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Supplementary Information

Supplementary Note 1: Autocorrelation functions of T and L waves

For a given pressure, the autocorrelation function within the regime of the BP can be fit

well using the form of a freely oscillating damped harmonic oscillator C(r) = e−
Γr
2 cos(kr+φ),

where k =
√
k2

0 − Γ2/4, with three fitting parameters (i.e., the damping coefficient Γ, the

intrinsic wave number k0, and the phase constant φ). Here, these panels show the autocorre-

lations of T and L waves for three representative frequencies: ω = 0.36ωb in Supplementary

Figure 1(a-b), ω = ωb in Supplementary Figure 1(c-d), and ω = 4.64ωb in Supplementary

Figure 1(e-f). Here, the pressure is ∼ 26.5Nm−1, and results are similar to those of other

pressures. Black lines are fitting curves.

Supplementary Note 2: Analyses in Fourier Space

The results of dispersion relations and Γ-versus-ω relations are independent of the actual

way of analyzing the data, either in real space or in Fourier space. We also analyzed modes

in Fourier space. First, we decomposed a mode into the transverse and longitudinal part

in Fourier space based on the fact that for transverse waves components are perpendicular

to wave vectors, whereas for longitudinal waves components are parallel to wave vectors1.

Results are shown in Supplementary Figure 3(a-b) at ω = ωb, and these results are similar to

those of other frequencies. Structure factors (sT(k, ω) or sL(k, ω)) can be readily computed,

as shown in panels(c-d). In Supplementary Figure 3(c-d), solid lines represent the Lorentzian

fitting (see figure captions for details).
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Supplementary Note 3: Real-space and Fourier-space analyses

Here is the comparison between real-space analyses (red circles) and Fourier-space anal-

yses (dark blue squares) for dispersion relations and Γ versus ω at P = 26.5Nm−1, as shown

in Supplementary Figure 4(a-d). Magenta dashed lines are guide to eyes. The orange dashed

lines at ω/ωb = 6 denote the starting point of the Anderson localization, beyond which the

results of both analyses are no longer meaningful. Black dash lines indicate BP positions, in

all panels, the horizontal and vertical axes are re-scaled by the corresponding BP frequen-

cies. So from this figure, we see that the dispersion relations obtained by both methods are

quantitatively the same within ω ≤ 6ωb, independent of specific means of analysis.

Supplementary Note 4: Computation of local bulk and shear moduli

To determine the local shear and bulk moduli centered on a given particle within a square

domain of box size w/D with D the average particle diameter, we applied a method intro-

duced in the paper2. We find that it makes very little difference whether the selected domain

is a square or a circle. We first applied a uniform and infinitesimal virtual compression (or

pure-shear) strain field to create a displacement field of the individual disks within the box.

Therefore, a disk i would have a displacement ui subjected to this strain: in isotropic com-

pression, displacements are ui = γrci, whereas in pure shear, displacements are uix = γxci

and uiy = −γyci. Here, rci are position vectors with respect to the center of the box, and xci

and yci are their corresponding horizontal and vertical components. From individual displace-

ment vectors, relative deformation between a pair of contacted disks i and j was derived for

the normal component u‖,ij and the tangential component u⊥,ij: u‖,ij = uijxcosθij+uijysinθij,

u⊥,ij = uijycosθij − uijxsinθij, where the θij represents an angle between the position vector

pointing from i to j and the horizontal axis. Second, from the linear response, the change of

contact forces was then computed directly. Third, combining information of contact forces

and contact positions allowed us to compute the stress tensor σij of this given box to derive

B and G using B = σxx+σyy
4γ

and G = σxx−σyy
4γ

. Finally, applying the above method to the

different locations of the system, we computed all local moduli, as shown in Supplementary
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Figure 5, where panel (a) plots the spatial distributions of the local bulk modulus B and

panel (b) plots the spatial distributions of the local shear modulus G. For the convenience of

plotting, we typically first mapped the system onto a square grid and then calculated local

moduli for each grid. Note that the calculation of the local modulus does not depend on the

specific treatment of boundary particles of the box. We applied two schemes, and results

are insensitive to actual schemes used. The first scheme is a binary one: if the center of

a particle is within the box, the particle is included, otherwise, it is excluded. The second

scheme is a continuous one: each boundary particle is assigned a numerical weight, which

equals the fraction of the disk area within the box over the total disk area.

One important parameter in the above calculation is the box size w/D. To check the

dependence of local moduli on w/D, we divided the system into nine non-overlapping regimes

and we then chose the centers of these nine regimes to compute the fluctuations of local

shear-and-bulk moduli by systematically varying w/D. Results are shown in Supplementary

Figure 5(c), where both normalized fluctuations of K and G satisfy a power-law scaling

with an exponent close to −1. These results are quite surprising, indicating the absence of

characteristic length scales in modulus fluctuations at least for affine components, which is

similar to those of a numerical study of systems near the jamming point3.

To measure the modulus including non-affine components, we used the method in Ref.4.

Essentially, we first calculated the Hessian matrix Hiαjβ, which is constructed from spring

constants of all contacts. Then, affine forces Ξiα were computed using Ξiα = Hiαjβ
∂rjβ
∂γ

,where

rjβ are affine displacement fields subjected to a compressional strain or pure-shear strain γ,

and nonaffine displacement fields were obtained using the equation (A4) in the appendix of

Ref.4. Finally, the non-affine contributions of moduli were calculated using the similar way

as the affine parts Bnonaffine =
σnonaffine
xx +σnonaffine

yy

4γ
and Gnonaffine =

σnonaffine
xx −σnonaffine

yy

4γ
, and total

moduli are the results of affine terms subtracted by the corresponding non-affine terms.
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Supplementary Figure 1: Autocorrelation functions CT,L(r). Autocorrelation func-
tions CT,L(r) at ω = 0.36ωb (a-b), ω = ωb (c-d), and ω = 4.64ωb (e-f). Here, P = 26.5Nm−1,
and results at other pressures are similar. In all panels, black solid lines are the fitting curves
using C(r) = e−

Γr
2 cos(kr+φ) of a freely-damped harmonic oscillation. In each panel, results

were ensemble averaged over 7 different realizations. Here, error bars denote one s.d. around
the corresponding mean values of 7 realizations.
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Supplementary Figure 2: Fitting parameters Γ and φ versus ω/ωb. Fitting pa-
rameters Γ, and φ versus ω/ωb at the pressure levels of P = 6.54 (red circles), 16.69 (green
squares), 26.5 (blue diamonds), and 35.48 (black inverted triangles) Nm−1. Panels (a-b): Γ
versus ω. Magenta dashed lines are guide to eyes and black dotted lines mark ω/ωb = 1.
Insets: Γ versus k0 for T (a) and L (b) waves. Panels (c-d) plot φT,L versus ω/ωb, where
both φT and φL show the existence of a prominent peak around ω/ωb = 1. Here, results
were ensemble averaged over ∼ 10 realizations of each pressure, and error bars are within
the symbol size.

6



0 200 400
0

5

10

x 104

k (m-1)

s  T
(k

,ω
)

 

 

0 200 400
0

5000

10000

s  L
(k

,ω
)

 

 

k (m-1)

kx (m-1)

k y (m
-1

)

ω=ω b

 

 

-200 0 200

-200

0

200

2

4

6

kx (m-1)
k y (m

-1
)

ω=ω b

 

 

-200 0 200

-200

0

200

0

2

4

6

0 200 400
0

500

1000

1500

 

 

0 200 400
0

500

1000

1500

 

 

b

d

a

c

Supplementary Figure 3: T and L waves analysed in Fourier space. Contour plots
of the T (a) and L (b) modes at the BP frequency ωb in Fourier space. Panels (c-d) are
the structure factors sT(k, ω) and sL(k, ω) of T and L waves versus the wave number k at 7
frequencies. The frequencies of sT(k, ω) curves are (units ωb) ω = 0.50 (red), 0.62 (green),
0.74 (blue), 1.00 (magenta), 2.06 (purple), 4.04 (orange), and 6.31 (black); The frequencies
of sL(k, ω) curves are (units ωb) ω = 0.74 (red), 1 (green), 2.06 (blue), 2.98 (magenta), 4.04
(purple), 5.04 (orange), and 6.31 (black). Insets in both panels are magnified view of the last

four largest frequencies. Here, solid lines represent the Lorentzian fitting s = c+ 2/πAΓ
4(k−k0)2+Γ2

(see e.g. Ref.5), where c ≈ 0 is a small correction constant, A is a constant coefficient,
k0 is the peak position, and Γ is full width at half maximum. Here, results were ensemble
averaged over 7 realizations of P = 26.5Nm−1, and error bars are within the symbol size.
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Supplementary Figure 4: Real-space and Fourier-space analyses. The comparison
of dispersion relations (a-b) and fitting parameters Γ (c-d) obtained from self-correlations
(red circles) in real space and structure factors (dark blue squares) in Fourier space at
the pressure 26.5Nm−1. Magenta dashed lines are guide to eyes. Orange dashed lines at
ω/ωb = 6 represent the start of the Anderson localization, beyond which results are no
longer meaningful. Here, results were ensemble averaged over 7 realizations, and error bars
are within the symbol size.
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Supplementary Figure 5: Spatial distributions of affine local bulk and shear
moduli. Contour plots of the local bulk B (a) and the shear modulus G (b) at the pressure
P = 26.50Nm−1 with the box size w/D = 5, in which D is the mean particle diameter. Here
B and G only include affine components. (c) Relative fluctuations δG̃ (red circles) and δB̃
(blue squares) versus w/D. To avoid boundary effects and overlaps between domains, each
realization was divided into 3× 3 boxes, and results were averaged over 7 realizations at the
same pressure. Here δB̃ ∝ w−1.13 and δG̃ ∝ w−1.02, showing no clear qualitative differences
and no characteristic length scales.
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