Supporting Information

Ga for Zn Cation Exchange Allows for Highly

Luminescent and Photostable InZnP based Quantum

Dots

Francesca Pietra^a‡ , Nicholas Kirkwood^a‡ , Luca De Trizio^b , Anne W. Hoekstra^a , Lennart

Kleibergen^a , Nicolas Renaud^a , Rolf Koole^d , Patrick Baesjoud,e, Liberato Mannab,c, Arjan J.

*Houtepena,**

^aOpto-Electronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136,2628 BL Delft, The Netherlands b Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova, Italy ^cKavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 2628 CJ Delft, The Netherlands ^dPhilips Lighting, High Tech Campus 44, 5656 AE Eindhoven, The Netherlands e Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

‡These authors contributed equally

Growth of larger InZnP core QDs.

Figure S1. (a) Dependence of 1S absorbance wavelength on the number of In/Zn palmitate and $P(TMS)$ ₃ precursor additions. **(b)** Absorption and PL emission spectra of In_xZn_vP before and after further growth of the core by multiple injection of In-Zn and P precursor. For a Zn/In =1.5 ratio added in the synthesis, the Zn/In ratio measured with ICP was 0.68 in the small core, and slightly increased to 0.81 after further grow. **(c)** XRD pattern of $In_x Zn_y P$ before (black pattern) and after (red pattern) the further growth. The lattice constant of the two samples was roughly constant: 5.577 Å for In_xZn_vP before the growth and 5.576 Å for In_xZn_vP after the growth. Upon growth the cores retain roughtly the same Zn/In content and the same lattice constant.

TEM on InP (Zn/In = 0) before and after Ga CE reaction.

Figure S2. TEM images of InP QDs cores (Zn/In = 0) before **(a)** and after **(b)** the addition of 0.12 mmol $Ga(OA)$ ₃. Scale bar is 20 nm. (c) Histogram of QD diameters obtained from TEM images. The average particle size, determined from fits to the histograms, increased from $2.0 \pm$ 0.7 in case of InP cores to 2.6 ± 0.9 after the addition of 0.12 mmol of Ga(OA)₃.

Extended data and controls for Ga CE reaction.

Figure S3. Effect of heating (200°C, 0-5 hours) on InZnP QDs (Zn/In = 1.0). **(a)** Absorbance spectra normalized to first exciton feature. The peak becomes more shoulder-like over time but otherwise there is little change. **(b)** PL spectra normalized to fraction of light absorbed at excitation wavelength (400 nm). The PL increases to 170% of its initial value over 3.5 hours but after this it decreases to 133% of the initial value.

Figure S4. Data for additional reactions performed to reproduce the results of Figure 3 in the main paper. The composition of InZnP QDs is plotted as a function of added Ga(OA)₃, calculated from ICP measurements on reaction aliquots. **(a)** $\text{Zn/In} = 0.5$, **(b)** $\text{Zn/In} = 0.7$, **(c)** $\text{Zn/In} = 1.4$ and **(d)** Zn/In = 1.5. The data shows that similar quantitative results are seen for samples with similar Zn/In ratios, and that the trends discussed in the paper are reproducible.

Figure S5. (a) Absorption and emission spectra of InZnP QDs (Zn/In = 1.5) at different stages during the growth of the GaP shell (each Ga and P addition was 0.03 mmol). **(b)** Plot of the PL QY InZnP/InGaP/GaP core/shell QDs with different initial Zn/In ratios (0, black curve; 0.2, red curve; 0.5, blue curve; 1, green curve; and 1.5, orange curve), as function of the amount of Ga and P precursor added during the growth of the GaP shell.

Extended data and characterisation of ZnSeS shell growth

Figure S6. Plot of the lattice constant of the $ZnSe_zS_{1-z}$ shell as function of the composition *z*, as reported in reference 1 .¹ Ideally, *z* varies from ZnSe to ZnS linearly via Vegard's law² (blue dashed line), but the trend can deviate from linearity by a bowing parameter (b) ,^{3,4} according to equation (1):

$$
y = (1 - z) * 5.406 + z * 5.670 - b * x * (1 - x)
$$
 (eq. 1)

where 5.406 is the lattice constant of ZnS (A) ¹ and 5.670 is the lattice constant of ZnSe (A) ¹ We fit the literature values (black dots) from reference 1 with equation (1) (red dashed curve), yielding a bowing parameter of 0.17 Å. This fit gives a direct correlation between the composition of the $ZnSe_zS_{1-z}$ shell and its lattice constant. We used the literature values¹ (black dots) to construct a continuous relationship between z and the lattice constant of $ZnSe_zS_{1-z}$ (red dashed curve) so that we can then extrapolate an *a* value for any given *z*.

Figure S7. (a) Absorption and Emission spectra of $In_xZn_vP/InGaP/GaP/ZnSe_zS_{1-z}$ QDs with different shell thickness (1ML, black spectra and 2ML, green spectra). **(b)** Absorbance and emission spectra of InZnP/InGaP/GaP/ZnSe_zS_{1-z} QDs emitting at 565 nm (green curve) and 627 nm (orange curve).

REFERENCES

- (1) Sadekar, H. K.; Ghule, A. V.; Sharma, R. *J. Alloys Compd.* **2011**, *509* (18), 5525–5531.
- (2) Denton, A.; Ashcroft, N. *Phys. Rev. A* **1991**, *43* (6), 3161–3164.
- (3) Kats, A. *Indium Phosphide Relat. Mater. Process. Technol. Devices* **1992**, *Artech Hou*.
- (4) Kuo, Y.-K.; Liou, B.-T.; Yen, S.-H.; Chu, H.-Y. *Opt. Commun.* **2004**, *237* (4-6), 363–369.