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S1 Transition probabilities and time evolution of symbiotic

dynamics

Here, we describe our full dynamical model of symbiosis evolution, calculate the probabil-

ities of transitions from state to state, and use these to calculate the time evolution of the

probability distribution over population states, given some initial distribution.

We suppose that the symbiosis is characterized by pairwise interactions according to

the following asymmetric game:

Player 2

C D

Player 1 A αAC , βAC αAD, βAD
B αBC , βBC αBD, βBD

(1)

Populations 1 and 2 (composed of player 1s and player 2s respectively) are of sizes N1

and N2, and have relative generation times g1 and g2. Each time-step, each individual

receives its average payoff from interacting with a random member of the other population

(each equally likely). If, in a given time-step, i members of population 1 play A, and j

members of population 2 play C, then we may describe the population state in that time-

step simply as (i, j), and the average payoff to individuals playing strategies A, B, C, and

D are:

πA(i, j) =
j

N2
αAC +

N2 − j
N2

αAD;

πB(i, j) =
j

N2
αBC +

N2 − j
N2

αBD;

πC(i, j) =
i

N1
βAC +

N1 − i
N1

βBC ;

πD(i, j) =
i

N1
βAD +

N1 − i
N1

βBD.

If an individual in population l receives average payoff π, this translates to a positive

fitness f via f = 1 +wlπ, so that w1, w2 > 0 calibrate the strength of selection in the two

populations. The fitnesses of individuals playing the various strategies in population state

(i, j) are fA(i, j) = 1 +w1πA(i, j), fB(i, j) = 1 +w1πB(i, j), fC(i, j) = 1 +w2πC(i, j), and

fD(i, j) = 1 + w2πD(i, j)

In each elementary time step, exactly one birth-death event occurs between the two

populations. With probability N1/g1
N1/g1+N2/g2

this is in population 1, and with probability
N2/g2

N1/g1+N2/g2
it is in population 2. If a birth-death event occurs in population l in a given

time-step, then one individual in population l is chosen to reproduce, with probability

proportional to fitness, and one individual is chosen to die, with each equally likely. The
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same individual can be chosen to reproduce and die. The reproducing individual produces

an offspring, which replaces the individual chosen to die. With probability 1 − εµl, the

offspring inherits the strategy its parent plays, and with probability εµl the offspring plays

the other strategy instead (it ‘mutates’).

With populations of size N1 and N2, there are n = (N1+1)(N2+1) possible populations

states (i, j), which can be given some (arbitrary) enumeration 1, 2, . . . , n. Let P(i,j)→(i′,j′)

be the probability that the system moves in one time-step from state (i, j) to step (i′, j′).

These one-step transition probabilities are:

P(i,j)→(i+1,j) =
N1/g1

N1/g1 +N2/g2
·
[
(1− εµ1)

ifA(i, j)

ifA(i, j) + (N1 − i)fB(i, j)

N1 − i
N1

+ εµ1
N1 − i
N1

]
;

P(i,j)→(i−1,j) =
N1/g1

N1/g1 +N2/g2
·
[
(1− εµ1)

(N1 − i)fB(i, j)

ifA(i, j) + (N1 − i)fB(i, j)

i

N1
+ εµ1

i

N1

]
;

P(i,j)→(i,j+1) =
N2/g2

N1/g1 +N2/g2
·
[
(1− εµ2)

jfC(i, j)

jfC(i, j) + (N2 − j)fD(i, j)

N2 − j
N2

+ εµ2
N2 − j
N2

]
;

P(i,j)→(i,j−1) =
N2/g2

N1/g1 +N2/g2
·
[
(1− εµ2)

(N2 − j)fD(i, j)

jfC(i, j) + (N2 − j)fD(i, j)

j

N2
+ εµ2

j

N2

]
;

with P(i,j)→(i,j) = 1 − P(i,j)→(i+1,j) − P(i,j)→(i−1,j) − P(i,j)→(i,j+1) − P(i,j)→(i,j−1), and

P(i,j)→(i′,j′) = 0 for all other states (i′, j′). We refer to the n × n matrix P that contains

these one-step transition probabilities as the transition matrix of the complete Markov

chain.

Given some initial probability distribution over the set of population states, v0 =(
v0

(i,j)

)
, we can compute the distribution over population states after t time-steps by

taking t successive powers of the transition matrix P :

vt = v0P t. (2)

Note that vt is a stochastic vector of length n, respecting the particular enumeration

1, 2, . . . , n chosen for the n population states.

The stationary distribution, v = limt→∞ vt, is the unique stochastic vector that solves,

for each state (i, j),

v(i,j) =
∑

(i′,j′)

v(i′,j′)P(i′,j′)→(i,j). (3)

S1.1 Mutualistic symbioses

The payoff matrix of the mutualism game [game (2) in the Main Text] is

Player 2

C D

Player 1 A 2, 1 0, 0

B k, k 1, 2

(4)
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Among the two coordination matchings, (A,C) and (B,D), population 1 prefers (A,C)

and population 2 prefers (B,D). The other matchings give the members of populations

1 and 2 equal payoff. Therefore, given a population state (i, j), a measure of the success

of population 1 in that state is simply the average proportion of (A,C) matchings in that

state minus the average proportion of (B,D) matchings: ij
N1N2

− (N1−i)(N2−j)
N1N2

. Given any

distribution over population states p, we may calculate the expected value of population

1’s success,
∑

(i,j) p(i,j) ·
(

ij
N1N2

− (N1−i)(N2−j)
N1N2

)
.

Therefore, given an initial distribution over population states, v0 =
(
v0

(i,j)

)
, making

use of Eq. (2), the expected value of population 1’s relative success after t time-steps is:

∑
(i,j)

vt(i,j) ·
(

ij

N1N2
− (N1 − i)(N2 − j)

N1N2

)
. (5)

This is the basis of Figs. 2 and 3 in the Main Text, and Figs. S1, S6B,C, and S5B,C,E,F in

this SI Appendix. For each possible starting point, these figures begin with a degenerate

initial distribution that is one at that point and zero elsewhere, and calculate according to

Eq. (5) the average relative success of population 1 after a short-run and long-run number

of time-steps. The figures display the results for all possible initial starting points.

S1.2 Antagonistic symbioses

The payoff matrix of the antagonism game [game (1) in the Main Text] is

Player 2

C D

Player 1 A 1, 0 0, 1

B 0, 1 1, 0

(6)

Among the four matchings, population 1 prefers (A,C) and (B,D) while population 2

prefers (A,D) and B,C). Therefore, given a population state (i, j), a measure of the

success of population 1 in that state is the average proportion of (A,C) and (B,D)

matchings in that state minus the average proportion of (A,D) and B,C) matchings:
ij+(N1−i)(N2−j)

N1N2
− i(N2−j)+(N1−i)j

N1N2
. Given any distribution over population states p, we may

calculate the expected value of population 1’s success,
∑

(i,j) p(i,j)·
(
ij+(N1−i)(N2−j)

N1N2
− i(N2−j)+(N1−i)j

N1N2

)
.

Given an initial distribution over population states, v0 =
(
v0

(i,j)

)
, making use of

Eq. (2), the expected value of population 1’s relative success after t time-steps is:

∑
(i,j)

vt(i,j) ·
(
ij + (N1 − i)(N2 − j)

N1N2
− i(N2 − j) + (N1 − i)j

N1N2

)
. (7)

This is the basis of Fig. 1 in the Main Text, and S6A, and S5A,D here.
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S2 Numerical analysis of the complete Markov chain

The stochastic process for the complete Markov chain defined by Eq. (2) does not make

any restrictions on the evolutionary parameters. It applies for any choice of generation

times, mutation rates, strengths of selection, and population sizes. But computation of the

time evolution of the distribution over population states requires us to calculate powers

of a transition matrix of dimension n× n, where n = (N1 + 1)(N2 + 1), and so analytical

results for arbitrary parameter values quickly become infeasible. However, provided that

the two populations are of moderate size, we can still use Eq. (2) to obtain exact numerical

results, which we report in what follows.

S2.1 Short-run dynamics versus long-run dynamics

For the complete Markov chain, we can distinguish two timescales. In the short run, the

fate of the two populations largely depends on the populations’ initial composition. For

example, when mutualistic symbioses start close to one of the two equilibria, (A,C) or

(B,D), they can be expected to further approach that equilibrium in the short run. But

as time goes by, mutations and random movements against the gradient of selection can

lead populations to leave one equilibrium, and to move near the other one. In the long

run, the process’s dependence on initial conditions disappears: as the transition matrix P

in Eq. (2) is primitive, the eventual success of a population is independent of where the

populations have started.

Figs. 1-3 in the Main Text, and Figs. S1, S6 show how differences in generation times,

mutation rates, selection strength and population sizes affect population 1’s success [as

measured by Eqs. (5) and (7)] for the two different timescales. In mutualistic symbioses

where k is large, we observe that populations with a longer generation time, lower selection

strength and smaller population size have an advantage in the short run (i.e., the respective

population is favored for a majority of initial conditions; see Main Text Fig. 2). In the

long run, however, differences in generation time become largely irrelevant, and the weaker

strength of selection and the smaller population size turn out to put population 1 at a

disadvantage. These results are reversed when k is small (Main Text Fig. 3), in which

case weaker selection is a disadvantage in the short run, but an advantage in the long run.

In antagonistic symbioses, the effect of the evolutionary parameters is unambiguous.

Here, the population with shorter generation time, higher mutation rate, higher selection

strength or larger population size is favored for all time scales.

S2.2 Robustness of results with respect to our modeling assumptions

In the Main Text, we predominantly considered in our long-run analysis the case where

mutations are rare (i.e., where the parameter ε is very small). In addition, we assumed

the fitness of an individual to be a linear function of its expected payoff, though other

functions are also admissible. To show that these assumptions are not responsible for our
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Figure S1: Mutualism dynamics when k = 3/2, and population 1 has (A) a longer generation time than
population 2, (B) an equal generation time to population 2’s, (C) a shorter generation time than population
2. For comparison with Fig. 2 in Bergstrom and Lachmann [1]. Each panel shows the numerically computed
dynamics, assuming that both populations coincide in their other evolutionary parameters. The upper
panels show population 1’s success, as measured by Eq. (5), after 50 generations for every possible initial
population (i.e., for each point in the squared state space). We observe a Red King effect: when population
1 has a longer generation time, the red area covers more than 50% of the square; the reverse is true
when population 1 has a shorter generation time. These short-run results are similar to Bergstrom and
Lachmann’s, and indeed, the upper panels of this figure closely resemble their Fig. 2. The lower panels
show the success of population 1 after 50,000 generations. By this time, selection-mutation equilibrium
has been reached, so that the starting point no longer influences the dynamics: all lower panels have a
uniform color. The populations are equally successful in the long run, no matter their relative generation
times. Parameters: k = 3/2, g1 = g2 = 1, N1 = N2 = 50, w1 = w2 = 0.05, g1 = g2 = 1, µ1 = µ2 = 1, and
ε = 0.001. (A) g1 = 10; (C) g2 = 10. A ‘generation’ is defined as N1 +N2 elementary updating events of
the Moran process.

qualitative results, we have calculated the invariant distribution of the complete Markov

chain for various values of ε (Figs. S2–S4), and using an exponential fitness function instead

of the linear one (Fig. S5).

Figs. S2–S4 visualize the invariant distribution of the Markov chain for three different

values of the baseline mutation rate, varying the parameter ε from ε = 0.0001 (top panels)

to ε = 0.01 (bottom panels). When mutations are rare, the two populations are almost

always situated at a boundary of the state space, and the states at the four corners are

most abundant (as indicated by the red color). That is, in this regime, the two populations

are usually monomorphic. Occasionally, a mutation introduces a new strategy into one

of the two populations; this mutation typically goes extinct or fixes in that population

before the next mutation occurs in either population. In this case, the weak-mutation

methodology (as introduced in detail in Section S4) provides an excellent approximation

of the dynamics of the complete Markov chain. We note that for mutualistic symbioses,

the value of k in the payoff matrix controls the path that leads from one equilibrium to
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Figure S2: Effect of baseline mutation rate on the long-run abundance of strategies in mutualistic
symbioses with k = 3/2. All panels show how abundant each population state is in the long run, according
to the invariant distribution of the complete Markov chain. The numbers in each quadrant correspond
to the fraction of time the respective quadrant is visited. Increases in the baseline mutation rate do not
qualitatively change the weak-mutation conclusions for this game, except that differences in generation
time and mutation rates lead to weak Red Queen effect [(A) and (B)]. With respect to differences in
selection strength we find that a strong Red Queen effect for small mutation rates can reverse to a weak
Red King effect when mutation rates are very large [(C), bottom panel]. For better visibility, we have
increased the baseline strength of selection compared to the previous figures: w1 =w2 =0.2 [and w1 =0.05,
w2 =0.5 in (C)]. All other parameters are the same as before.
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Figure S3: Effect of baseline mutation rate on the long-run abundance of strategies in mutualistic
symbioses with k = 1/2. As in Fig. S2, the figure illustrates the invariant distribution of the complete
Markov chain. Differences in selection strength and population size lead to a comparably strong Red King
effect, whereas differences in mutation rates yield a weak Red King effect. Differences in generation time
can result in a notable Red Queen effect. All parameters are the same as in the previous figure, except k.
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Figure S4: Effect of baseline mutation rate on the long-run abundance of strategies in antagonistic
symbioses. In all panels, the invariant distribution puts less weight on states that are beneficial for
population 1, i.e., states close to the (A,C) and (B,D) corners. This is as expected under Red Queen
dynamics, as population 1 has a larger generation time (A), a lower mutation rate (B), weaker selection
(C), or a smaller population size (D). All evolutionary parameters are the same as in Figs. S2 and S3.

another. For k = 3/2, transitions from (A,C) to (B,D) and back typically pass through the

non-coordination state (B,C) (Fig. S2), whereas for k = 1/2, these transitions typically

pass through the other non-coordination state (A,D) (Fig. S3).

As the mutation parameter ε increases, states in the interior of the state space occur

more often, and the weak-mutation approximation is no longer an excellent quantitative

match. Nevertheless, Figs. S2–S4 indicate that the qualitative predictions from the weak-

mutation case are largely robust to changes in ε, in the sense that populations that are

favored under the weak-mutation regime also tend to be favored as the baseline mutation

rate is increased.

Similarly, we observe only a small quantitative change, and no qualitative change,

when we assume that the fitness of an individual is defined as f = exp(wπ), instead of the

linear specification f = 1 + w · π used in the Main Text (Fig. S5).

S3 Mixing time of the Markov chain

We have distinguished the behavior of the dynamics in the ‘short run’ and the ‘long run’.

Here, we provide a more precise picture of how many generations it takes to be in the

‘long run’, for the two games we have studied. Since the object of interest in the long-run

dynamics is the stationary distribution of the co-evolutionary process, the ‘long run’ should

be defined as the number of generations required for the distribution over population states

8



−1.0

0.0

1.0

10
−6

10
−4

10
−2

10
0

R
e

la
ti
v
e

 s
u

c
c
e

s
s

o
f 

p
o

p
u

la
ti
o

n
 1

Mutation rate ε

A Population 1 is
strongly favored

Population 1 is
strongly disfavored

L
in

e
a

r 
F

it
n

e
s

s

−1.0

0.0

1.0

10
−6

10
−4

10
−2

10
0

R
e

la
ti
v
e

 s
u

c
c
e

s
s

o
f 

p
o

p
u

la
ti
o

n
 1

Mutation rate ε

B

−1.0

0.0

1.0

10
−6

10
−4

10
−2

10
0

R
e

la
ti
v
e

 s
u

c
c
e

s
s

o
f 

p
o

p
u

la
ti
o

n
 1

Mutation rate ε

C

−1.0

0.0

1.0

10
−6

10
−4

10
−2

10
0

R
e

la
ti
v
e

 s
u

c
c
e

s
s

o
f 

p
o

p
u

la
ti
o

n
 1

Mutation rate ε

D Population 1 is
strongly favored

Population 1 is
strongly disfavored

E
x

p
o

n
e

n
ti

a
l 

F
it

n
e

s
s

−1.0

0.0

1.0

10
−6

10
−4

10
−2

10
0

R
e

la
ti
v
e

 s
u

c
c
e

s
s

o
f 

p
o

p
u

la
ti
o

n
 1

Mutation rate ε

E

−1.0

0.0

1.0

10
−6

10
−4

10
−2

10
0

R
e

la
ti
v
e

 s
u

c
c
e

s
s

o
f 

p
o

p
u

la
ti
o

n
 1

Mutation rate ε

F

Population 1 has
longer generation time

(g
1
=10g

2
)

Population 1 has
lower mutation rate

(10µ
1
=µ

2
)

Population 1 is
under weaker selection

(10w
1
=w

2
)

Population 1 is
of smaller size

(10N
1
=N

2
)

Antagonistic Symbioses Mutualistic Symbioses (k<1) Mutualistic Symbioses (k>1)

Figure S5: Impact of baseline mutation rate on the long-run relative success of population 1 in antagonis-
tic and mutualistic symbioses. For various parameter combinations and two different fitness specifications,
each panel shows the relative success of population 1, either using the payoff matrix for antagonistic sym-
bioses (A), for mutualistic symbioses with k = 1/2 (B), or for mutualistic symbioses with k = 3/2 (C).
We consider differences in generation time (blue), mutation rate (red), the strength of selection (purple),
and population size (yellow). Dots show the numerically computed measures of population 1’s success, as
defined in (5) and (7) respectively. Dashed lines indicate the respective analytical solution in the limit of
rare mutations. In antagonistic symbioses, all four dimensions put population 1 at a disadvantage when
mutations become sufficiently rare. In mutualistic symbioses, only population size and selection strength
have a notable effect; this effect is positive for k = 1/2 and negative for k = 3/2. The analytical solution
provides a good approximation when εµ≤10−4. Parameters are the same as in Figs. S2–S4.

to be close to the stationary distribution, i.e., the ‘mixing time’ of the process.

For small populations, such as those for which we have displayed results in our various

figures, the time evolution of the probability distribution can be computed exactly, and

so we can directly see how rapidly it converges to being stationary (Fig. S6). We see that,

for the parameters we have studied in the Main Text figures and in Figs. S1-6 here (i.e.,

all with small population sizes, of order 50), the long run in antagonistic symbioses can be

thought to be after about 102-103 generations (Fig. S6A), while in mutualistic symbioses,

the long run is after about 103-104 generations (Fig. S6B,C).

For larger population sizes, direct computation of the time evolution of the evolutionary

process is not feasible, since it involves taking successive powers of very large matrices.

Moreover, numerical estimation of the mixing time is computationally very difficult, and

in fact not feasible for our purposes, which are to see how the mixing time changes as we

vary key parameters like population size. Therefore, we resort to approximate analytical

arguments. We shall focus on the case where mutations are rare in both populations, so

that there are seldom several mutations segregating in the populations.
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Figure S6: Dynamics of mutualistic and antagonistic symbioses over time. For various parameter combi-
nations, the three plots show the relative success of population 1, using the payoff matrix for antagonistic
symbioses (A), for mutualistic symbioses with k = 1/2 (B), and for mutualistic symbioses with k = 3/2
(C). The panels illustrate the temporal effects of differences in generation time (blue), mutation rate (red),
the strength of selection (purple), and population sizes (yellow). The curves show the expected evolu-
tion of population 1’s relative success, as measured by the quantities (5) for mutualistic symbioses and
(7) for antagonistic symbioses. (A) In the long run, antagonistic symbioses disfavor the population with
longer generation time, lower mutation rate, weaker selection strength and smaller population size. (B)
In mutualistic symbioses with k = 1/2, the population with longer generation time and weaker selection
strength is disfavored in the intermediate run. However, in the long run, differences in generation time
have a negligible impact on the success of a population, and the effect of weaker selection becomes positive.
The other two dimensions have either no substantial effect (differences in mutation rates) or they have a
positive effect as well (smaller population size). (C) When k = 3/2, the effects of weaker selection and
smaller population size are reversed from the case of k = 1/2. Parameters are the same as in Figs. 1-3 in
the Main Text.

S3.1 Antagonistic symbioses

In antagonistic symbioses, when the mutation rate is small, the probability distribution

over time is influenced predominantly by those transitions from pure state to pure state

that are driven by positive selection (i.e., the ‘arms race’). Given some initial starting

point, the dynamics quickly move towards one of the pure states, after which the cycle

from pure state to pure state begins. Having moved to some new pure state, how quickly

the dynamics subsequently move to a new pure state is a random variable, but after

sufficiently many such transitions, we expect the proportion of time that has been spent

in each state to be close to that in the stationary distribution.

Therefore, the mixing time should be proportional to the time it takes to move from one

pure state to another. Starting from a pure state, this requires a mutation to substitute,

i.e., to arrive and fix, in the presently disfavored population. If the mutation rate is

low enough, then the rate-limiting part of this process is the arrival time of a mutation

destined to fix, and not the time it takes the mutation to fix (which occurs relatively

quickly). Mutations arrive in this population i at rate Niεµi, and have selective advantage

wi (= [1 + wi(1)]− [1 + wi(0)]).

We may distinguish two cases: weak selection and strong selection. Weak selection

applies when Niwi < 1, in which case the fixation probability of beneficial mutations is

10



approximately 1/Ni (i.e., they are nearly neutral). So, under weak selection, the substitu-

tion rate of beneficial mutations in population i is approximately Niεµi/Ni = εµi, and so

the mixing time of the process will be approximately proportional to 1/mini(εµi). That

is, the mixing time should decrease as the mutation rates of the populations increase. This

approximation should be good as long as the waiting time for a mutation destined to fix

in a population, 1/εµi, is significantly longer than the time it takes that mutation to fix,

which in the case of weak selection is about 2Ni generations, on average. So, our above

analytical reasoning should be valid when is Niεµi � 1.

Strong selection applies when Niwi > 1, and if wi is small, the fixation probabil-

ity of beneficial mutations with selective advantage wi is approximately wi [3]. Under

strong selection, therefore, the substitution rate of beneficial mutations in population i

is approximately Niεµiwi, and so the mixing time of the process will be proportional to

1/mini (Niεµiwi). That is, the mixing time should decrease as the sizes, mutation rates,

and selection strengths of the populations increase. Again, this approximation will be

good if the waiting time for a mutation destined to fix in a population, here 1/(Niεµiwi),

is much larger than the time it takes to fix, which is log(Ni)/wi on average. So, we require

Ni log(Ni)εµi � 1.

S3.2 Mutualistic symbioses

For the evolutionary process to mix in the case of the mutualism game also requires that

each pure state be visited sufficiently often, the equilibria (A,C) and (B,D), as well as

the non-equilibria (A,D) and (B,C).

In the case of weak selection in both populations, N1w1, N2w2 < 1, substitutions that

drive the population state from one pure state to the other occur at rate εµi if in population

i, and so the mixing time of the process should be proportional to 1/mini(εµi), as in the

case of antagonistic symbioses with weak selection.

In the case of strong selection in at least one population, the mixing time of the evo-

lutionary process will be determined by how long it takes to substitute against selection

in that population (or both), i.e., to substitute out of equilibrium. This is because substi-

tutions into equilibrium, under positive selection, occur on a much faster timescale than

substitutions out of equilibrium when the mutation rates in the two directions are equal.

Another way of saying this is that the evolutionary process will spend most of the time in

equilibrium states.

For example, consider the substitution rate from the equilibrium state (A,C) to the

non-equilibrium state (A,D). This involves the arrival in an all-C population 2 of a D

mutant, and the subsequent fixation of the D mutant. D mutants arrive at rate N2εµ2.

They receive payoff 0 versus the incumbent strategy C’s payoff of 1, and are therefore at

relative selective disadvantage −w2/(1 + w2). Under strong selection, the fixation proba-

bility of such a mutant is approximately w2
1+w2

exp (−N2
w2

1+w2
) [5], and so the substitution

rate from (A,C) to (A,D) is approximately N2εµ2
w2

1+w2
exp

(
−N2

w2
1+w2

)
. The substitu-
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tion rates from (A,C) to (B,C), from (B,D) to (B,C), and from (B,D) to (A,D) can be

estimated similarly as N1εµ1
w1(2−k)
1+2w1

exp
(
−N1

w1(2−k)
1+2w1

)
, N2εµ2

w2(2−k)
1+2w2

exp
(
−N2

w2(2−k)
1+2w2

)
,

and N1εµ1
w1

1+w1
exp

(
−N1

w1
1+w1

)
respectively.

The mixing time under strong selection should be proportional to the inverse of the

smallest of these four substitution rates. In each case, the properties of the mixing time

will be similar. Suppose, for instance, that the (A,C) to (A,D) substitution is slowest.

Then the mixing time of the process is proportional to

exp
(
N2

w2
1+w2

)
N2

w2
1+w2

εµ2
.

For large N2
w2

1+w2
, the exponential term in the numerator dominates, and the mixing

time becomes very large. In such cases, the stationary distribution is unlikely to be

approached on realistic timescales. For smaller values of N2
w2

1+w2
, mixing will occur on

realistic timescales.

S4 Weak-mutation methodology

A general description of the weak-mutation methodology that we have employed can be

found in ref. [9]. The inclusion of generation rates is the only difference between this and

the methodology set out there. Here, we shall give the method in full for the particular

case of 2-player, 2-strategy games that we have studied. We alter the notation a little from

the previous section, so that the payoff to a member of population i playing strategy X

who encounters a member of the other population playing strategy Y is denoted πi(X,Y )

In the weak mutation limit, ε → 0, the evolutionary dynamics converge to an em-

bedded dynamics over just the pure states (in which each population is monomorphic).

These pure states can be labelled (A,C), (A,D), (B,C), and (B,D), which we shall, for

notational convenience, enumerate as pure states 1, 2, 3, and 4. We write ρi(x, y) for

the fixation probability of a single payoff-x mutant in population i otherwise pure for a

payoff-y strategy. In the Moran process that we have predominantly used, and which is

described in the previous section,

ρi(x, y) =
1−

(
1+wix
1+wiy

)−1

1−
(

1+wix
1+wiy

)−Ni
.

The dynamics can also easily be extended to other processes. For example, it could be

that population i experiences a full-population Wright-Fisher update with probability

proportional to gi. In this case, applying to the above, we write s(x, y) = 1 − 1+wix
1+wiy

and
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make use of Kimura’s diffusion approximation

ρi(x, y) =
1− e−s(x,y)

1− e−Nis(x,y)
.

In fact, we may make use of any process that satisfies the properties that, without muta-

tions, (a) absent strategies would remain absent, and (b) any strategy that is present but

not fixed has positive probability of increasing its representation in the next generation.

Given such a process, and therefore fixation probability functions ρ1(·, ·) and ρ2(·, ·) for

the two populations, the one-step transition probabilities in the embedded dynamics are:

P1→2 =
N2µ2

g2
ρ2

(
π2(D,A), π2(C,A)

)
; P2→1 =

N2µ2

g2
ρ2

(
π2(C,A), π2(D,A)

)
;

P1→3 =
N1µ1

g1
ρ1

(
π1(B,C), π1(A,C)

)
; P3→1 =

N1µ1

g1
ρ1

(
π1(A,C), π1(B,C)

)
;

P2→4 =
N1µ1

g1
ρ1

(
π1(B,D), π1(A,D)

)
; P4→2 =

N1µ1

g1
ρ1

(
π1(A,D), π1(B,D)

)
;

P3→4 =
N2µ2

g2
ρ2

(
π2(D,B), π2(C,B)

)
; P4→3 =

N2µ2

g2
ρ2

(
π2(C,B), π2(D,B)

)
;

P1→4 = P4→1 = P2→3 = P3→2 = 0;

P1→1 = 1− P1→2 − P1→3; P2,2 = 1− P2→1 − P2→4;

P3→3 = 1− P3→1 − P3→4; P4→4 = 1− P4→2 − P4→3.

The stationary distribution over the states, λ = [λ1, λ2, λ3, λ4], is the stochastic vector

that solves

λi =
4∑
j=1

λjPj→i for i = 1, 2, 3, 4.

S5 Antagonistic symbioses, weak-mutation limit

We consider here the antagonistic symbiosis payoff matrix (game [1] in the Main Text).

Imposing no restrictions on the rate parameters µ1, µ2, g1, g2, N1, N2, w1, and w2,

the stationary distribution, calculated according to the method described in the previous

section, is

λ = [s1, 1, 1, s1]/λ̄,

where λ̄ = 2 + 2s1, and

s1 =

N1µ1
g1

ρ1(1, 0) + N2µ2
g2

ρ2(0, 1)

N1µ1
g1

ρ1(0, 1) + N2µ2
g2

ρ2(1, 0)
.

The long-run success of population 1 relative to population 2 is proportional to λ1−λ4 =

(s1 − 1)/λ̄, which is increasing in s1.

Holding the rate parameters of population 2 constant, and focusing on the rate pa-
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rameters of population 1, a sufficient condition for the success of population 1 to increase

is therefore that the term N1µ1
g1

ρ1(1, 0) increases and the term N1µ1
g1

ρ1(0, 1) decreases. The

former term is the substitution rate of beneficial mutations in population 1, while the

latter is the substitution rate of deleterious mutations.

S5.1 Selection strength

A higher selection strength w1 increases the fixation probability of beneficial mutations

ρ1(1, 0) and decreases the fixation probability of deleterious mutations ρ1(0, 1) for any rea-

sonable evolutionary process (this is, after all, a plausible definition of selection strength),

but has no effect on the arrival rate of these mutations. It therefore increases the sub-

stitution rate of beneficial mutations and decreases the substitution rate of deleterious

mutations, and therefore increases s1 and thus the relative success of population 1.

S5.2 Population size

It follows that, if the evolutionary process is such that beneficial mutations have a faster

and deleterious mutations a slower substitution rate in larger populations (loosely, if nat-

ural selection acts more efficiently in larger populations), then a larger population size for

population 1 is associated with a larger value of s1, i.e., greater long-run success. It is folk

knowledge that this property holds of the Wright-Fisher and Moran processes, though we

have been unable to find direct proofs in the literature, and so provide them here.

We should note that the usual statement of the result that beneficial mutations sub-

stitute at a higher rate in larger populations assumes that the beneficial mutations in

question confer a selective advantage s � 1/Ne while Nes � 1, so that their fixation

probability in isolation can be approximated by s (in a haploid population) or 2s (in a

diploid population, where s is the haploid fitness contribution). It follows directly that

the substitution rate, µNs (haploid) or 4µNs (diploid), is increasing in N .

In contrast, the results below hold for all selection coefficients s (including s < 0) and

population sizes N .

Moran: Suppose that mutants are of relative fitness r 6= 1. Then, if independent (no

interference of any sort), they arrive and fix at rate

µN
1− r−1

1− r−N
.

The proportional change of this quantity with respect to change in N is

∂

∂N
ln

(
µN

1− 1/r

1− 1/rN

)
=

1

N
− ln r

rN − 1

sign
= sgn(r − 1)[rN − 1−N ln r]

sign
= sgn(r − 1)

where the second step is the result of multiplying through by N(rN − 1), which is positive

if r > 1 and negative if r < 1, and the last step follows from x > 1 + ln (x) for all x 6= 1.
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Therefore,

sgn

[
∂

∂N

(
µN

1− r−1

1− r−N

)]
= sgn(r − 1),

and so beneficial mutations (r > 1) arrive and fix at a higher rate in a larger population,

while detrimental mutations (r < 1) arrive and fix at a lower rate in a larger population.

Wright-Fisher (diffusion approximation): For a Wright-Fisher process, in the diffusion

limit, writing s = r − 1, the arrival-fixation rate varies with N according to

∂

∂N

(
µN

1− e−s

1− e−Ns

)
= µ

(
1− e−s

1− e−Ns
−N 1− e−s

(1− e−Ns)2
se−Ns

)
sign
= sgn(s)

[
1− e−Ns −Nse−Ns

]
= sgn(s)

[
1− 1 +Ns

eNs

]
.

But ex > 1 + x for all x 6= 0, and so

sgn

[
∂

∂N

(
µN

1− e−s

1− e−Ns

)]
= sgn(s).

Though they do not bear on the problem considered in our Main Text, it is nonetheless

worth noting some implications of the above results. One major implication concerns the

rate at which populations of different size are expected to adapt; that is, the average rate

at which fitness increases in populations of differing size. Again, the result below is folk

knowledge in population genetics, but we have been unable to find a general proof.

Assume that mutations arise at rate µ per replication, and sufficiently infrequently at

the population level that their fate, extinction or fixation, is almost always determined

before the arrival of the next mutation in the population—this is the commonly-assumed

‘sequential fixations’ model [6]. We study a haploid population of size N , where the next

mutation that appears in the population is drawn from some fitness effect distribution

f(s), where s is the fitness difference between current members of the population and the

potential mutant. We assume this distribution to be atomless in what follows, but this is

not necessary in general. Writing ρ(s,N) for the fixation probability of a mutant of fitness

effect s in a population of size N (as written for the Moran and Wright-Fisher processes

above), the current rate of fitness increase of the population can then be written

Rfitness = Nµ

∫ ∞
−∞

sf(s)ρ(s,N)ds.
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This changes with N according to

∂

∂N
Rfitness =

∂

∂N

[
Nµ

∫ ∞
−∞

sf(s)ρ(s,N)ds

]
=

∂

∂N

[
−
∫ 0

−∞
−|s|f(s)µNρ(s,N)ds+

∫ ∞
0

sf(s)µNρ(s,N)ds

]
=

∫ 0

−∞
−|s|f(s)µ

[
∂

∂N
Nρ(s,N)

]
ds+

∫ ∞
0

sf(s)µ

[
∂

∂N
Nρ(s,N)

]
ds.

From what we showed earlier, we note that if the evolutionary process is a Wright-Fisher or

a Moran process, then both integrands in this last line are positive, and so ∂
∂NRfitness > 0.

S5.3 Mutation rate and generation time

Finally, write r1 = (µ1/g1)/(µ2/g2), so that s1 = N1r1ρ1(1,0)+N2ρ2(0,1)
N1r1ρ1(0,1)+N2ρ2(1,0) . Then

∂s1

∂r1
= N1N2

ρ1(1, 0)ρ2(1, 0)− ρ1(0, 1)ρ2(0, 1)

[N1r1ρ1(0, 1) +N2ρ2(1, 0)]2
,

which is positive if ρ1(1, 0) > ρ1(0, 1) and ρ2(1, 0) > ρ2(0, 1), i.e., if, in both populations,

beneficial mutations have higher fixation probability than deleterious mutations. Again,

this is true of all reasonable evolutionary processes.

S5.4 Moran process

In the special case of a Moran process operating in each population, and assuming N1 =

N2 = N and w1 = w2 = w, we have ρ1 ≡ ρ2 = ρ, and ρ(1,0)
ρ(0,1) = (1 + w)N−1 =: γ. Then

s1 =
Nr1ρ(1, 0) +Nρ(0, 1)

Nr1ρ(0, 1) +Nρ(1, 0)
=
r1
ρ(1,0)
ρ(0,1) + 1

r1 + ρ(1,0)
ρ(0,1)

=
r1γ + 1

r1 + γ
.

This is the basis of Eq. [3] in the Main Text.

S6 Mutualistic symbioses, weak-mutation limit

The mutualism payoff matrix (game [2] in the Main Text) is

Player 2

C D

Player 1 A 2, 1 0, 0

B k, k 1, 2
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The stationary distribution, calculated according to the method above, is

λ =
[
λ̃1, λ̃2, λ̃3, λ̃4

]
/λ̄,

where λ̄ is a normalization constant and

λ̃1 = ρ1(2, k) [ρ2(k, 2)ρ1(1, 0) + ρ2(1, 0)ρ1(0, 1)] + r1ρ2(1, 0) [ρ2(2, k)ρ1(0, 1) + ρ2(k, 2)ρ1(2, k)]

λ̃2 = ρ1(0, 1) [ρ2(2, k)ρ1(k, 2) + ρ2(0, 1)ρ1(2, k)] + r1ρ2(0, 1) [ρ2(2, k)ρ1(0, 1) + ρ2(k, 2)ρ1(2, k)]

λ̃3 = ρ1(k, 2) [ρ2(k, 2)ρ1(1, 0) + ρ2(1, 0)ρ1(0, 1)] + r1ρ2(k, 2) [ρ2(0, 1)ρ1(1, 0) + ρ2(1, 0)ρ1(k, 2)]

λ̃4 = ρ1(1, 0) [ρ2(2, k)ρ1(k, 2) + ρ2(0, 1)ρ1(2, k)] + r1ρ2(2, k) [ρ2(0, 1)ρ1(1, 0) + ρ2(1, 0)ρ1(k, 2)]

Here, r1 = (µ1N1/g1)/(µ2N2/g2) (this definition is slightly different from that we employed

in the antagonistic symbiosis section above). Notice that the dependence on r1 is not

necessarily as simple as it immediately appears from the expressions for the λ̃i, because

the normalizing constant λ̄ also depends on r1.

S6.1 Mutation rate and generation time

If we fix N1 = N2 = N and w1 = w2 = w, then the fixation probability functions of the

two populations coincide: ρ1 ≡ ρ2 =: ρ. The stationary distribution takes on the simple

form

λ =

[
1,
ρ(0, 1)

ρ(1, 0)
,
ρ(k, 2)

ρ(2, k)
, 1

]
/λ̄,

where λ̄ normalizes that λ sums to one. The stationary distribution is therefore indepen-

dent of the mutations rates and generation times of the two populations.

In the case of the Moran process, on which we focused in the Main Text, the stationary

distribution simplifies to Eq. [5] in the Main Text:

λ =

[
1,

(
1

1 + w

)N−1

,

(
1 + kw

1 + 2w

)N−1

, 1

]
/λ̄.

Why do the mutation rate and generation time have no effect on the stationary dis-

tribution when mutation is weak? This result is a special case of the following general

statement: For any 4-state Markov chain, if

P1→2/P2→1 = P2→4/P4→2 = A,

P1→3/P3→1 = P4→3/P3→4 = B,

and P1→4 = P4→1 = P2→3 = P3→2 = 0,

then the stationary distribution is simply λ = [1, A,B, 1]/λ̄, where λ̄ = 2 +A+B.

In the mutualism game, when N1 = N2 = N and w1 = w2 = w, the fixation probability

functions ρ1(·, ·) and ρ2(·, ·) are identical (not just for the Moran process, but for any
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evolutionary process whose fixation probability function depends only on population size

and selection strength). Let ρ(·, ·) = ρ1(·, ·) = ρ2(·, ·). Then

P1→2

P2→1
=

N2µ2
g2

ρ2(0, 1)

N2µ2
g2

ρ2(1, 0)
=
ρ(0, 1)

ρ(1, 0)
=

N1µ1
g1

ρ1(0, 1)

N1µ1
g1

ρ1(1, 0)
=
P2→4

P4→2
.

So P1→2/P2→1 = P2→4/P4→2 = A, where A = ρ(0, 1)/ρ(1, 0) is independent of the

mutation rates and generation rates of the two populations. Similarly, P1→3/P3→1 =

P4→3/P3→4 = B, where B = ρ(k, 2)/ρ(2, k) too depends only on N and w.

So the stationary distribution does not depend on µ1, µ2, g1, or g2. This result

stems from consideration of probabilities of transitions against selection (e.g., P1→2 > 0);

it cannot be found using methods that rule out such transitions, such as deterministic

dynamics like the replicator equation.

S6.2 Selection strength

In order to explore the effect of selection strength on how the populations fare (in the
case of a Moran process) we look at the effect of this parameter on λ(A,C) and λ(B,D), i.e.,
λ1 and λ4. Using the expression given above for the stationary distribution, we calculate
that

λ(A,C) − λ(B,D)
sign
=

(
1

ρ2(2, k)
+ r1

1

ρ1(2, k)

)((
1

1 + w1

)N1−1

−
(

1

1 + w2

)N2−1
)

−
(

1

ρ2(1, 0)
+ r1

1

ρ1(1, 0)

)((
1 + kw1

1 + 2w1

)N1−1

−
(

1 + kw2

1 + 2w2

)N2−1
)

=: g(w1, w2).

Fix N1 = N2 = N and w2 = w, and assume a slight increase in w1 from this value

(w1 → w + ∆w). Define

c1(x) :=
1−

(
1+kx
1+2x

)−1

1−
(

1+kx
1+2x

)−N ; g1(x) :=

(
1

1 + x

)N−1

;

c2(x) :=
1−

(
1

1+x

)−1

1−
(

1
1+x

)−N ; g2(x) :=

(
1 + kx

1 + 2x

)N−1

,

and note that c1(w) = 1/ρ2(2, k) and c2(w) = 1/ρ2(1, 0). Then

g(w1, w) = [c1(w) + r1c1(w1)] (g1(w1)− g1(w))− [c2(w) + r1c2(w)] (g2(w1)− g2(w)) .
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Let w1 = w + ∆w. Taylor expanding c1, c2, g1 and g2 around ∆w = 0,

g(w + ∆w,w) = (1 + r1)
[
c1(w)g′1(w)− c2(w)g′2(w)

]︸ ︷︷ ︸
First order term

∆w + o (∆w)

Hence, the sign of λ(A,C)−λ(B,D) for ∆w sufficiently small (and positive) will be determined

by the sign of the first order term:

λ(A,C) − λ(B,D)
sign
=

1

ρ2(2, k)
g′1(w)− 1

ρ2(1, 0)
g′2(w)

When w = w∗ := 1−k
k , ρ2(2, k) = ρ2(1, 0) and g1(w) = g2(w). This suggests that a

useful reparameterization is w = 1−k+η
k . Then η > 0 corresponds to w > w∗ and η < 0

corresponds to w < w∗. Since w is constrained to be positive, we must have that η > k−1.

With this reparameterization we have

c̃1(η) := c1

(
1− k + η

k

)
=

1− k−N
(

1− η
2−k+2η

)−N
1− k−1

(
1− η

2−k+2η

)−1 ;

g̃1(η) := g1

(
1− k + η

k

)
= kN−1

(
1− η

1 + η

)N−1

;

c̃2(η) := c2

(
1− k + η

k

)
=

1− k−N
(

1− η
1+η

)−N
1− k−1

(
1− η

1+η

)−1 ;

g̃2(η) := g2

(
1− k + η

k

)
= kN−1

(
1− η

2− k + 2η

)N−1

.

Define v1(η) := k
(

1− η
2−k+2η

)
and v2(η) := k

(
1− η

1+η

)
. Then

λ(A,C) − λ(B,D)
sign
=

1− v−1
2 (η)

1− v−N2 (η)

d

dη

(
vN−1

2 (η)
)
− 1− v−1

1 (η)

1− v−N1 (η)

d

dη

(
vN−1

1 (η)
)

sign
=

1− v−1
2 (η)

1− v−N2 (η)
vN−2

2 (η)v
′
2(η)− 1− v−1

1 (η)

1− v−N1 (η)
vN−2

1 (η)v
′
1(η)

It can easily be verified that v
′
1(η) < 0 and v

′
2(η) < 0. Writing f(x) := 1−x−1

1−x−N x
N−2,

λ(A,C) − λ(B,D)
sign
= f(v2(η))v

′
2(η)− f(v1(η))v

′
1(η)
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Let

h1(η) :=
η

2− k + 2η

[
⇒ h

′
1(η) :=

2− k
(2− k + 2η)2

=
(2− k)

η2

(
1− v1(η)

k

)2
]

h2(η) :=
η

1 + η

[
⇒ h

′
2(η) :=

1

(1 + η)2
=

1

η2

(
1− v2(η)

k

)2
]
.

Clearly h′1(η) = −v′1(η)/k and h′2(η) = −v′2(η)/k, so

λ(A,C) − λ(B,D)
sign
= f(v1(η))h

′
1(η)− f(v2(η))h

′
2(η)

sign
= (2− k)f(v1(η))

(
1− v1(η)

k

)
− f(v2(η))

(
1− v2(η)

k

)
Setting tk(x) :=

(
1− x

k

)2
f(x),

λ(A,C) − λ(B,D)
sign
= (2− k)tk(v1(η))− tk(v2(η)).

We note that for any fixed values of x1 and x2 — for example, x1 = v1(η) and x2 = v2(η)

— and any k, if x1 < x2, then

tk(x1)

tk(x2)
=

(
x1

x2

)N−2
(

1− 1
x2

N

1− 1
x1

N
·

1− 1
x1

1− 1
x2

·
[

1− x1
k

1− x2
k

]2
)

=

(
x1

x2

)2N−2
(

1− xN2
1− xN1

·
1− 1

x1

1− 1
x2

·
[

1− x1
k

1− x2
k

]2
)
−−−−→
N→∞

0

It can also be verified that v1(η) < v2(η) when η < 0, while v1(η) > v2(η) when η > 0.

Therefore, for large enough N :

if η > 0, (2− k)tk(v1(η)) > tk(v2(η))
[
⇒ λ(A,C) − λ(B,D) > 0

]
;

if η < 0, (2− k)tk(v1(η)) < tk(v2(η))
[
⇒ λ(A,C) − λ(B,D) < 0

]
.

In the special case η = 0 (that is, w = w∗) we have that tk(v1(η)) = tk(v2(η)) so

λ(A,C) − λ(B,D)
sign
= 1− k

In summary, in the limit of large N , when w1 = w + ∆w > w = w2,

1. If k ∈ (0, 1), then

λ(B,D) < λ(A,C) if w ≥ 1− k
k

That is, the increase in the strength of selection in population 1 is beneficial.
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Figure S7: The effect of a slight increase in the population size or selection strength of population 1 for
different values of k. In each case, the blue and green lines are invisible because they coincide with the
yellow and red lines respectively. This highlights the insensitivity of effects to large changes in r1.

λ(B,D) > λ(A,C) if w <
1− k
k

That is, the increase in the strength of selection in population 1 is detrimental.

2. If k ∈ [1, 2):

λ(B,D) < λ(A,C)

That is, the increase in the strength of selection in population 1 is beneficial.

To see a graphical representation of this behaviour refer to Figures S7a and S7b.

Numerical calculations suggest that for a large enough population size a generalization

of the above findings hold, beyond the marginal (w1 = w2 + ∆w) effects we have studied

analytically above. That is, for fixed w2 we have
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1. If k ∈ (0, 1), then

(a) If w2 > w∗

λ(B,D) < λ(A,C) if w1 > w2 or w1 < w∗

That is, if w2 is above the threshold then population 1 can do better either

by having a selection strength below the threshold or by having a selection

strength greater than that in population 2.

λ(B,D) > λ(A,C) if w∗ < w < w2

That is, having stronger selection in population 1 is detrimental.

(b) If w2 < w∗

λ(B,D) < λ(A,C) if w1 < w2

That is, having weaker selection in population 1 is beneficial.

λ(B,D) > λ(A,C) if w1 > w2

That is, having stronger selection in population 1 is detrimental.

2. If k ∈ [1, 2):

λ(B,D) < λ(A,C) if w1 > w2

That is, having stronger selection in population 1 is beneficial.

λ(B,D) > λ(A,C) if w1 < w2

That is, having weaker selection in population 1 is detrimental.

A graphical illustration of these results can be seen Figure S8.

S6.3 Population size

To investigate the effect of population size we fix w1 = w2 = w and N2 = N = lN0,

and assume a slight increase in N1 (N1 → lN0 + ∆N). Or rather, l1 → l + ∆l so that

N1 → N0(l + ∆l). Using the same methods and definitions as in the investigation of the
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(d) Varying the strength of selection in pop-
ulation 1 when k ∈ [1, 2).

Figure S8: The effect of changing the strength of selection in population 1, with selection strength in
population 2 held constant, for different values of k. The two populations are of equal size. Again, note
the insensitivity of effects to large changes in r1.

effect of selection strength, we arrive at

λ(A,C) − λ(B,D)
sign
=

(1− v−1
2 (η))

1− v−lN0
2 (η)

d

dl

(
vlN0−1

2 (η)
)
− (1− v−1

1 (η))

1− v−lN0
1 (η)

d

dl

(
vlN0−1

1 (η)
)

sign
=

(1− v−1
2 (η))

1− v−lN0
2 (η)

vlN0−1
2 (η) ln (v2(η))− (1− v−1

1 (η))

1− v−lN0
1 (η)

vlN0−1
1 (η) ln (v1(η))

sign
=

(1− v−1
2 (η))

1− v−N2 (η)
vN−1

2 (η) ln (v2(η))− (1− v−1
1 (η))

1− v−N1 (η)
vN−1

1 (η) ln (v1(η))

Setting h(x) := 1−x−1

1−x−N x
N−1 ln (x),

λ(A,C) − λ(B,D)
sign
= h(v2(η))− h(v1(η)).
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For 0 < x < 1

h
′
(x)

sign
= xN (1− x)(1− xN )− ln(x)(2− x)(1− xN ) +N ln(x)

(
1− x

1− xN

)
,

which is decreasing on any fixed interval [x1, x2], where 0 < x1 < x2 < 1, for N large

enough. We use once again that v1(η) < v2(η) when η < 0, while v1(η) > v2(η) when

η > 0.
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(d) A hundredfold difference in population
sizes when k ∈ (0, 1).

Figure S9: The effect of large differences in population size for different values of k. Note the insensitivity
of effects to r1.

In summary we find that if N is sufficiently large, and N1 = N + ∆N > N = N2,

1. If k ∈ (0, 1)

λ(B,D) < λ(A,C) if w >
1− k
k

That is, the increase in population 1’s size is beneficial.
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λ(B,D) > λ(A,C) if w <
1− k
k

That is, the increase in population 1’s size is detrimental.

2. If k ∈ [1, 2):

λ(B,D) < λ(A,C)

That is, the increase in population 1’s size is beneficial.

To see a graphical representation of this behaviour refer to Figures S7c and S7d.

As in the case of selection strength, numerical calculations suggest that for a large

enough population size a generalization of the above findings hold. That is, for fixed

w1 = w2 = w, the above summary holds for any N1 > N2 (N2 large enough).

A graphical illustration of these results can be seen Figure S9.

S6.4 Summary of results

A summary of our weak-mutation results for the mutualism game is found in Fig. S10.

S7 Mutualistic symbioses, weak-selection limit

We have shown that, when mutation rates are very small, they (and generation times)

have no effect on the stationary distribution of the evolutionary process. To explore how

this result changes when mutation rates are allowed to be appreciably large, we resort to

an alternative simplification, allowing mutation rates to be large, but forcing selection to

be weak.

Since we are interested in the effect of mutation rates in the two populations, we set

their sizes (N), selection strengths, and generation times equal. We make use of the

two-population Moran process studied elsewhere in this paper, which is identical to that

studied by Ohtsuki [8] when selection is weak. (In fact, Ohtsuki uses an exponential

translation of payoffs to fitnesses, f = exp (wπ), while we have used a linear translation,

f = 1 + wπ. These translations coincide in the weak-selection limit, w → 0, for which

Ohtsuki derives results, and which we consider here. This can easily be seen by Taylor

expanding the exponential translation around w = 0. Therefore, Ohtsuki’s weak-selection

results hold also for the linear fitness translation.)

The evolutionary process is an irreducible, aperiodic Markov chain over the state space

S of all possible population states. Ohtsuki [8] shows that, when the selection strength

w is small (w → 0), the stationary distribution of this process, λ(s), s ∈ S, simplifies

significantly. Denote by 〈x〉w the expectation of x, taken with respect to the stationary

distribution; i.e., 〈x〉w =
∑

s∈S x(s)λ(s). Then, for example, the long run frequency of

members of population 1 who play strategy A is 〈pA〉w =
∑

s∈S pA(s)λ(s), where pA(s) is
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Figure S10: Long-run evolutionary dynamics of mutualisms, when mutations are rare (ε → 0). (A)
Setting the populations’ sizes equal, we increase population 1’s selection strength slightly above population
2’s value of w2 = 0.15. Then population 1 does better (λ(A,C) > λ(B,D)) when k = 0.9 [because then
w2 = 0.15 > (1 − k)/k = 0.11], and when k > 1.5, but worse when k = 0.8 [because then w2 = 0.15 <
(1− k)/k = 0.25]. The populations do equally well when N1 = N2 and w1 = w2, no matter their relative
mutation rates or generation times. (B) Setting the populations’ selection strengths equal, we increase
population 1’s size slightly above population 2’s. Again, population 1 benefits from its greater rate of
evolution when k = 1.5 and k = 0.9, but not when k = 0.8. (C, D) We fix population 2’s size at N2 = 500
and selection strength at w2 = 0.2 (marked by the cross), set equal population 1 and 2’s generation
times, and vary population 1’s size N1 and selection strength w1. For each (N1, w1) combination, we
vary the relative rate of mutation of the two populations across ten orders of magnitude, and calculate
the ratio of the largest and smallest values of λ(A,C)/λ(B,D), i.e., the maximum effect of mutation on the
long-run relative success of the two populations. (E, F ) For the same parameters as in (C, D), we set
equal the population’s mutation rates, and plot the natural logarithm of λ(A,C)/λ(B,D) for each (N1, w1)
combination.

the proportion of population 1 playing strategy A in population state s. For population

2, we denote strategy frequencies by qC and qD.

The quantities we are interested in are the long-run frequencies of (A,C) and (B,D)

pairings/interactions. If the former frequency is larger than the latter, then we say that

population 1 is more successful (recall that all other pairings yield the same payoff for

the population 1 and 2 interactants). These quantities, 〈pAqC〉w and 〈pBqD〉w, can be
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calculated from Eq. (29) in ref. [8]. Writing µ̂1 = (N − 1)εµ1 and µ̂2 = (N − 1)εµ2,

〈pAqC〉w =
1

4

{
1 + w

N − 1

(εµ1 + εµ2)(1 + µ̂1)(1 + µ̂2)

[
εµ1(1− εµ1)

2− k
2

+ εµ2(1− εµ2)
1

2

+
1− k

4
(εµ2 − εµ1)[1 + µ̂1 + µ̂2]

]}
;

〈pBqD〉w =
1

4

{
1 + w

N − 1

(εµ1 + εµ2)(1 + µ̂1)(1 + µ̂2)

[
εµ1(1− εµ1)

1

2
+ εµ2(1− εµ2)

2− k
2

−1− k
4

(εµ2 − εµ1)[1 + µ̂1 + µ̂2]

]}
.

From these expressions, we calculate the long run advantage to population 1,

〈pAqC〉w − 〈pBqD〉w =
w

4

N − 1

(εµ1 + εµ2)(1 + µ̂1)(1 + µ̂2)

[
εµ1(1− εµ1)

(
2− k

2
− 1

2

)
+εµ2(1− εµ2)

(
1

2
− 2− k

2

)
+

1− k
2

(εµ2 − εµ1)(1 + µ̂1 + µ̂2)

]
=
w

4

N − 1

(εµ1 + εµ2)(1 + µ̂1)(1 + µ̂2)

[
εµ1(1− εµ1)

1− k
2
− εµ2(1− εµ2)

1− k
2

+
1− k

2
(εµ2 − εµ1)[1 + (N − 1)(εµ1 + εµ2)]

]
=
w

4

N − 1

(εµ1 + εµ2)(1 + µ̂1)(1 + µ̂2)

1− k
2

[N(εµ2 − εµ1)(εµ1 + εµ2)]

=
w

8

N(N − 1)

(1 + µ̂1)(1 + µ̂2)
(1− k)ε(µ2 − µ1)

= A(1− k)ε(µ2 − µ1),

where A = w
8

N(N−1)
(1+µ̂1)(1+µ̂2) > 0. Therefore, if k < 1, population 1 does better (〈pAqC〉w −

〈pBqD〉w > 0) when it has the smaller mutation rate, µ1 < µ2. On the other hand, when

k > 1, population 1 does better when it has the larger mutation rate, µ1 > µ2. So slower

evolution, in terms of mutation rates, is favored when k < 1, and faster evolution is favored

when k > 1.

When mutation rates are low (ε ≈ 0), changes in relative mutation rates have very

little effect on 〈pAqC〉w − 〈pBqD〉w, consistent with our weak-mutation results above.

S8 Mutualistic symbioses with continuous strategy spaces

So far, we have considered discrete-strategy games, where members of each population

choose between two strategy options (A or B for population 1, and C or D for popula-

tion 2). In the discrete mutualism game that we have studied, this discreteness results

in there being two stable equilibrium outcomes, one preferred by population 1, and the

other preferred by population 2. In the introductory section of our Main Text, we have dis-
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cussed examples of mutualistic interactions where this strategy discreteness clearly applies.

However, in many mutualisms, strategies are of a more continuous nature; for example,

how much energy does one species devote to a certain mutually beneficial task, instead

of reserving this energy for uses beneficial only to itself? In this section, we provide a

preliminary setup and analysis of how stochastic evolutionary dynamics apply to such

continuous-strategy mutualisms.

As before, we seek a game that describes interactions between two individuals drawn

from two different populations. The game we shall study is a continuous version of the Nash

bargaining game, which nests the classical ‘divide-the-dollar’ version [7] as a special case.

The two individuals choose some activity level, x ∈ [0, 1] for individuals from population

1 and y ∈ [0, 1] for individuals from population 2. Depending on the parameterization,

these activity levels may be thought of as contributions to a public good, for example, or

the amount extracted from a joint resource. Payoffs are given by

π1(x, y) =

{
αx+ (1−α)y if x+ y ≤ 1

0 otherwise
and π2(x, y) =

{
(1−α)x+ αy if x+ y ≤ 1

0 otherwise
.

(8)

The parameter αmeasures to what extent individuals benefit from their own activity levels.

The assumption α∈ (0, 1) ensures that the interaction can be interpreted as mutualistic:

provided that the sum of both players’ activities is at most 1, increasing one individual’s

activity increases both individuals’ payoffs. As in many other studied bargaining games,

the restriction that payoffs are positive only if x+y≤1 permits a simple characterization

of the equilibrium set: any combination (x, y) with x+y = 1 is an equilibrium of the

game. If α< 1/2, an equilibrium favors population 1 if x<y (i.e., the equilibrium favors

the population that shows the lower activity level). Conversely, if α>1/2, an equilibrium

favors population 1 if x>y. In the limiting case α→ 1, the interaction reduces to ‘divide-

the-dollar’: there is a resource worth a total of one unit in payoffs, and the individuals’

activities represent what fraction of this resource they demand for themselves (with the

convention that when the summed demands exceed the whole resource, both individuals

get nothing).

To model the evolutionary dynamics, we consider a weak-mutation scenario similar to

that we have employed in the discrete-strategy case—mutations are assumed to be rare,

so that populations are almost always monomorphic for some strategy. The key difference

between the previous analyses and that here is that, while in the discrete 2-strategy case,

a mutation simply means switching to the other strategy, in the continuous case we need

to specify the distribution of possible mutations. We employ a ‘local mutations’ model [4].

From any state (x, y) in which populations 1 and 2 are monomorphic for strategies x

and y respectively, a mutation occurs in one of the populations; as before, the probability

that this happens in population l is proportional to Nlµl/gl. Mutations are ‘local’, that

is, of small effect: if the mutation appears in population 1 when it is fixed for strategy x,

then the mutant’s strategy is x′ = x + u, where u is taken from the uniform distribution
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on [−δ, δ] (if x′ happens not to be in the unit interval, another mutant strategy is drawn).

The fitness of a resident x-player and of the mutant x′-player are f1 = 1 + w1π1(x, y)

and f ′1 = 1 + w1π1(x′, y), respectively. If, instead, the mutant appears in population 2,

then the respective fitnesses f2 and f ′2 are calculated analogously (with the same maximum

mutation effect δ applying to both populations, though their mutation rates can differ). As

in the model with only two strategies, the mutant strategy fixes in its population l with

probability (1 − fl/f
′
l )/[1 − (fl/f

′
l )
Nl ]. This elementary updating process then iterates:

another mutation occurs in one of the two population, and it again either fixes or goes

extinct. Initially, individuals from both populations are assumed to show no activity

x=y=0. By iterating this process for a sufficient timespan (for the simulations shown in

the following we introduce 109 mutant strategies in total), we approximate the distribution

of strategies in the mutation-selection equilibrium.

The evolutionary dynamics of this model with continuous activity levels is different

from the evolutionary dynamics of the discrete games studied in the Main Text, for at

least three reasons: First, given our assumptions that mutant strategies are close to the

strategies from which they mutated and that the payoff functions are continuous when

total activity does not exceed 1, the difference between the fitness of a mutant strategy

and of the strategy from which it mutated will usually be small, so that we are in a weak-

selection regime [10]. Therefore, even mutants of reduced fitness may substitute at an

appreciable rate. Second, while the discrete mutualism game had two distinct equilibria,

in the continuous model there is a continuous path of equilibria (the line x+y=1); with local

mutation and the associated weak selection, we may expect to see stochastic movement

along this path. Third, in the discrete mutualism game, the Red King effect arose in a

setting where it required both populations to evolve to reach an equilibrium—differences

in their evolutionary rates then influenced the basins of attraction of the two equilibria.

In the continuous strategy section that we are considering here, mutation and selection in

one of the two populations would be sufficient to reach an equilibrium. For example, if

population 1 has a very much shorter generation time than population 2, we may expect

that, starting from the origin (x, y) = (0, 0), the dynamics quickly move towards a state

where individuals in population 1 show a much higher activity, (x, y) ≈ (1, 0). Whether we

observe a Red King effect then depends on whether states close to (1, 0) favor population

1 or population 2 (i.e., whether α is larger or smaller than 1/2).

Figures S11 and S12 display simulation runs for two different values of α (α = 0.75

and α = 0.25). As for the discrete-strategy mutualism game studied in the Main Text,

we consider how the dynamics are affected when the two populations differ in each of

four different evolutionary rate parameters: generation time (first column in Figs S11 and

S12), mutation rate (second column), selection strength (third column), and population

size (fourth column). For all parameters, we assume that it is population 2 that evolves at a

faster rate, either because it has a shorter generation time, a higher mutation rate, is under

stronger selection, or is larger. We again distinguish between the short-run dynamics (here

defined as the time it takes the populations to evolve to, or close to, one of the states on
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Figure S11: Short-run and long-run dynamics for continuous-strategy mutualisms,
when α is large. Population 1 evolves slower owing to (A) a longer generation time, (B) a lower
mutation rate, (C) weaker selection, and (D) a smaller population size. The top panels illustrate the
short-run dynamics, showing typical evolutionary trajectories that the populations take from the
initial state (x, y) = (0, 0) to somewhere on or near the line of equilibria, x+y = 1 (the populations
are considered near this line if x + y ≥ 0.98). The middle panels show the long-run positions of
the two populations over 109 elementary updating events. For clarity, these panels depict only
those strategy combinations corresponding to the 10,000 most successful strategy combinations
over time. The bottom panels depict the long-run average payoff of individuals in population 1,
depending on how much the two populations differ in the relevant evolutionary rate parameter.
Differences in generation time and mutation rate have little effect in the long run, but differences
in selection strength and population size give rise to a strong Red Queen effect: the slower-evolving
population 1 gets a lower share of the total payoff. This is similar to the results we obtained for the
discrete-strategy mutualism game in the Main Text. Baseline parameters: α = 0.75; g1 = g2 = 1,
µ1 = µ2 = 1, w1 = w2 = 0.5 and N1 = N2 = 100; mutant strategies are at most a distance δ = 0.05
from the strategy from which they mutated.

the equilibrium line) and the long-run dynamics (which corresponds to the 109 elementary

updating events that we have simulated the evolutionary process for).

Independent of the value of α, and independent of the evolutionary rate parameter

that is varied, we observe that the short-run dynamics are dominated by the population

that evolves at a faster rate (see upper panels in Figs. S11 and S12). That is, when

population 2 evolves faster, by the time the two populations reach the line of equilibria

x + y = 1, we typically observe that y > x. The long-run dynamics depend on the

evolutionary parameter that is varied (middle panels in Figs. S11 and S12). Differences
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Figure S12: Short-run and long-run dynamics for mutualisms with a continuous trait
space when α is small. The setup of the simulations is the same as in Fig. S11, except that
here, α = 0.25 (i.e., changes in own activity level usually have little influence on own payoff, but
have a strong influence on payoffs of individuals in the other population). In this case, we observe
a Red King effect when the populations differ in their selection strength or in their population size.
Again, differences in generation time and mutation rate have little effect in the long run, similar
to our results for the discrete-strategy mutualism game.

in generation time and mutation rate have little influence on the activity levels of the two

populations, but differences in selection strength and population size create a bias towards

higher activity levels in the faster-evolving population. To understand this, consider an

arbitrary population state (x, y) on the equilibrium line (so that x+ y = 1), and suppose

that the two populations differ only in their selection strength: w2 > w1. In this case,

the most likely evolutionary trajectory out of the present equilibrium state (x, y) involves

the fixation in population 1 of a mutant with slightly reduced activity level x′ < x —

such a mutant in population 1 is of reduced fitness, but is more likely to fix than an

equivalent mutant in population 2 because selection is stronger in population 2 (and note

that, in any population, a mutant with increased activity level is strongly selected against

because it typically receives payoff 0). Then, again because w2 > w1, the next evolutionary

step most likely involves population 2 slightly increasing its activity level y. Therefore,

stochastic fluctuations off the equilibrium line tend to be in the direction of reduced x,

and tend to return to the equilibrium line in the direction of increased y. In total, these

two effects make the two populations move to the upper left corner, as depicted in the

middle panels of Figs. S11 and S12. This is an example of drift-induced selection along an
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equilibrium line that would otherwise be stationary under deterministic dynamics; drift-

induced selection is a phenomenon of recent and growing interest in stochastic evolutionary

dynamics (e.g., [2]).

In Fig. S11, we consider the case α = 0.75, where the population that on average

shows a higher activity level obtains higher average payoffs. We observe a Red Queen

effect in this scenario when populations differ in their selection strengths or population

sizes: the faster-evolving population 2 gets a higher share of the total payoff. In contrast,

Fig. S12 shows the case α = 0.25, where the population with the lower average activity

level obtains higher average payoffs. Now, the slower-evolving population 1 outperforms

population 2 when its slower evolution is due to reduced selection strength or smaller

population size—a Red King effect. Again, differences in mutation rate and generation

time have little effect. In addition, we note that for α = 0.25, the two populations are

more dispersed across the strategy space. Intuitively, because α is smaller, changes of

own strategy within a population are under weaker selection, so that deviations below the

equilibrium line are selected against less effectively.
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