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Part I. Supplementary Figures 
 

 

Figure S1. Re-entrant grooves drive anisotropic growth. When the surface of a 
nanoparticle is uniform and defect-free it will grow isotropically. However, if certain 
defects such as parallel twin boundaries (TB) are introduced into the surface, a locally 
concave surface called a re-entrant groove is created. Multiple re-entrant grooves can 
appear on a surface with the effect of significantly increasing the facet growth rate. One 
reason for this rapid growth is the catalytic effect that re-entrant grooves have on the 
nucleation of monolayers. 
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Figure S2. Changes in crystal growth as a function of growth rate. The twelve TEM 
images correspond to decreasing reduction rates of HAuCl4. All reactions have the same 
concentration of seeds and HAuCl4, such that the only synthetic variables are the amount 
of H2O2 and NaOH in solution. Panels 1 – 6 have 19.6 mM H2O2 and NaOH 
concentrations decreasing from 3.9 mM to 0.49 mM. Panels 7 – 12 have no NaOH, and 
H2O2 concentrations decreasing from 9.8 x 10-1 M to 4.9 x 10-8 M. The dominant type of 
products observed changes as labeled from nanostars in panel 1 to heavily defected 
nanoparticles in panel 12. 
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Figure S3. Kinetics of HAuCl4 reduction. The absorbance of Au(III) was monitored by 
UV-visible spectroscopy at 300 nm. Representative syntheses were performed from 
which aliquots were removed at the measured time points and added to an equal volume 
of a 2 % polyvinylpyrrolidone (PVP; 10 kDa) quenching solution. All measurements, 
including calibration curves, were performed on the same well plate. The rates refer to 
the disappearance of HAuCl4 over time. 
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Figure S4. Criteria for shape control in surfactant-free syntheses. Each product 
morphology forms from one or more corresponding seeds. All types of seeds (e.g. 
icosahedral, five-fold twinned, plate-like, etc.) can grow into spheres and stars if the 
reduction rate of HAuCl4

- is sufficiently fast. The polyhedral shapes (e.g. icosahedra, 
decahedra, rods, plates) can only be formed in high yield if the unique corresponding 
seed is present in high yield. Nanorod formation has the additional requirement that the 
seed possess re-entrant grooves (highlighted in red on five-fold seed) on the {111} facets. 
The reduction rates necessary to synthesize each shape are given in the last column. 	
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Figure S5. Tunability of nanostars. a, As the HAuCl4 reduction kinetics increase, 
protrusions begin to grow outward from the nanoparticle core. The aspect ratio of the 
protrusions increases until an optimum is reached, beyond which the aspect ratio 
decreases and the number of protrusions increases. b, TEM image of characteristic 
nanostars formed under the minimal reaction rate sufficient to produce stable nanostars in 
high yield (1.0 mM/s). c, TEM image of characteristic nanostars formed under the fastest 
reaction kinetics tested shows that the number of protrusions increases and their aspect 
ratio decreases relative to the nanostars formed under slower kinetics. d-f, Nanostars 
grown from different seed diameters. The average number of protrusions per particle 
increases while maintaining the same total diameter as the seed size is increased from (d) 
5 nm, to (e) 15 nm, to (f) 33 nm. Scale bars are 50 nm in b-c, and 100 nm in d-f. 
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Figure S6. Nanostar transformation and stabilization. a, Absorbance spectra of as-
synthesized gold nanostars that were not subjected to post-processing measured at the 
indicated time points. b, Absorbance spectra of as-synthesized gold nanostars that were 
immediately dialyzed to remove residual reagents measured at the indicated time points. 
c, Localized surface plasmon resonance (LSPR) maximum plotted against time. No shift 
was observed for the dialyzed gold nanostars, while the absorbance maximum of non-
dialyzed gold nanostars rapidly red-shifted over time approaching 540 nm (LSPR of 
spherical gold nanoparticles). d, TEM images demonstrated spherical transformation of 
the non-dialyzed gold nanostars over time, while the star-shape of the dialyzed gold 
nanostars was preserved. Scale bars are 50 nm. 
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Figure S7. Separation of product morphologies. a, Centrifugal split-flow thin (C-
SPLITT; performed by Postnova Analytics, Inc.) separation was performed on a 
representative sample mixture of nanorods, nanoplates, decahedra, and icosahedra. The 
eluent fractions were analyzed by TEM, revealing that the particles eluted in the order 
rods, plates, decahedra, icosahedra.  
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Figure S8. Evidence for five-fold structure of gold nanorods produced by the H2O2-
mediated synthesis. a, HRTEM of gold nanorod prepared by our approach. b, Electron 
diffraction pattern of nanorod in (a) demonstrating a superposition of [100] and [112] 
contributions. c, The electron beam is incident upon the nanorod as depicted in the 
schematic. d, Selected area electron diffraction pattern of nanorod in (a). The point 
labeled A corresponds to the [100] orientation and the point labeled B corresponds to the 
[112] orientation. e, The view along [100] produces strong contrast confined near the 
central axis of the rod, as expected from cross-section of the V1 tetrahedral subunit of the 
five-fold twinned structure. Dashed outline is included for clarity. f, The view along 
[112] produces strong contrast throughout the nanorod, as expected from the combined 
V3 and V4 tetrahedral subunits. These results provide strong evidence of the five-fold 
twin nanorod structure. Scale bar in (a) is 10 nm. 
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Figure S9. Electron diffraction of gold nanoplates. Electron diffraction analysis of the 
nanoplates reveals a forbidden 1/3{224} reflection, indicating the presence of twin planes 
parallel to the top and bottom {111} facets. The electron diffraction pattern shown here 
corresponds to the nanoplate on the left. Several plates were analyzed and all 
demonstrated the forbidden reflection.  
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Figure S10. Comparison between our gold nanoparticles (hydrogen peroxide) and 
surfactant- and polymer-coated gold nanoparticles (CTAB and PEG-SH). a-c, We 
compared the (a) cytotoxicity, (b) catalytic activity (oxidation of resazurin to resorufin), 
and (c) surface-enhanced Raman scattering (dye = IR-792) capabilities of gold 
nanoparticles synthesized by our method to conventionally-prepared nanoparticles 
(comparable dimensions) with surfactant (CTAB) and thiolated polyethylene glycol 
(polymer) coatings. All nanoparticle mixtures were grown from the same seeds and 
comprised roughly 20% rods, 20% plates, and 60% pseudospherical nanoparticles. 
Nanoparticle aggregation did not occur under the low dye concentrations employed in 
these experiments. See methods for details. 

 
 
 
 
 
 
  



	 12 

Part II. Supplementary Movies 
 

Supplementary Movie Details 
 
Example videos of gold nanorod growth at different nucleation rates are provided in 
Supplementary Movies 1-4 available for download in the Supporting Information 
online. The movies represent nucleation-limited growth with different ratios of {111} to 
{100} nucleation rates. The nucleation rates modeled in Supplementary Movies 1-4 are, 
respectively, 1, 10, 100, and 1000 times faster on {111} facets than {100} facets.  

 
 

Part III. Theoretical Framework 
 
Overview of Theoretical Framework 
 
Here we present a theoretical framework describing crystal growth originating from seed 
crystals exhibiting well-defined facets. Growth is assumed to begin with nucleation of a 
two-dimensional (2D) island and proceed by step flow (i.e. lateral growth) of the nucleus 
into a partial monolayer. The step flow is fueled by the incorporation of monomer growth 
units that adsorb onto the step and diffuse to binding sites. The completion of a net 
monolayer occurs when the 2D nucleus spreads a distance λ = hf  – hi. If the surface is 
terraced, then multiple partial monolayers spread simultaneously and λ will be less than 
the length of the facet. The distance λ will also decrease as the number of 2D nuclei on a 
terrace increases. The goal of this theoretical framework is to develop an expression for 
facet growth rates (i.e. asymptotic growth rates) as a function of the expected time for 2D 
monolayer nucleation, the flux of growth units to the step front, and the jumping rates of 
adsorbed growth units. This rate expression can be used to determine the regimes of 
nucleation-limited, diffusion-limited, and reaction-limited growth. 
 
Mathematical Approach 
 
We determine the expected time for net monolayer completion – the time required for a 
facet to increase its average height by one monolayer – by summing the expected time for 
nucleation and the expected time for partial monolayer spread of a distance λ. The 
expected time for nucleation is treated as a known input, thus the primary calculation in 
this framework is the expected time for a step to become completely filled (henceforth 
called step completion). 
 
The expected time for step completion is a function of the number of growth units in the 
step, the flux of growth units to the step front, and the activation energies for jumping 
into and along the step. In the following sections, we outline our theoretical framework 
by developing expressions for the expected times of growth unit arrival, one-dimensional 
(1D) step nucleation, and growth unit incorporation into binding sites. The latter process 
is divided into three separate mechanisms. The mechanism with the lowest expected time 
for step completion is defined to be the operating mechanism for the corresponding input 
parameters. 
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Expected Time of Growth Unit Arrival 
 
Let the arrival of growth units at each site be modeled as a renewal process. Once growth 
units arrive at the step front, they diffuse into the step by a single jump. If the growth 
units are adsorbed on the surface, the rate at which they jump into the step is 
characterized by the vibrational frequency of the growth unit and activation energy of the 
jump. Growth units diffusing directly from solution into the step will have a different 
prefactor and activation energy than those corresponding to jumping into the step from a 
surface site. If the expected time for growth unit arrivals via diffusion, E(Tdiff), is small 
compared to the expected time for jumps into the step, then the frequency of arrivals at 
each site can be well approximated by the asymptotic rate of the renewal process, Rdiff: 
 

𝑅!"## =
1

𝐸 𝑇!"##
 

 
Assuming that the expected time for growth unit arrival is constant along the step front, 
the arrival rate of growth units summed over x sites is xRdiff, and the expected arrival time 
is: 
 

𝐸 𝑇!"## !
=

1
𝑥𝑅!"##

 

 
When the arrival time is slow on the scale of incorporation into the step, it can be 
modeled as a rare event, which is well approximated by an exponential distribution. Such 
distributions have the characteristic relationship: 
 

𝑅!"## =
1

𝐸 𝑇!"##
 

 
Which of course yields the same result for the expected arrival time over x sites: 
 

𝐸 𝑇!"## !
=

1
𝑥𝑅!"##

 

 
Let F denote the flux of growth units per nm per second to the step front, and let the 
length of a step unit, a||, be defined by the length, L, of the step and number, N, of growth 
units in the step: 
 

𝐹 ≡ 𝑓𝑙𝑢𝑥 𝑖𝑛 
𝑢𝑛𝑖𝑡𝑠
𝑛𝑚 ∙ 𝑠  

 

𝑎∥ =
𝐿
𝑁 
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The flux of growth units per step site per second is 
 

𝐹𝑎∥ = 𝑓𝑙𝑢𝑥 𝑖𝑛 
𝑢𝑛𝑖𝑡𝑠
𝑠𝑖𝑡𝑒 ∙ 𝑠  

 
Thus we have the following relation that holds for arrival times that are either small or 
large with respect to the expected time for jumping into the step: 
 

𝐸 𝑇!"## =
1
𝐹𝑎∥

 

𝐸 𝑇!"## !
=

1
𝑥𝐹𝑎∥

 

 
In this theoretical framework, we assume for simplicity that the expected time for growth 
unit arrival is well approximated by the reciprocal of the rate of growth unit arrival 
throughout the entire range of input flux values considered.  
 
We are particularly interested in seeded (nano)crystal syntheses that proceed via 
reduction of a metal precursor by a weak reducing agent. Such syntheses are autocatalytic 
wherein the seed surface plays an essential role in catalyzing the reduction of metal atom 
precursors. In the present treatment, therefore, we will consider the rate of direct growth 
unit diffusion from solution into binding sites as negligible, since they must first interact 
with the surface before converting to the atomic form that is ultimately incorporated into 
the crystal. Application of this theory to systems wherein the direct diffusion from 
solution into binding sites is not negligible require modification of the equation for 
E(Tdiff)x to incorporate solution-to-binding site flux. 
 
Expected Time of 1D Nucleation 
 
The binding of a growth unit into an empty step is herein considered to constitute the 
process of one-dimensional (1D) nucleation. The term nucleation in this context refers to 
the beginning of 1D growth (i.e. along the step), rather than the attainment of a 
thermodynamic critical nucleus. Because a growth unit adsorbed to a step can detach 
before bonding to additional growth units in the step, it is important to consider whether 
or not the detachment rate should be used to modify the expected time for 1D nucleation. 
When the incorporation rate of a second growth unit is fast (e.g. more than an order of 
magnitude larger) with respect to the detachment of the first growth unit, the detachment 
rate can be neglected to a good approximation. 
 
Let E(Tdiff)x denote the expected time for a growth unit to arrive at any one of x sites one 
jump away from a step site. The expected time for 1D nucleation will be a function of 
both E(Tdiff)x and the expected time for a growth unit to jump into a step site. Because a 
single surface jump is characterized by a large number of attempts (vibrational motion) 
and a low probability of success during each attempt, we can treat jumps into step sites as 
Poisson processes. As such, they are exponentially distributed, and the expected time of 
the process equals the reciprocal of the jump rate. 
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The Arrhenius rate, RArrh, of a surface diffusion process is given by: 
 

𝑅!""! = 𝜈!"𝑒
!
!!"
!"  

 
Where 𝜈!" is the component of vibrational frequency of the growth unit along the ij-
direction, Eij is the activation energy for jumping from i to j, κ is Boltzmann’s constant, 
and T is the absolute temperature. If the jump is defined to occur in a particular direction, 
then an additional factor, pij, must be included to account for the probability of jumping 
in the direction of interest: 
 

𝑅!" = 𝑝!"𝜈!"𝑒
!
!!"
!"  

 
For surface jumps, pij is well approximated as the reciprocal of the number of lattice sites 
that an adatom can reach in a single jump (e.g. pij = 1/3 for {111} and 1/4 for {100}, 
etc.}. The expected time for a single jump is therefore: 
 

𝐸 𝑇! !" =
1
𝑅!"

 

𝐸 𝑇! !" = 𝑝!"𝜈!"𝑒
!
!!"
!"

!!

 
 
Let the subscripts L, U, K, and S denote the lower terrace, upper terrace, kink, and non-
kink step sites, respectively. The expected time, E(T1), for jumps from the lower and 
upper terraces to the kink and non-kink step sites are given by: 
 

𝐸 𝑇! !" =
1
𝑅!"

 

𝐸 𝑇! !" =
1
𝑅!"

 

𝐸 𝑇! !" =
1
𝑅!"

 

𝐸 𝑇! !" =
1
𝑅!"

 

 
Let Pj denote the probability that a growth unit arriving at the step front lands in site j, 
and let 𝐸 𝑇!"#$|𝑗  denote the expected time for a growth unit to jump from site j into the 
adjacent step site, provided the growth unit arrives at site j. The expected time for 1D 
nucleation is given by: 

𝐸 𝑇!D = 𝐸 𝑇!"#! !
+ 𝑃!𝐸 𝑇!"#$| 𝑗

!

!!!

 

When the probability of arriving at each site j is equal and growth units arrive from both 
the upper and lower terraces, this becomes: 
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𝐸 𝑇!D = 𝐸 𝑇!"## !
+
1
2

1
𝑅!"

+
1
𝑅!"

 

 

 
 
Figure TF1 | Growth Unit Incorporation at the Step Front. a, 1D nucleation at the 
edge of a triangular partial monolayer. The filled and unfilled circles represent occupied 
and unoccupied sites, respectively. b, Expanded view of the incomplete step in a. The 
sites labeled “k” are kink binding sites and those labeled “s” are non-kink step sites. The 
variables “m” and “n” are highlighted, which respectively denote the total number of sites 
in a step and the number of sites in the largest unfilled fragment. c, Mechanism 1 – Step 
adsorption and diffusion to kink. Growth units jump into the step (blue arrows) at random 
locations and diffuse along the step (red arrows) until they bind at the kink site. The non-
kink step sites are modeled as a continuous time Markov chain to determine the expected 
time of step diffusion to the kink binding site. d, Mechanism 2 – Direct step 
incorporation. In contrast to Mechanism 1, this Mechanism 2 does not involve step 
diffusion. Mechanism 2 operates when the rate of step diffusion is slower than the rate of 
additional growth unit arrivals into the step sites. e, Mechanism 3 – Direct kink 
incorporation. Similar to Mechanism 2, Mechanism 3 does not involve step diffusion. In 
contrast to mechanisms 1 and 2, growth by Mechanism 3 occurs exclusively by jumps 
from the terrace to kink binding sites. This mechanism operates when the rate of step 
diffusion is slower than the rate of additional growth unit arrivals and the activation 
energy for jumping into kink sites is significantly lower than for jumping into non-kink 
step sites. 
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Expected Time of Incorporation – Step Adsorption and Diffusion 
 
Let m denote the total number of step sites at the edge of a partial monolayer, as 
illustrated in Figure TF1a,b: 
 

𝑚 ≡ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝 𝑠𝑖𝑡𝑒𝑠 
 
The number of sites one jump from the step is a function of the facet index and step 
structure. Herein, we assume without loss of generality that there are 2m sites one jump 
away from step sites, corresponding to m sites on both the lower and upper terraces: 
 

2𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑡𝑒𝑠 𝑜𝑛𝑒 𝑗𝑢𝑚𝑝 𝑎𝑤𝑎𝑦 
 
Upon 1D nucleation, the step is fragmented into segments of length less than m on either 
side of the incorporated growth unit (i.e. the 1D nucleus). Because step completion 
proceeds independently on either side of the 1D nucleus, the expected time for step 
completion equals the expected time for completion of the largest fragment. We denote 
the number of sites in the largest fragment by n (Fig TF1b). Given a step comprising m 
available sites for 1D nucleation, if a growth unit adsorbs at site 𝑗 ∈ 1, 2,… ,𝑚 , n is 
defined as: 
 

𝑛 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑚 − 𝑗, 𝑗 − 1  
 
The step fragment comprises one kink binding site – the site adjacent to the 1D nucleus – 
and n-1 non-kink step sites. When the expected time for step diffusion to the kink binding 
site is less than the expected time for an additional growth unit to jump into the step we 
can model the step diffusion process by a continuous time Markov chain (CTMC). In 
particular, we construct an n-1 × n-1 infinitesimal generator matrix, typically called a Q-
matrix. The Q-matrix, taken here to be positive dominant, has the form: 
 
Q = 

R1 - R1,2 0 0 0 0 0 0 
- R2,1 R2 - R2,3 0 0 0 0 0 

0 - R3,2 R3 - R3,4 0 0 0 0 
0 0 - R4,3 R4 - R4,5 0 0 0 
0 0 0 - R5,4 R5 - R5,6 0 0 
0 0 0 0 - R6,5 R6 - R6,7 0 
0 0 0 0 0 - R7,6 R7 - R7,8 
0 0 0 0 0 0 - R8,7 R8 

 
Where Rij is the rate of jumping from i to j, and Ri is the total rate of jumping out of site i. 
Here we have arbitrarily chosen n-1 = 8 for illustrative purposes. 
 
The expected time, E(Tbind), for a growth unit in a step to reach the binding site from each 
initial step site is obtained by inverting the Q-matrix, and summing the entries in each 
row: 
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𝒐𝒏𝒆𝒔 𝑛 − 1,1 =
1
⋮
1

 

 
𝑴 = 𝑸!!𝒐𝒏𝒆𝒔 𝑛 − 1,1  

 
Entry M(j) gives the expected time of step diffusion to the binding site for a growth unit 
beginning in the step site j jumps from the kink binding site. The complete list of 
expected times to arrive at the binding site from any step site are given by the column 
vector 𝑬 𝑇!"#$ , where the first entry corresponds to a growth unit that is already in the 
binding site, the second entry corresponds to the position one jump away, and so on: 
 

𝑬 𝑇!"#$ =

0
𝑀(1)
⋮

𝑀(𝑛 − 1)

 

 
The column vector of expected times for jumping from the terrace into each step site is 
given by: 
 

𝑬 𝑇!"#$ =
1

2𝑛

1

𝑅𝐿0𝑆0
+

1

𝑅𝑈0𝑆0
1

𝑅𝐿1𝑆1
+

1

𝑅𝑈1𝑆1
⋮

1

𝑅𝐿𝑛−1𝑆𝑛−1
+

1

𝑅𝑈𝑛−1𝑆𝑛−1

 

 
Where the coefficient 1/2n is the probability that an atom impinging upon the step front 
arrives at the specific site Lj or Uj  (e.g. if there are 2n = 18 sites one jump away from the 
step, each has probability = 1/18 that an impinging adatom arrives at that specific site). 
Here we have assumed that each site has equal likelihood of adatom arrival. For 
convenience, we construct a column vector with n entries, rather than 2n, where each 
entry equals the sum of the contribution from the corresponding upper terrace and lower 
terrace sites. If the probability of growth unit arrival is different for lower terrace versus 
upper terrace sites then each site must be given its own entry and corresponding 
probability of arrival in the E(Tstep) column vector. 
 
We determine the expected time of the growth unit incorporation reaction, 𝐸 𝑇!"# , by 
summing all entries in the two column vectors, 𝑬 𝑇!"#$  and 𝑬 𝑇!"#$ .  
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𝑬 𝑇!"#$ + 𝑇!"!" =
1

2𝑛

1

𝑅𝐿0𝑆0
+

1

𝑅𝑈0𝑆0
1

𝑅𝐿1𝑆1
+

1

𝑅𝑈1𝑆1
⋮

1

𝑅𝐿𝑛−1𝑆𝑛−1
+

1

𝑅𝑈𝑛−1𝑆𝑛−1

+
1

𝑛

0
𝑀(1)
⋮

𝑀(𝑛 − 1)

 

 
𝒐𝒏𝒆𝒔 1,𝑛 = 1,1,… ,1  

 
𝐸 𝑇!"# = 𝒐𝒏𝒆𝒔 1,𝑛 𝑬 𝑇!"#$ + 𝑇!"#$  

 

𝐸 𝑇!"# = 1,1,… ,1

1
𝑛

0+
1

2𝑅𝐿0𝑆0
+

1

2𝑅𝑈0𝑆0
1
𝑛 𝑀 1 +

1

2𝑅𝐿1𝑆1
+

1

2𝑅𝑈1𝑆1
⋮

1
𝑛 𝑀 𝑛 − 1 +

1

2𝑅𝐿𝑛−1𝑆𝑛−1
+

1

2𝑅𝑈𝑛−1𝑆𝑛−1

 

 
 
Given a flux of F atoms per nm per second to the step front, the expected time for adatom 
arrival is: 

𝐸 𝑇!"## !!
=

1

2𝑛𝑎∥𝐹
 

 
Thus, the expected time for attachment of an adatom to a kink site in a step fragment of 
length n is: 
 

𝐸 𝑡!"" ! =  𝐸 𝑇!"## !!
+ 𝐸 𝑇!"#  

 
The expected time for growth unit incorporation, E(Tinc), must correct for the detachment 
rate, Rdet, of atoms during growth. We do this by adding the correction factor, CF: 
 

𝐶𝐹 =

1
𝑅!"#

1
𝑅!"#

− 𝐸 𝑡!""
 

 
The derivation of the correction factor is provided at the end of the theoretical 
framework. For the example of adatoms approaching a step from the upper and lower 
terraces, the correction factor takes the form: 
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𝐶𝐹 =
𝑅!" !!

𝑅!" !! − 𝐸 𝑇!"## !!
+ 𝐸 𝑇!"#

 

 
𝐸 𝑇!"# = 𝐶𝐹 𝐸 𝑇!"## !!

+ 𝒐𝒏𝒆𝒔 1, 𝑘 𝑬 𝑇!"#$ + 𝑇!"#$ !
 

 
The expected time for step fragment completion, E(Tfragment), is obtained repeating the 
calculation of E(Tinc) after each new atom is added into the step until all sites have been 
filled: 
 

𝐸 𝑇!"#$%&'( = 𝐸 𝑇!"# !

!

!!!

  

𝐸 𝑇!"#$%&'( = 𝐶𝐹! 𝐸 𝑇!"## !!
+ 𝒐𝒏𝒆𝒔 1, 𝑘 𝑬 𝑇!"#$ + 𝑇!"#$ !

!

!!!

 

 
The term E[(Tstep + Tbind)k] varies depending upon the mechanism of adatom 
incorporation, and thus must be explicitly defined. Because the 1D nucleation event can 
occur at any one of the m available sites, we must randomize the initial growth unit 
adsorption in order to arrive at the expected time for step completion. The resulting 
equation gives the expected time for completion of an entire row (i.e. entire step), 
E(Trow), according to the mechanism depicted in Figure TF1c: 
 

𝐸 𝑇!"# !"#!.! = 𝐸 𝑇!"## !!
+

1
2𝑅!"

+
1

2𝑅!"
+
1
𝑚 𝐸 𝑇!"# !

!

!!!

!

!!!

 

 

𝑬 𝑇!"#$ + 𝑇!"#$ !!!
=
1
2

1
𝑅!"

+
1
𝑅!"

    

 

𝑬 𝑇!"#$ + 𝑇!"#$ !!!
=

1
4

1
𝑅!"

+
1
𝑅!"

1
4

1
𝑅!"

+
1
𝑅!"

+
2
𝑅!"

    

 

𝑬 𝑇!"#$ + 𝑇!"#$ !!!
=

1
𝑘

1
2

1
𝑅!"

+
1
𝑅!"

𝑀 1 +
1
2

1
𝑅!"

+
1
𝑅!"

⋮

𝑀 𝑘 − 1 +
1
2

1
𝑅!"

+
1
𝑅!"

 

 
Recall that n = maximum(m-j, j-1) 
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Expected Time of Incorporation – Direct Step Binding 
 
When the arrival of growth units into the step becomes sufficiently fast, the mechanism 
of incorporation no longer includes diffusion along the step (Fig TF1d). In general, these 
conditions have sufficiently fast growth rates such that the approximation CF ≈ 1 tends to 
be very good (i.e., kink detachment rates are negligible). For this reason, we have omitted 
the correction factor from the E(Trow) equations, but this approximation should be 
verified whenever running the theoretical framework on a new system. The threshold 
where the incorporation mechanism changes from step adsorption and diffusion to direct 
step binding (i.e. incorporation without diffusion within the step) can be approximated by 
comparing the expected time for growth units to jump into the step and the expected time 
for growth units to diffuse to the kink. In particular, the mechanism changes when the 
expected time for a growth unit to diffuse to a kink is greater than the expected time for a 
second growth unit to jump into the step. 
 
The expected time to complete a row of step atoms, E(Trow), via direct step binding is 
determined by summing the expected times for consecutive arrival and step adsorption 
events. For a step with m available binding sites prior to 1D nucleation we have: 
 

𝐸 𝑇!"# !"#!.! = 𝐸 𝑇!"## ! !!!
+
1
2

1
𝑅!"

+
1
𝑅!" !

𝑚−1

𝑘=0

 

 
Where the subscript k on the last term indicates that the expected time for jumping into 
the step can change as the number of adsorbed growth units in the step changes. When 
the activation energy for incorporation into the step does not depend strongly on the 
number of adsorbed growth units then the following approximation can be used: 
 

𝐸 𝑇!"# !"#!.! = 𝐸 𝑇!"## ! !!!
+

𝑚
2

1
𝑅!"

+
1
𝑅!"

𝑚−1

𝑘=0

 

 
Note that because the step does not complete symmetrically outward from the 1D 
nucleation site it is not sufficient to consider only the completion of the largest step 
fragment of n sites. Notice also that the detachment rate has been neglected because step 
completion occurs very rapidly with respect to growth unit detachment.  
 
 
Expected Time of Incorporation – Direct Kink Binding 
 
As the expected time for growth unit arrival at the step front approaches zero, 
incorporation into the step becomes reaction limited. When the activation energy for 
direct incorporation into a kink site is significantly lower than that for direct 
incorporation into a non-kink step site, the minimum expected time for step completion 
will occur via direct kink binding (Fig TF1e). That is, after 1D nucleation, growth units 
will exclusively incorporate into the step by jumping from the terraces into the kink 
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binding sites. Because this mechanism creates symmetric kink propagation from the 
initial 1D nucleation site, the expected time for step completion equals the expected time 
for the largest step fragment of n sites. Thus, the expected time equals the expected time 
for 1D nucleation randomized over the m possible nucleation sites plus the expected time 
for n consecutive kink binding events: 
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+
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!!!

 

 
𝑛 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑚 − 𝑗, 𝑗 − 1  

 
Expected Time of Step Completion 
 
The expected time to complete a row of step atoms is a function of the incorporation 
mechanism and flux of growth units to the step front, as described above. Here we 
present the six step completion equations: the three growth mechanisms from above, each 
with an expression for a system wherein growth units arrive from the lower and upper 
terraces and a system wherein growth units arrive exclusively from the lower terrace. If 
the expected time for step diffusion to kink binding sites is less than the expected time for 
a second growth unit to jump into the step, then mechanism 1 (i.e. step adsorption and 
diffusion) is used. Otherwise, the expected time for step completion via mechanisms 2 
and 3 are both computed and the minimum expected time is selected. This process is 
repeated from the initial step – corresponding to the edge of the 2D critical nucleus – to 
the final step, defined as the step that completes a net monolayer.  
 
 
 
The six expressions considered are summarized below: 
 
Mechanism 1, Upper and Lower Terrace 
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Mechanism 1, Lower Terrace Only 
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Mechanism 2, Upper and Lower Terrace 
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Mechanism 2, Lower Terrace Only 
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Mechanism 3, Upper and Lower Terrace 
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𝑛 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑚 − 𝑗, 𝑗 − 1  

 
Mechanism 3, Lower Terrace Only 
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Formula for Step Size as a Function of Partial Monolayer Radius 
 
In order to employ the expected time for step completion to determine the expected time 
for layer completion, we must derive an expression for the number of step sites as a 
function of the partial monolayer size. If we consider step flow via the completion of 
consecutive single steps, then the geometry of the partial monolayer and the symmetry of 
its growth (e.g. a triangle growing from three edges, a triangle growing from one edge, 
etc.) will be the primary factors in developing an expression for the number of step sites, 
m(h), as a function of the length, h, of the partial monolayer. Because we are especially 
interested in growth originating from the corners of triangular {111} facets (i.e. 
symmetry of growth on {111} nanorod facets), we will use the expression for a triangular 
partial monolayer growing from one edge: 
 

𝑚 ℎ + 1 = 𝑚 ℎ + 1 
 
When alternative geometries and growth symmetries are used, the appropriate expression 
is likely to change. The form of the recursion formula will only change by the value of 
the constant for many relevant cases. 
 
 
Expected Time of Net Monolayer Completion 
 
Once the expected time for step completion and the formula for the number of step sites 
as a function of partial monolayer size are known, the expected time of net monolayer 
completion is straightforward to compute. Using the example of a triangular partial 
monolayer spreading from one edge, we can see that the mth step requires m growth units 
for completion. We can therefore determine the expected time for monolayer completion 
by summing the expected time for step completion over the total number of steps 
required to complete a net monolayer: 
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Mechanism 1, Upper and Lower Terrace 
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Mechanism 1, Lower Terrace Only 
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Mechanism 2, Upper and Lower Terrace 
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Mechanism 2, Lower Terrace Only 
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Mechanism 3, Upper and Lower Terrace 
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Mechanism 3, Lower Terrace Only 
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Asymptotic Growth Rate Normal to Surface 
 
Although the expected time for net monolayer completion has a clear meaning and strong 
mathematical foundation, it is much more common to experimentally measure and report 
crystal growth “rates”. Although the rate of a process has an intuitive colloquial meaning, 
it is important to articulate exactly which rate is referenced when attempting to provide a 
meaningful mathematical expression. Because there is no reason to assume that the time 
for monolayer completion should be an exponentially distributed random variable, it 
cannot be assumed that the “rate” of monolayer completion is defined as the reciprocal of 
the expected time for monolayer completion. It is, however, reasonable to consider the 
asymptotic rate of monolayer formation over growth of several tens of nanometers. In 
this case, we can treat monolayer formation as a renewal process, and thus the expected 
time for layer formation as constant. This requires that we assume that the expected time 
for nucleation and the flux of growth units per step site per second are constant 
throughout the timeframe of crystal growth. Note, however, that a seed crystal growing 
from time t1 to t2 and another seed crystal growing from time t3 to t4 can be subject to 
different nucleation rates and flux. The (asymptotic) rate of crystal growth, Rhkl, normal 
to a facet with Miller indices hkl and monolayer height dhkl is defined as: 
 

𝑅!!" =
𝑑!!"

𝐸 𝑇!"#"$%&'( !!"

 

 
The units of Rhkl are nm per second, and the logarithm of this rate as a function of 
nucleation rate and growth unit flux is used to generate the crystal growth contour plots 
reported in the main text. The advantage of using this expression is that it can be 
compared to experimental measurements and alternative rate expressions commonly 
found in the literature. It should be noted, however, that working instead with the 
expected time for monolayer formation provides the advantages of a slightly less 
restricted mathematical foundation and distinct contributions from the expected times of 
2D nucleation and partial monolayer spread.  
 
Derivation of the Correction Factor for the Detachment of Growth Units 
 
Suppose we want to know the expected time for a step fragment of n unfilled sites to be 
completely filled, one site at a time. If the expected time for one atom to fill a binding site 
is E(tatt), then the expected time, E(tn,att), for n binding events is: 
 

𝐸 𝑡!,!"" =  𝑛𝐸 𝑡!""  
 
If detachment of atoms from binding sites did not occur, then E(tn) would be the expected 
time for the step fragment comprising n atoms to be completed. In reality, however, 
atoms detach from binding sites at a rate of Rdet. Because the detachment is a Poisson 
process, the expected time for an atom to detach, E(tdet), is: 
 

𝐸 𝑡!"# =
1
𝑅!"#
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From the expected times for incorporation and detachment of atoms at binding sites, we 
can write the expected number of attachments, Natt, and detachments, Ndet, from time t = 0 
to τ: 
 

𝑁!"" 𝜏 =
𝜏

𝐸 𝑡!""
 

 
𝑁!"# 𝜏 =

𝜏
𝐸 𝑡!"#

 

 
The number of attachments minus the number of detachments gives the net number of 
atoms incorporated, Ninc. The net number of atoms incorporated in time τ, is: 
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Setting τ = 1s gives the net number of atoms incorporated per second: 
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In order to determine the expected time, in seconds, for an atom to be incorporated, 
E(tinc), we take the reciprocal of Ninc: 
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The expected time, E(tn,inc), for n sites to be filled (i.e. Natt – Ndet = n), is therefore given 
by: 
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We see in the last expression, that the net time for n sites to be filled is equal to n times 
the expected time of attachment, multiplied by the ratio 
 

𝐸 𝑡!"#
𝐸 𝑡!"# − 𝐸 𝑡!""
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1
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1
𝑅!"#

− 𝐸 𝑡!""
 

 
 
Alternatively, we can derive this factor from the rates of attachment, detachment, and the 
net rate of incorporation: 
 

𝑅!"# = 𝑅!"" − 𝑅!"# 
 
If we assume that the incorporation of growth units is well modeled by a renewal process 
wherein the asymptotic rate of attachment gives a good approximation to the 
experimental rate of attachment, we can apply the theorem: 
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Then the expected time for n sites to be filled is given by: 
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Which again defines the expected time for incorporation as the expected time of 
attachment, multiplied by the ratio 
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