signal in freshly purified, photoreduced HydF as a function of increasing microwave power (31 μ W – 50 mW) recorded at 30 K (110 μ M protein at 2.50 ± 0.08 Fe/dimer). The feature present at ~ 3525 G is residual $[4Fe-4S]^+$ cluster signal. The signal intensity of the $[2Fe-2S]^+$ cluster, which steadily increases as a function of increasing power, is highlighted by the black arrows. C. The effects of increasing microwave power (12 μ W – 50 mW) on the [3Fe-4S]⁺ and [2Fe-2S⁺ cluster signals of as-isolated HydF at 15 K (600 μ M protein at 1.14 ± 0.08 Fe/dimer). The red highlighted spectrum shows the $[2Fe-2S]^+$ component signal at 12 µW whose signal intensity increases and then decreases as a function of power (red arrows); the blue highlighted spectrum is at 6 mW power where the $[2Fe-2S]^+$ component signal exhibits substantial saturation effects. The signal intensity of the $[3Fe-4S]^+$ cluster, which steadily grows as a function of increasing power, is highlighted by the black arrows. **D**. The effects of increasing microwave power (12 μ W – 50 mW) on the [2Fe-2S]⁺ cluster signal of as-isolated HydF at 30 K (600 μ M protein at

 1.14 ± 0.08 Fe/dimer). The signal intensity of the [2Fe-2S]⁺ cluster, which steadily grows as a function of increasing power, is highlighted by the black arrows.

Figure S9. EPR microwave power saturation curves for HydF qualitatively comparing [2Fe-2S]⁺, [3Fe-4S]⁺, and [4Fe-4S]⁺ cluster signal behavior. **A**. As-isolated HydF (600 μ M protein at 1.14 ± 0.08 Fe/dimer) FeS cluster states. **B**. Photoreduced, freshly purified HydF (110 μ M protein at 2.50 ± 0.08 Fe/dimer) FeS cluster states.

Figure S10. Low temperature CW X-band EPR spectroscopy of as-purified PFL-AE (1.68 mM protein with 2.70 \pm 0.10 Fe/protein). **A**. Temperature relaxation behavior recorded at 1 mW microwave power and either 30 K (red) or 40 K (black) highlighting the disappearance of the [3Fe-4S]⁺ g = 2.035 feature. **B**. Spectral changes at 30 K for the [3Fe-4S]⁺ and [2Fe-2S]⁺ cluster signals in PFL-AE as a function of increasing microwave power (12 μ W – 50 mW). The red spectrum highlights the 50 mW data wherein the [3Fe-4S]⁺ cluster signal at g = 2.035 continues to increase in signal intensity, whereas the g ~ 2.0 centered [2Fe-2S]⁺ cluster begins to visibly show saturation behavior. Collectively this data provided support for the assignment of two paramagnetic species present in the 30 K data which in turn aided spectral simulations (see Figure S11).

Figure S11. EasySpin spectral simulations of $[2Fe-2S]^+$ cluster signals as observed at 30 K and 1 mW microwave power. In all panels, experimental data are shown in black while spectral simulations are represented in red. **A.** As-isolated PFL-AE (1.68 mM protein with 2.70 ± 0.10 Fe/protein). The experimental spectrum is simulated as components of $[2Fe-2S]^+$ and $[3Fe-4S]^+$ cluster signals (see Figure S6 and Figure S10). **B**. As-reconstituted HydE (344 μ M protein at 7.64 ± 0.10 Fe/protein). The experimental spectrum is simulated as a single $[2Fe-2S]^+$ cluster signal. **C**. Freshly purified HydF (111 μ M protein at 2.50 ± 0.08 Fe/dimer). The experimental spectrum is simulated as a single $[2Fe-2S]^+$ cluster signal. **D**. As-isolated HydF (600 μ M protein at 1.14 ± 0.08 Fe/dimer). The experimental spectrum is simulated as two distinct $[2Fe-2S]^+$ cluster signals (see discussion in main text).

Figure S12. Low temperature CW X-band EPR monitoring the effects of 5 mM dithionite on HydF's FeS cluster signals. As-isolated, dithionite reduced HydF (72 μ M protein at 2.54 ± 0.04 Fe/dimer) before (black) and after (red) a thaw/freeze event. Spectra recorded at 10.5 K.

Figure S13. Changes in spectroscopic properties accompanying a freeze/thaw event in freshly purified HydF following gel filtration. **A**. UV-visible absorbance changes for HydF before (black; 71 μ M protein at 3.10 ± 0.11 Fe/dimer) and after a single freeze-thaw event (red). *Inset*. The corresponding circular dichroism spectra for the UV-vis data (the color scheme for spectra is consistent). **B**. Low temperature, CW X-band EPR spectra for freshly purified HydF following gel filtration. Freshly purified enzyme (68 μ M protein at 3.10 ± 0.11 Fe/dimer) recorded at 12.0 K (black trace). The 10.5 K EPR spectrum for photoreduced HydF (red trace) following an anaerobic thaw/freeze event (72 μ M protein at 2.54 ± 0.04 Fe/dimer).

Enzyme	Cluster	Temperature	\mathbf{g}_1	g ₁ -strain	\mathbf{g}_2	g ₂ -strain	g ₃	g ₃ -strain	
Freshly	$[2Fe-2S]^+$	12 K	2.010	0.010	2.002	0.013	1.963	0.024	
purified HydF									
	$[2Fe-2S]^+$	30 K	2.010	0.009	2.002	0.012	1.963	0.025	
As-isolated	$[2Fe-2S]^+$ -	30 K	2.010	0.011	2.003	0.012	1.961	0.018	
HydF	А								
-	$[2Fe-2S]^+$ -	30 K	2.045	0.015	2.008	0.017	1.981	0.024	
	В								
	$[3\text{Fe-4S}]^+$	15 K	2.019	0.028	2.010	0.022	1.974	0.044	
Freshly									
purified HydF	$[2Fe-2S]^+$	30 K	2.010	0.009	2.005	0.011	1.960	0.020	
Photoreduced									
HydE	$[2Fe-2S]^+$	12 K	2.007	0.013	2.004	0.020	1.955	0.037	
	$[3\text{Fe-4S}]^+$	12 K	2.027	0.009	2.014	0.010	1.988	0.042	
	$[2Fe-2S]^+$	30 K	2.008	0.025	2.006	0.010	1.959	0.031	
PFL-AE	$[3\text{Fe-4S}]^+$	12 K	2.030	0.010	2.009	0.011	1.988	0.031	
	$[3Fe-4S]^+$	30 K	2.035	0.019	2.008	0.017	1.993	0.023	
	$[2Fe-2S]^+$	30 K	2.010	0.011	2.005	0.011	1.964	0.016	
A. Primary [2Fe-2S] ⁺ cluster signal. B. Low intensity paramagnetic cluster signal assigned as arising									
from a [2]	from a [2Fe-2S] ⁺ cluster signal given its slow temperature relaxation properties (Figure S4).								

Table S1. Reported EPR spectroscopic g-values for $[2Fe-2S]^+$ and $[3Fe-4S]^+$ cluster signals. Values obtained via simulation with EasySpin as described in the main body.

Table S2. EPR spin integrations for HydF and PFL-AE iron sulfur cluster signals.

Enzyme	Cluster	Conditions	Temperature (K)	Spin			
HydF	[2Fe-2S] ⁺	Frachly Durified	12	$0.03 - 0.05^{a}$			
			25	0.08			
		Freshly Purified	16	0.20			
		+ Dithiothreitol	30	0.27			
		Freshly Purified	10	N/A			
		+ Dithionite	12				
		Reconstituted+	10	$0.15 - 0.19^{a}$			
		Dithiothreitol	12				
HydF		Freshly	10	$0.34 - 0.38^{a}$			
	$[4\text{Fe-4S}]^+$	Purified ^b	12				
		Freshly Purified	10.5	0.53			
		+ Dithionite	10.5				
PFL-AE	$[2Fe-2S]^+$	As-isolated	30	0.08			
^a Reported spin integration range is for two independently made enzyme							
samples. ^b Samples were photoilluminated for 1 hr in the presence of 5-							

deazariboflavin. N/A, Not applicable.