Map3k8 controls granulocyte colony-stimulating factor production and neutrophil precursor proliferation in lipopolysaccharide-induced emergency granulopoiesis

Ángela Sánchez, Carlos Relaño, Araceli Carrasco, Constanza Contreras-Jurado, Antonio Martín-Duce, Ana Aranda, and Susana Alemany

В

Supplementary Figure 2. Map3k8 activity is required for full LPS-induced emergency myelopoiesis. Wt and Map3k8^{KD} mice received two injections of LPS or PBS and, 24 h after the last injection, circulating B220⁺ B and CD11b⁺ myeloid cells, CD11b⁺Ly6G^{high} mature CD11b⁺Ly6G^{low} immature neutrophils, and CD11b⁺CD115⁺ monocytes were analysed. The frequency of each subset of cells relative to the total circulating cells is shown (mean \pm SEM, *n*=6). One-way ANOVA with Newman-Keuls correction was used to compare groups. Statistical significance is shown as ***p*<0.01, ****p*<0.001.

Supplementary Figure 3. Analysis of apoptosis in circulating myeloid cells from LPS-treated Wt and Map3k8^{-/-} mice. Wt and Map3k8^{-/-} mice received two injections of LPS or PBS and, 24 h later, the percentage of Annexin V⁺ and Annexin V⁺ + 7-aminoactinomycin D⁺ cells among CD11b⁺ myeloid cells, Ly6G^{high}CD11b⁺ mature CD11b⁺Ly6G^{low} immature neutrophils, and CD11b⁺CD115⁺ monocytes was determined. Graphs show means \pm SEM (*n*=6). One-way ANOVA with Newman-Keuls correction was used to compare groups. **p*<0.05, ***p*<0.01, ****p*<0.001.

Supplementary Figure 4. Map3k8 deficiency decreases the number of Sca-1⁺GMPs in LPS-treated mice. Wt and Map3k8^{-/-} mice received injections of LPS and PBS at 0 and 24 h. BM LIN⁻ cells were isolated 24 h after the last injection and subjected to FACS analysis, and the numbers of Sca-1⁻GMPs and Sca-1⁺GMPs per femur were determined. The data shown are means \pm SEM (*n*=9). One-way ANOVA with Newman-Keuls correction was used to compare groups. **p*<0.05, ***p*<0.01, ****p*<0.001.

Supplementary Figure 5. LPS-induction of G-CSF is mediated by Map3k8 in endothelial cells. A) G-CSF levels in immortalized murine endothelial cells treated for 4 h with LPS (300 ng/ml) and/or the Map3k8 inhibitor, C1 (5 h, 10 μ M). Means ± SEM of 4 different samples each derived from triplicate cultures are shown. B) G-CSF transcripts were determined by quantitative reverse-transcriptase polymerase chain in human endothelial cells (HMEC-1) treated with LPS and/or the Map3k8 inhibitor for 6 h. Means ± SEM are shown (n=4). A,B) One-way ANOVA with Newman-Keuls correction was used to compare groups. ***p*<0.01, ****p*<0.001.

SUPPLEMENTARY TABLE S1

Genes		Forward Primer (5'-3' sense)	Reverse Primer (5'-3' sense)
Catepsin G	mouse	CAACGGTTCTGGAAAGATGC	CTTCTCGGCCTCCAATGAT
C-EBPβ	mouse	ATCGACTTCAGCCCCTACCT	TAGTCGTCGGCGAAGAGG
G-CSF	mouse	ATGGCTCAACTTTCTGCCCAG	CTGACAGTGACCAGGGGAAC
18-S	mouse	CCAGTAAGTGCGGGGTCATAAGC	CCTCACTAAACCATCCAATCGG
G-CSF	human	GAGTGTGCCACCTACAAGCTGTGCC	GGAGAAGCTGGTGAGTGAGTGT
18-S	human	GGGACTTAATCAACGCAAGC	GCAATTATTCCCCATGAACG