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Supplementary Methods 

1.- Obtaining the parameters of the elastic rod model  
In the regime where bending fluctuations are negligible, the elastic energy of a NA can be 
written as (1-4) 

𝐸(𝑥, 𝜃,𝐹) = 1
2
𝐶
𝐿
𝜃2 + 𝑔𝜃 𝑥

𝐿
+ 1

2
𝑆
𝐿
𝑥2 − 𝑥𝐹 (S1) 

where 𝐿 is the equilibrium extension at zero force, 𝑥 is the elongation or deviation from 𝐿 and 
𝜃 is the change in helical twist from its unperturbed equilibrium value. The three parameters S, 
C and 𝑔 are the stretch modulus, the twist modulus, and the twist-stretch coupling, 
respectively. 

If 𝐹 and 𝜃 are fixed (𝐹0,𝜃0), the value of the extension (𝑥∗) that minimizes the energy is 
given by(1, 2)  
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By the same token, at fixed 𝐹 and 𝑥  

 �𝜕𝐸
𝜕𝜃
�
𝐹=𝐹0,𝑥=𝑥0

= 0 ⇒ 𝑔𝑥0 +  𝐶𝜃∗ = 0 ⇒ 𝜃∗ =  −𝑔
𝐶
𝑥0   (S3) 

Moreover, at a given value of the force there is a global minimum of the energy in (𝑥,𝜃). We 
denote this minimum (< 𝑥 >,< 𝜃 >). We can take 𝜃0 = < 𝜃 > in Equation (S2) and 
𝑥0 = < 𝑥 > in Equation (S3), obtaining  

 < 𝜃 >= −𝑔
𝐶

< 𝑥 >   (S4) 

 <𝑥>
𝐿

= 𝐹
𝑆
− 𝑔 <𝜃>

𝑆𝐿
   (S5) 

By substituting the value of < 𝜃 > from Equation (S4) in Equation (S5), one gets(1) 

 <𝑥>
𝐿

= 𝐹
𝑆−𝑔2/𝐶

≡ 𝐹
𝑆̃
   (S6) 

Substituting < 𝑥 > from Equation (S6) in Equation (S4) one obtains the following expression 
for the helical twist  

 <𝜃>
𝐿

=  − 𝑔
𝐶𝑆̃
𝐹   (S7) 

Finally, a third relation can be obtained if the twisting angle imposed in Equation (S2) is 
changed while keeping the force constant. The equilibrium extension then varies as(2-4)  

 �𝜕𝑥
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   (S8) 
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Hence, in order to compute the parameters of the elastic rod model one needs to measure 
three quantities: the dependence of the elongation (Equation (S6)) and the twisting angle 
(Equation (S7)) with the force and how thermal fluctuations of the twisting angle are coupled 
to fluctuations of the elongation (Equation (S8)). Notice that the equations are coupled, so the 
determination of the elastic parameters requires solving the system of equations.  

We denote 𝐴1 ≡ 1/𝑆̃, 𝐴2 ≡ −𝑔/𝑆̃𝐶 and 𝐴3 ≡ −𝑔/𝑆, obtaining  

𝑆 = 1
𝐴1−𝐴2𝐴3

  (S9) 

𝐶 = 𝐴1𝐴3/𝐴2
𝐴1−𝐴2𝐴3

  (S10) 

𝑔 = − 𝐴3
𝐴1−𝐴2𝐴3

  (S11) 

These equations allow us to compute all elastic parameters from the slopes of Fig 2a and 
Fig. 2b (𝐴1,𝐴2) and from the helical rise - helical twist slopes computed in Fig. S3 (𝐴3). 

For the sake of simplicity, < 𝑥 >, 𝑥∗ and 𝑥0 are all denoted as 𝑥 in the main text; the same 
holds for 𝜃. 

2.- Determining changes in extension from the springiness model 
In a nucleic acid (NA), a chain of segments can be defined that joins the centers of all 
consecutive base pairs(4, 5) (Fig. 3). If bending is neglected, the extension of the molecule can 
be written as 

 ℎ = ℎ(𝑙, cosβ) = 𝑙 cos𝛽  (S12) 

where 𝑙 is the length of the chain and 𝛽 is the angle defined by the chain with the helical axis 
(see next section for more details). Introducing an external force will induce a variation in 
these quantities  

 ℎ(𝑙(𝐹), cos𝛽(𝐹)) = 𝑙(𝐹) cos𝛽(𝐹)  (S13) 

If the change in ℎ induced by the force is small enough, we can write ℎ(𝐹) as a Taylor 
expansion around ℎ(𝐹 = 1) ≡ 𝐿 and stay at the first order approximation. Denoting 
𝑙(𝐹 = 1) ≡ 𝑙0, cos𝛽(𝐹 = 1) ≡ cos𝛽0, we get 

  ℎ(𝐹) − ℎ(1) ≡ 𝑥

= �
𝜕ℎ(𝑙, cos𝛽)

𝜕𝑙
�

𝑙=𝑙0
cos𝛽=cos𝛽0

Δ𝑙+�
𝜕ℎ(𝑙, cos𝛽)
𝜕(cos𝛽) �

𝑙=𝑙0
cos𝛽=cos𝛽0

Δ(cos𝛽)

=  cos𝛽0Δ𝑙 + 𝑙0Δ(cos𝛽) 

   (S14) 
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In the equation above, the first term accounts for the change in extension coming from 
separating consecutive base pairs from each other. The second term measures the 
contribution from deforming the chain of segments, changing its end-to-end distance when 
the length of the segments is kept fixed. Consequently, we define these quantities as 

 𝑥Δ𝑙 ≡ cos𝛽0Δ𝑙;                           𝑥Δ𝛽 ≡ 𝑙0Δ(cos𝛽)    (S15) 

 𝑥 = 𝑥Δ𝑙 + 𝑥Δ𝛽   (S16) 

As shown above (Equation (S6)), in the elastic rod model 𝑥 varies linearly with the force as 
𝑥 = (𝐹𝐿)/𝑆̃. Our results revealed that 𝑥Δ𝑙 and 𝑥Δ𝛽 also depend linearly on the force (Fig. 3). 
We express this as  

 𝑥Δ𝑙
𝐿

= 𝐹
𝑘𝑙

;                          𝑥Δ𝛽
𝐿

= 𝐹
𝑘𝛽

   (S17) 

Then, from these two relations and Equation (S1) and Equation (S6), we get  

 𝑥
𝐹𝐿

= 1
𝑆̃

= 1
𝑘𝑙

+ 1
𝑘𝛽
⇒ 𝑆̃ = 𝑘𝑙𝑘𝛽

𝑘𝑙+ 𝑘𝛽
   (S18) 

This equation illustrates that we are just modelling the elastic response of NA as two springs in 
series of elastic constants 𝑘𝑙 and 𝑘𝛽. 

For the two molecules, 𝑥 𝐿⁄ , 𝑥Δ𝑙 𝐿⁄  and 𝑥Δ𝛽 𝐿⁄  were plotted against the force and fitted to a 
linear function (Fig. 3c, main text). The inverse of the slopes are 𝑆̃, 𝑘𝑙 and 𝑘𝛽, respectively. 
Finally, for consistency, we also computed 𝑆̃ from 𝑘𝑙 and 𝑘𝛽 using the Equation (S18), in 
excellent agreement with the 𝑆̃ obtained directly from the 𝑥 versus 𝐹 slope. Results are shown 
in Table S1. 

 
 
 

Table S1. Elastic constants of the springiness model determined for dsDNA and dsRNA. 

3.- Quantifying the springiness from the MD simulations  
At each simulation frame, cos𝛽 was defined as the sum of the helical rises of the nine central 
base pair steps divided by the sum of the distances between the centers of consecutive base 
pairs. In the 3DNA convention, the distance between two consecutive base pairs is the square 
root of the sum of the squares of the base pair step parameters shift, slide and rise(6, 7). All 
this can be expressed as  

Force constant dsDNA dsRNA 

𝑘𝑙 (pN) 5600(1500) 2170(140) 

𝑘𝛽(pN) 1330(50) 522(3) 

𝑆̃ (pN), measured 1120(50) 416(7) 

𝑆̃ (pN), from equation S18 1076(68) 421(15) 
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 (cos𝛽)(𝑡) ≡ ∑ ℎ𝑖(𝑡)𝑖
∑ 𝑙𝑖(𝑡)𝑖

= ∑ ℎ𝑖(𝑡)𝑖

∑ �𝐷𝑥𝑖
2(𝑡)+𝐷𝑦𝑖

2(𝑡)+𝐷𝑧𝑖
2(𝑡)𝑖

   (S19) 

where the sums are extended over the nine central base pair steps, ℎ𝑖(𝑡) is the helical rise, 
𝑙𝑖(𝑡) is the distance between the base pair centers and �𝐷𝑥𝑖(𝑡),𝐷𝑦𝑖(𝑡),𝐷𝑧𝑖(𝑡)� are the 
parameters (shift, slide, rise) of the base pair step 𝑖 at simulation time 𝑡. If we simply denote 
ℎ(𝑡) the mean value of the helical rise of the nine central base pair steps at simulation time 𝑡, 
and similarly for 𝑙(𝑡), we get 

 ℎ(𝑡) = 𝑙(𝑡) ∙ (cos𝛽)(𝑡)   (S20) 

The equilibrium value of the helical rise at each constant force simulation is  

 ℎ𝑒𝑞(𝐹) =< ℎ(𝑡) > (𝐹) = < 𝑙(𝑡) ∙ (cos𝛽)(𝑡) > (𝐹)   (S21) 

where the notation <> refers to an average over the simulation time. Notice that, in general, 
the right hand side of Equation (S21) is not equal to the product of the time averages, but has 
the form  

< 𝑙(𝑡) ∙ (cos𝛽)(𝑡) > (𝐹) =< 𝑙 > (𝐹) ∙ < cos𝛽 > (𝐹) + 𝑐𝑜𝑣(𝑙, cos𝛽)(𝐹)   (S22) 

being 𝑐𝑜𝑣(𝑙, cos𝛽)(𝐹) the covariance of the two variables at a given force. This covariance 
was found to be negligible at all forces under study. Only then, can we safely write  

 < ℎ > (𝐹) =< 𝑙 > (𝐹) ∙ < cos𝛽 > (𝐹)   (S23) 

and make use of Equation (S12) with the equilibrium values of 𝑙 and cos𝛽 measured from the 
simulations to compute ℎ. 

The validity of these approximations (negligible covariance and first order Taylor 
expansion) is shown in the Tables S2 and S3. The highest deviation from the measured value 
(for dsRNA at 20 pN) is less than 0.04%. Therefore, we can use the values from Tables S2 and 
S3 to quantify the springiness of dsDNA and dsRNA. 

Table S2. Validation check of the springiness model approximations in dsRNA. 

 
 
 

F (pN) h (Å), measured l (Å) 𝐜𝐨𝐬𝜷 h (Å), using Equation (S14) 

 1 2.6850 3.7813 0.7103  
5 2.7100 3.7853 0.7162 2.7102 

10 2.7461 3.8016 0.7226 2.7459 

15 2.7743 3.8042 0.7295 2.7739 
20 2.8064 3.8140 0.7360 2.8054 
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Table S3. Validation chech of the springiness model approximations in dsDNA. 

4.- Quantifying the effect of bending fluctuations in the MD simulations 
On the length scale of the molecule used in this work bending fluctuations are negligible. This 
can be easily shown in the absence of external force. At first order, one can approximate the 
difference in free energy due to bending,  Δ𝐺𝑏𝑒𝑛𝑑, as a parabolic function. If the polymer is 
assumed to be bent along the arc of a circle (8) 

Δ𝐺𝑏𝑒𝑛𝑑 = 2𝑃
𝐿
�𝜃
2
�
2
𝐾𝐵𝑇     (S24) 

where 𝑃 is the bending persistence length, 𝐿 is the contour length of the polymer, 𝜃 is the 
bending angle. From the Virial Theorem and the previous equation it follows that the expected 
angle of bending  (8) is 

< (𝜃 2⁄ )2 > = 𝐿
2𝑃

     (S25) 

We are analyzing 9 base pair steps with a mean helical rise of around 0.31nm, which yields 
𝐿 = 9 ∗ 0.31𝑛𝑚 ≅ 2.8𝑛𝑚. Taking 𝑃 as 50 nm (8) one obtains < (𝜃 2⁄ )2 >= 0.028 rad.  

Assuming inextensibility, the effect of bending can be quantified as the ratio of the expected 
end-to-end distance (𝑧) divided by the contour length of the polymer (𝐿). The end-to-end 
distance and the contour length can be expressed in terms of the radius of curvature 𝑅𝑐 and 𝜃 

𝑧 = 2𝑅𝑐 sin(𝜃 2⁄ )  𝐿 = 𝑅𝑐𝜃    (S26) 

𝐿 = 𝑅𝑐𝜃      (S27) 

Substituting 𝐿 in the first equation and writing the sin (𝜃 2⁄ ) as a Taylor expansion, one gets 

𝑧
𝐿

= sin(𝜃 2⁄ )
𝜃 2⁄

≅  
𝜃 2−(𝜃 2)⁄ 3

3!�

𝜃 2⁄
= 1 − (𝜃 2⁄ )2

6
   (S28) 

Therefore, the effect of bending can be quantified as 

<𝑧>
𝐿

= 1 − <(𝜃 2⁄ )2>
6

      (S29) 

F (pN) h (Å), measured l (Å) 𝐜𝐨𝐬𝜷 h (Å), using Equation (S14) 

 1 3.0786 3.5621 0.8645  
5 3.0934 3.5652 0.8679 3.0934 

10 3.1000 3.5603 0.8710 3.1002 
15 3.1193 3.5697 0.8741 3.1194 
20 3.1343 3.5785 0.8761 3.1341 
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This yields for our molecule length a ratio of 0.995, and this justifies neglecting bending at the 
considered length scale. Furthermore, when applying force, bending fluctuations are 
suppressed and therefore they shall contribute even less to the total error on the elongation of 
the molecule. 

5.- Comparing Curves+ and 3DNA as software analysis of MD simulations 
of NA 
Two different software programs have been widely used to analyze the structural parameters 
of nucleic acids: Curves+ and 3DNA. Differences between these software programs applied to 
structures close to canonical B- and A-DNA have been reported to be very small, not exceeding 
~0.1 Å for translational and ~2° for angular parameters (9). Since in this work we worked also 
with structures close to B and A conformations, we expected, and have confirmed, that this 
small discrepancy holds. This was also confirmed in (10), where Liebl et al. computed the 
helical-twist vs helical-rise slope using both software packages, finding very similar values for 
both dsDNA and dsRNA.  

However, we chose 3DNA for most of our analysis for technical reasons. In the 3DNA 
convention the distance between the centers of consecutive base pairs is the square root of 
the sum of the squares of the translational base pair step parameters (Equation (S19)). This 
relation is needed for a mathematically consistent derivation of the springiness model in terms 
of the structural parameters.  

dsDNA 

Parameter Curves+ 3DNA Literature 

h-rise (Å) 3.20 3.07 3.4 (11)  

h-twist (deg) 31.96 32.87 36 (11) 

𝑆 (𝑝𝑁) 1090 1280 1450-1750* 

𝑆̃ (𝑝𝑁) 985 1120 649-1401* 

𝐶 (𝑝𝑁 𝑛𝑚2) 256 303 386-448* 

𝑔 𝑘𝐵𝑇⁄  (unitless) -40 -54 -(17-39)* 

Table S4. Helical Rise, helical twist and elastic parameters measured for dsDNA using Curves+ 
and 3DNA software. * See references in Table I, main text. 

dsRNA 

Parameter Curves+ 3DNA Literature 

h-rise (Å) 2.80 2.68 2.55  (11) 

h-twist (deg) 31.25 32.08 33  (11) 

𝑆 (𝑝𝑁) 429 480  

𝑆̃ (𝑝𝑁) 382 416 350,500* 

𝐶 (𝑝𝑁 𝑛𝑚2) 298 310 409* 
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𝑔 𝑘𝐵𝑇⁄  (unitless) 29 34 11.5* 

Table S5. Helical Rise, helical twist and elastic parameters measured for dsRNA using Curves+ 
and 3DNA software. * See references in Table I, main text. 

6.- Comparing our value of the dsRNA twist-stretch coupling with the 
one reported in Ref. (10) 
We obtained higher values of the dsRNA's helical twist – helical rise slope (twist-stretch 
coupling) than those reported in Liebl et al. With the aim to better understand the reason of 
this discrepancy, we have carefully explored several aspects of our simulations that may 
potentially affect the magnitude of the twist-stretch coupling. We have concluded that this 
discrepancy can be traced down to a combination of different aspects regarding the processing 
software, the different force regime, and the inclusion of data in the non-linear regime to 
obtain average values. 

The processing software 

Liebl et al. compute the helical twist  - helical rise slope from a linear regression of the these 
parameters obtained using the software Curves+. In our work, we have used the software 
3DNA. We have systematically reprocessed our data using Curves+ in order to compare both 
results. In general, both analysis software give similar nucleic acids values with some small 
differences that do not clearly benefit one of the two choices. Table S4 includes all DNA/RNA 
parameters obtained with Curves+ and 3DNA. Regarding the value of 𝑔/𝑆,  Curves+ provides a 
value of the slope (helical twist  - helical rise) slightly closer to the one reported in Liebl et al. 
(Table S5). 

The external force 

Liebl at al. performed simulations with zero stretching force. We have repeated the simulation 
for dsRNA with no force acting on the molecule, i.e., totally unrestrained molecules. When 
combined with the use of Curves+ as processing software the value of the slope got even 
closer to the value reported in Liebl et al. (Table S6) 

Liebl et al. Software: 3DNA 
Force: 1pN 

Software: Curves+ 
Force: 1pN 

Software: Curves+ 
Force: F = 0 pN 

-0.037 -0.051 -0.048 -0.043 
Table S6. Summary of 𝑔/𝑆 (Å/deg) values for dsRNA obtained with Curves+ and 3DNA at 1 pN 
and 0 pN force. 

Non linear regime 

The remaining difference may be attributed to the non-linearities reported in Figure 5, main 
text. As shown in that figure, the dependence of the helical twist with the helical rise for 
dsRNA is much more non-linear than for dsDNA. This results in that the high energy states 
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associated with these non-linearities, that are very hard to sample, have a high impact on the 
value of the slope. Consequently, a slight change in the sampling of this region induces a 
considerable change in the slope, making the value of the twist-stretch coupling very sensitive 
to the simulation conditions and processing analysis.  

The Force Field 

Finally, we have discarded the force field as potential source of discrepancy as we believe both 
studies use the same force-field, which for RNA consists on: parmbsc0 (ff99 + bsc0 refinement 
(12)  +  χOL3 modification (13). We have updated some details of the force field in the methods 
section of the main text, and added reference to the new section in Supplementary 
Information. 

7.- Salt dependence of elastic parameters  𝐒� and 𝐠/𝐒 for dsDNA and 
dsRNA 
In order to check how our measurement of 𝑆̃ and 𝑔 are affected by different salt 
concentrations, we have performed a set of control simulations at 150 mM NaCl. Three 
simulations of about 1 µs were run for dsDNA and dsRNA at this salt condition and forces of 5, 
15 and 20 pN.  

We computed the helical rise for zero and 150 mM NaCl in both molecules (Fig. S4). For 
dsDNA, we found similar values for helical rise for both salt conditions at low forces and an 
increase in the stretch modulus as the force increases, consistent with the trend reported in 
(14) (15). The stretch modulus was inferred from the inverse of the slope multiplied by a 
reference extension taken as the extension given by the fit at 1 pN force, as we did in the main 
text. For dsRNA, however, helical rise values were systematically lower than those calculated 
at zero salt and closer to the extension per base pair of the crystallized A-type helix (~2.6Å). 
This may be explained by the fact that the A-form structure (dsRNA) accumulates more 
counterions than the B-form (dsDNA) as suggested in (16). However, the calculation of the 
stretch modulus of dsRNA in these conditions gave a value consistent with that reported in 
(15). Calculated stretch modulus are reported in Table S7.  

Still, in order to investigate if our zero salt conditions may explain the discrepancy of the twist 
stretch coupling between the experimental value reported and our simulations we have also 
computed the ratio −𝑔 𝑆⁄  at different forces for both molecules at 150 mM NaCl (Fig. S4). We 
obtained very similar values at all forces with respect to neutralizing salt conditions with 
deviations below 10%.  

These data indicate that salt concentration is not the primary reason for the discrepancies 
observed when comparing −𝑔 𝑆⁄  with experimental data and validates our approach with 
neutralizing salt conditions to investigate mechanical properties of nucleic acids.  
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[NaCl] dsDNA dsRNA 

0mM 1120 (50) 416(7) 

150mM 1540 (160) 420 (20) 

Table S7. Twist-unrestrained stretch modulus, S� , at 0 mM and 150 mM of NaCl for 
dsDNA/dsRNA. The twist-unrestrained stretch moduli were computed from the inverse of the 
slopes of Fig. S4. The higher value of S� at 150 mM with respect to the neutralizing salt 
simulation is consistent with the trend of increasing the stretch modulus with the NaCl 
concentration reported for dsDNA and dsRNA in (15). 

8.- Measurement of inter-strand separation from MD simulations  
The inter-strand separation was measured in three different ways: i), as twice the radial 
components of the gyration tensor of the P-atoms, ii), as twice the mass-weighted radial 
components of the gyration tensor of all the atoms of the backbone and, iii), using the formula 
for the radius provided in (17). The following provide details on the procedure to perform 
these measurements. 

1. The radial components of the gyration tensor of the P-atoms. The crystallized B-DNA 
(or A-RNA) initial configuration was centered by imposing its helical axis to run along 
the z-axis of the Amber coordinates. Using the command rms of the cpptraj software, 
each constant force trajectory was aligned with respect to the centered B-DNA (A-
RNA) structure. Then, using the command radgyr of cpptraj the gyration tensor was 
computed for the P-atoms of the 10 central base pairs. Since the molecules are double 
helices with a helical pitch close to 10 base pairs, values of the xx and yy components 
of the gyration tensor were very similar, confirming the isotropy in the x-y plane. The 
average distance of the P-atoms to the helical axis was computed as the square root of 
the sum of the xx and yy components of the gyration tensor for a given frame. This 
was averaged for all frames over the entire simulation time (Fig. S6a). 

2. The radial components of the mass-weighted gyration tensor of all backbone atoms. 
This procedure is similar to the previous one with the only difference being that the 
gyration tensor is computed for all the atoms of the backbone with weights 
proportional to their masses instead of only using the P-atoms (Fig. S6a). 

3. Theoretical formula for the helical radius. In Kosikov et al. (17) a theoretical formula is 
provided for helical radius 

𝑅 = 〈��𝑑𝑝𝑝2 − ℎ2� 2�1− 𝑐𝑜𝑠(𝜃 + 𝜃0)�� 〉   (S30) 

where 𝑑𝑝𝑝, ℎ, and Ωh = θ + θ0 are, respectively, the distance between consecutive 
phosphates of the same strand, the helical rise and the helical twist. In the expression 
above we are considering the average of these parameters for the nine central base 
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pair steps at a given simulation frame. The angular brackets denote an average over 
the simulation time (Fig. S6b). 

Values of the inter-strand distance using only the P-atoms (method 1 and 3) yielded very 
similar results, confirming the soundness of both methodologies (Fig. S6c, upper panels). 
Interestingly, the distance of the P-atoms to the helical axis was found to be larger for dsDNA 
than for dsRNA, in apparent contradiction with the well known picture of dsDNA as a narrower 
helix than dsRNA. However, a top view of the crystallized B-DNA and A-RNA structures 
(Fig. S6a) reveals that although the backbone atoms are generally further from the helical axis 
for dsRNA than for dsDNA, the P-atoms are indeed closer to this axis in the former. Indeed, if 
all the atoms of the backbone are considered, one obtains the expected broader form of 
dsRNA (Fig. S6c, upper panels). 

Despite this difference found in the absolute values of the inter-strand separation of the 
molecules depending on whether one considers all the backbone atoms (method 2) or only the 
P-atoms (method 1 and 3), the relative change in the inter-strand distance was found to be 
very similar regardless of the methodology used (Fig. S6c, lower panels). This indicates that, in 
this range of forces, the dynamics of the strands can be well described by their heaviest atoms, 
i.e. the phosphorus, and supports the use of any of the described methodologies to calculate 
the inter-strand distance.  

9.- Simulation Details  

NA duplexes were built using the software NAB (7). NA sequences were d(5’-
GCGCAATGGAGTACGC/5’-GCGTACTCCATTGCGC) for dsDNA and r(5’-
GCGCAAUGGAGUACGC/5’-GCGUACUCCAUUGCGC) for dsRNA, following the work of Liebl et 
al. (Ref. (10)). Molecules were neutralized with sodium counterions and no additional salt was 
added. The systems were then placed in a box of dimensions 80Å x 80Å x 80Å filled with 
explicit water molecules. Both systems were energy-minimized in 5000 steps with restraints 
on the NA followed by 5000 steps of unrestrained minimization. Then, the systems were 
heated up to 300 K and equilibrated for 20 ns in the isobaric-isothermal (NPT) ensemble 
(P = 1 atm, T = 298  K). After NPT equilibration, and starting from the last configuration of the 
equilibration, five simulations were run for dsDNA and dsRNA at constant forces of 1, 5, 10, 15 
and 20 pN in the NVT ensemble. The first 200 ns were taken as constant-force equilibration 
and all the measurements were performed on the last 800 ns. Following Ref. (10), only the ten 
central base pairs were considered for the data analysis. 

We used the AMBER14 software suite (7) with NVIDIA GPU acceleration (18-20). The 
parmbsc0 (12) and the χOL3 modification (13) of the Cornell ff99 force field (21) was used to 
describe dsDNA and dsRNA. Water was described using the TIP3P model (22), while 
Joung/Cheatham parameters were used to describe the sodium counter-ions (23, 24). Periodic 
boundary conditions and Particle Mesh Ewald (with standard defaults and a real-space cutoff 
of 9Å) were used to account for long-range electrostatic interactions. Van der Waals contacts 
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were truncated at the real space cutoff. SHAKE algorithm was used to constrain bonds 
containing hydrogen, thus allowing us to use an integration step of 2 fs. Coordinates were 
saved every 1000 steps.  

10.- Data processing  

Data processing was carried out using the software Ambertools. Helical rise, helical twist, and 
base pair parameters were averaged over the ten central base pairs and over the last 800 ns 
of the simulation. Watson-Crick h-bonds were calculated for each frame of the simulation.  

Simulation values and errors in Fig. 2, Fig. 3c , and Fig. 4b were calculated as follows. We split 
the simulations in five consecutive time windows of 160 ns. For each time window, we 
calculated the corresponding mean simulation value. Discrete data in the plots are the mean 
value and the standard error of the mean considering the five time windows. This procedure 
aims to mimic the typical experimental methodology where multiple independent 
measurements are usually taken.  

11.- Constant force protocol  

Latest versions of the Amber software package (7) allow the implementation of a restraint 
more sophisticated than the standard parabolic function. This more complicated form of the 
potential is described by six parameters: 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟𝑘2, and 𝑟𝑘3, where 𝑟1 <  𝑟2 <  𝑟3 <  𝑟4 
and 𝑟𝑘2, 𝑟𝑘3 > 0. The 𝑟𝑖´𝑠 split the space of the restraining coordinate 𝑅 in five regions. The 
restraint energy 𝐸𝑟𝑒𝑠 (Fig. S14) is given by the piecewise-defined function: 

𝐸𝑟𝑒𝑠(𝑅) =

⎩
⎪
⎨

⎪
⎧

𝐴1𝑅 + 𝐵1   if    𝑅 ≤  𝑟1
𝑟𝑘2(𝑅 − 𝑟2)2    if   𝑟1 < 𝑅 ≤ 𝑟2
0                          if   𝑟2 < 𝑅 ≤ 𝑟3
𝑟𝑘3(𝑅 − 𝑟3)2    if   𝑟3 < 𝑅 ≤ 𝑟4

𝐴2𝑅 + 𝐵2  if   𝑅 >  𝑟4

�  (S31) 

where 𝐴1, 𝐵1, 𝐴2 and 𝐵2 can be easily computed by imposing continuity in 𝐸𝑟𝑒𝑠(𝑅) and its 
derivative. Here we only need 𝐴1, which can be obtained from the condition  

�𝑑𝐸𝑟𝑒𝑠
𝑑𝑅

�
𝑅=𝑟1+

= �𝑑𝐸𝑟𝑒𝑠
𝑑𝑅

�
𝑅=𝑟1−

⇒  𝐴1 = 2𝑟𝑘2(𝑟1 − 𝑟2) =  −2𝑟𝑘2(𝑟2 − 𝑟1) < 0 (S32) 

Hence, in the region 𝑅 ≤ 𝑟1 the potential is linear with a negative slope. If the restraining 
coordinate is a distance, the potential is translated into a force acting on the atoms chosen for 
the restraint. In the region 𝑅 ≤ 𝑟1  this force is  

𝐹⃗ = −∇��⃗ Eres(R) = −dEres
dR

u�⃗ R = −A1u�⃗ R = 2𝑟𝑘2(𝑟2 − 𝑟1) u�⃗ R  (S33) 

where u�⃗ R is a unit vector along the direction of the line joining the restrained atoms. This 
equation illustrates that the force i) is constant in modulus, ii) always has the direction of the 
line joining the restrained atoms (u�⃗ R) and iii), is positive, meaning that it points outwards the 
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two restrained atoms. Altogether, this results in a constant stretching force. 

In our constant force simulations the restrains were applied to the center of mass of the 
C1’ atoms of the second and the fifteenth base pairs. This choice has been used before to 
restrain the twisting angle of the molecule (10, 25). In our case, the value of 𝑟1 was chosen to 
be large enough for the restraining coordinate to remain in the first region 𝑅 < 𝑟1 at every 
simulation frame. The values of 𝑟1, and 𝑟2 were the same for all constant force simulations and 
by only modifying the value of 𝑟𝑘2 we tuned the value of the stretching force. 
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Figure S1

Figure S1: RMSD for dsDNA and dsRNA at different forces. The RMSDs were computed using the soft-
ware AmberTools(7) for all heavy atoms with respect to the standard B-DNA and A-RNA starting configurations.
Gray: RMSD at every simulation frame (1000 steps of 2 fs); red: data averaged over a running window of 2000
frames.



  

Figure S2

Figure S2: Number of Watson-Crick hydrogen bonds for dsDNA and dsRNA at different forces. The
cut-off distance for the formation of an H-bond is 3.5 Å. The maximum, 24, corresponds to a configuration where
all Watson-Crick H-bonds are formed.



  

Figure S3

Figure S3: Helical rise - helical twist slopes at different forces for dsDNA/dsRNA. The helical twist
and helical rise were computed using Ambertools (7). The mean helical twist and helical rise of the nine central
base pair steps were computed for each simulation frame giving a total of 400000 points. The slopes were computed
by fitting the raw data, i.e. the 400000 points. For representation purposes and following Ref. (10) the helical twist
was discretized in bins of width of 0.2 degrees and the mean helical rise and helical twist was computed in each bin.
Error bars are the standard error of the mean in each bin. Note that a fit to the discretized data would overweight
the low populated events obtained at the extreme values of helical twist.



  

Figure S4

a

Figure S4: Control force-extension curves and helical twist-helical rise slopes for dsDNA and dsRNA
at 0mM and 150mM of NaCl. a, the mean helical rise was computed at different forces for dsDNA/dsRNA
in the same way as in Figure 2a, main text. Grey empty squares (circles) are the data at neutralizing salt (same
data as in Figure 2a, main text) and filled blue (red) squares (circles) the data at 150mM for dsDNA (dsRNA).
The stretch modulus was inferred from the inverse of the slope multiplied by a reference extension taken as the
extension given by the fit at 1 pN force, resembling the procedure described in the main text. b, the ratio -g/S was
computed for dsDNA/dsRNA in the same way as in Figure 2c, main text. Grey empty squares (circles) are the
data at neutralizing salt (same data as in Figure 2c, main text) and filled blue (red) squares (circles) the data at
150mM for dsDNA (dsRNA). The black star represents the value of the slope measured at F = 7pN in (4).



  

Figure S5

3DNA Curves+

Figure S5: Comparison of dsDNA/dsRNA elastic parameters from MD data analysed with two
different processing softwares: 3DNA and Curves+. In the left column we represent the results obtained
using 3DNA, which were also shown in Fig. 2 of the main text. In the right column we represent the same data
processed using Curves+. Overall, very similar results are obtained which is also reflected in the similar values of
the elastic parameters calculated from the fits to these plots (Tables S4 and S5).
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Figure S6

Figure S6: Inter-strand distance measurement. a, side and top views of dsDNA and dsRNA showing the
position of P-atoms along the backbone. In the side view we included only three base-pairs. The smooth line
represents the curve passing through the P-atoms (gold). The backbone atoms are represented by solid turquoise
(C-atoms) and red (O-atoms) lines with the P-atoms highlighted as gold beads. b, Geometrical representation of
the formula for the helical radius provided in (18). According to this formula the radius can be calculated as a
function of the distance between consecutive phosphates, dP P , the helical rise, h, and the helical twist Ωh = θ+ θ0.
c, Change in inter-strand distance with the force-induced elongation for dsDNA and dsRNA using the three different
measurements described in the Supporting Information. Top panel: the value of the inter-strand distance plotted
versus the relative change in extension with respect to the F = 1pN value. Lower panel: relative change in inter-
strand distance with respect to the F = 1 pN value plotted against the relative change in extension. A linear fit
was performed for all data points in the case of dsRNA and excluding the point corresponding to F = 20pN in the
case of dsDNA. For the relative change in inter-strand distance this fit was constrained to go through the origin.



  

Figure S7

Figure S7: Inter base pair parameters as a function of the force for dsDNA (blue) and dsRNA (red).
Error bars are the standard error of the mean. To guide the eye, a linear fit was plotted for all the base pair
parameters. Concerning the slide of dsDNA, only the first three points were used in the linear fit.



  

Figure S8
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Figure S8: Correlation table and fluctuation of the inter-strand distance with slide. a, schematic
representation of the slide parameter. b, the Pearson correlation factor was computed for the inter-strand distance
and each base pair step parameter. The value of the inter-strand distance and base pair step parameter of the ten
central base pairs was recorded at every simulation frame at F = 1 pN. Only the twist and the slide parameters
showed a correlation higher than 0.5 in absolute value. b, fluctuations in the inter-strand distance with the slide
at 1 pN force simulation for dsDNA and dsRNA. These two parameters are highly anti-correlated: as the slide
approaches zero, the inter-strand distance decreases. Dotted vertical lines represent the mean value of the slide at
1 pN (gray) and at 20 pN (black) force.



  

Figure S9

3DNA Curves+
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Figure S9: Comparison of the slide base pair step parameter calculated using 3DNA or Curves+
software. The mean slide of the ten central base pairs was computed for each constant force simulation using the
3DNA (left column) and Curves+ (right column) software. A linear fit was performed for the points in the range
of 1-10pN in the case of dsDNA and for all the points in the case of dsRNA.



  

Figure S10

dsDNA dsRNA

Figure S10: Force-dependence of the inclination parameter measured with Curves+ software. The
mean value of the inclination of the ten central base pairs was computed for dsDNA and dsRNA at each constant
force simulation. DsDNA points were fitted to a linear function in the 1-5 pN range and to a horizontal line in the
5-20 pN range. DsRNA points were all fitted to a linear function.



  

Figure S11
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Figure S11: Comparison in the fluctuations in the helical twist and slide with the helical rise at 5
pN and 20 pN simulations for dsDNA and dsRNA calculated using the 3DNA or Curves+ software.
The plots in the left column are the same as in Fig 5a, b main text. In the right column we represent the same
data processed with Curves+.



  

Figure S12

Figure S12: Fluctuations in the helical twist and slide with the helical rise at each constant force
simulation for dsDNA (blue) and dsRNA (red). The helical rise was discretized in bins of 0.02 Å and the
mean helical rise, helical twist and slide were computed in each bin. Error bars are the standard error of the mean
in each bin.



  

Figure S13

Figure S13: Comparison with experimental results of the force dependence of the twist-stretch
coupling. Black line: Twist-stretch coupling obtained in (26) from the measurements performed in (2). Red line:
fit of the force-twist curve from (2) using the twistable worm-like chain (tWLC) model proposed in (26). Grey
dots: determination of the twist-stretch coupling from force-extension curve using the tWLC model. Blue squares:
values of the twist-stretch coupling measured from our simulations. An additional simulation at F = 30 pN was
performed to confirm the trend of increasing g. Purple line: fit to our data points following the expression for g(F )
proposed in (26), i.e., constant g up to a given force, Fc, and linear for forces above Fc. The linear region was
extended up to 35pN. Image adapted from (26), with permission from Macmillan Publishers Ltd: Nature Physics,
copyright 2011.



  

Figure S14

Figure S14: Shape of the restraining potential recently implemented in the AMBER software package
(7). The parameters r1, r2, r3 and r4 split the space of the restraining coordinate in five regons. If the restraining
coordinate remains in the first region (blue) the potential is linear with negative slope, resulting in a constant
stretching force acting on the atoms.
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