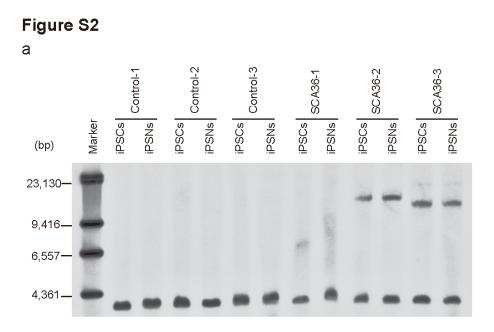

OMTN, Volume 8

### **Supplemental Information**

### Antisense Oligonucleotides Reduce RNA Foci

#### in Spinocerebellar Ataxia 36 Patient iPSCs


Kosuke Matsuzono, Keiko Imamura, Nagahisa Murakami, Kayoko Tsukita, Takuya Yamamoto, Yuishin Izumi, Ryuji Kaji, Yasuyuki Ohta, Toru Yamashita, Koji Abe, and Haruhisa Inoue



## **Supplemental Figures**

#### Figure S1: RNA-Seq analysis

All six iPSCs and embryonic stem cells (ESCs) for positive control were categorized in the same cluster, which was differentiated from HDF or PBMC clusters.



#### Figure S2: Southern blot analysis of iPSCs and iPSNs

An expanded GGCCTG repeat allele was shown in the SCA36 patient iPSCs and the SCA36 patient iPSNs.

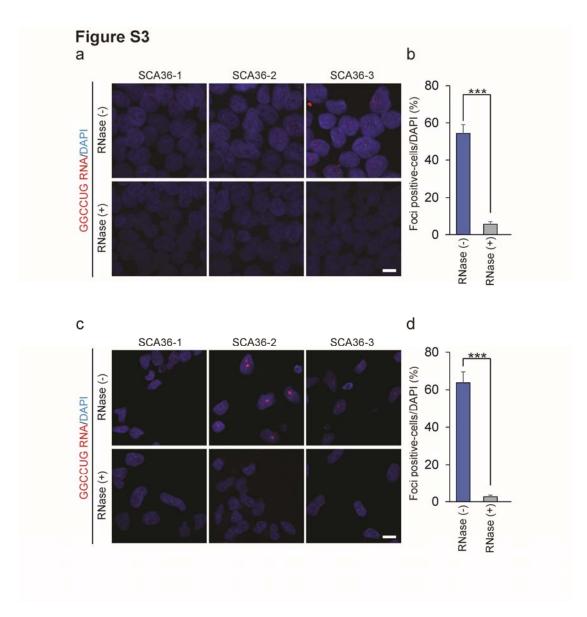



Figure S3: RNA foci in SCA36 patient iPSCs and iPSNs disappeared by RNase A treatment

(a) Sense RNA foci in SCA36 patient iPSCs disappeared by RNase A treatment. Scale bar: 10 $\mu$ m. (b) The graph shows that almost no RNA foci were detected by RNase A treatment. \*\*\*p < 0.001. Data presented as mean  $\pm$  SEM from n = 3 clones. (c) Sense RNA foci in SCA36 patient iPSNs disappeared by RNase A treatment. Scale bar: 10 $\mu$ m. (d) The graph shows that almost no RNA foci were detected by RNase A treatment. \*\*\*p < 0.001. Data presented as mean ± SEM from n = 3 clones.

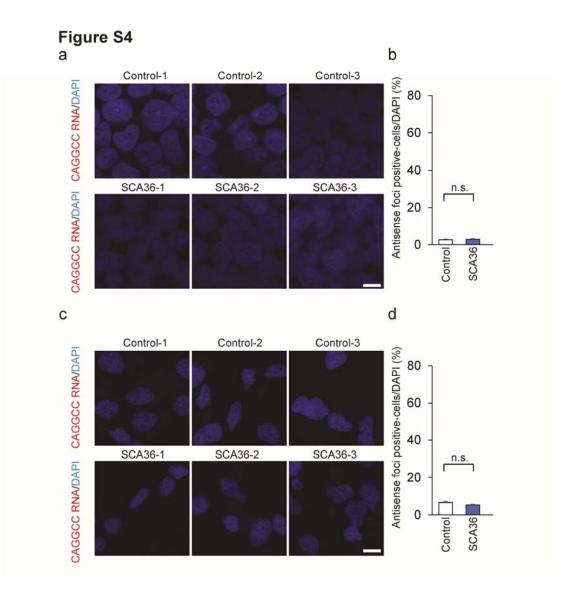
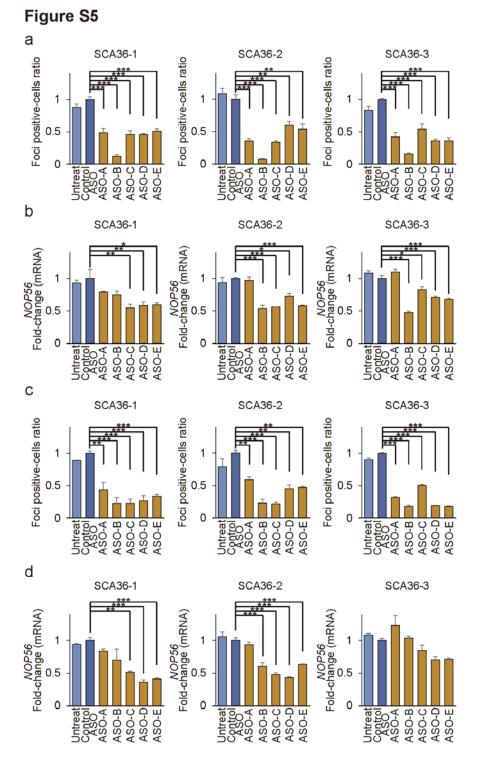
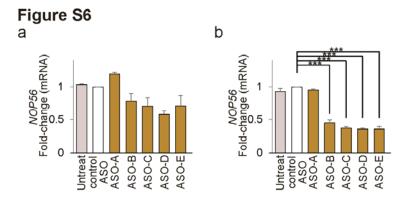




Figure S4: Antisense RNA foci were not detected in SCA36 patient iPSCs or iPSNs.

Fluorescence in situ hybridization (FISH) analysis was performed for each iPSC clone using a cy3-conjugated CUG(GGCCUG)<sub>2</sub>G locked nucleic acid oligonucleotide probe. (a) No antisense RNA foci were detected in either healthy control or SCA36 patient iPSCs. Scale bar: 10 $\mu$ m. (b) The graph shows that there were no significant CAGGCC RNA foci-positive cells in iPSCs. Data presented as mean ± SEM from n = 3 clones. (c) No antisense RNA foci were detected in either healthy control or SCA36 patient iPSNs. Scale bar:  $10\mu m$ . (d) The graph shows that there were no significant CAGGCC RNA foci-positive cells in iPSNs. Data presented as mean  $\pm$  SEM from n = 3 clones.




# Figure S5: The data of antisense oligonucleotides effectiveness in each SCA36 patient iPSC or iPSN clone.

(a) The graph shows the number of RNA foci-positive cells in each SCA36 patient iPSC

clone. \*\*p < 0.01, \*\*\*p < 0.001. Data presented as mean  $\pm$  SEM from n = 3 wells.

(b) The graph shows the *NOP56* mRNA expression levels in each SCA36 patient iPSC clone after ASO treatment. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001. Data presented as mean  $\pm$  SEM from n = 3 wells. (c) The graph shows the number of RNA foci-positive cells in each SCA36 patient iPSN clone. \*\*p < 0.01, \*\*\*p < 0.001. Data presented as mean  $\pm$  SEM from n = 3 wells. (d) The graph shows the *NOP56* mRNA expression levels in each SCA36 patient iPSN clone after ASO treatment. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001. Data presented as mean  $\pm$  SEM from n = 3 wells. (d) The graph shows the *NOP56* mRNA expression levels in each SCA36 patient iPSN clone after ASO treatment. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001. Data presented as mean  $\pm$  SEM from n = 3 wells.



# Figure S6: The *NOP56* mRNA expression levels in healthy control iPSCs and iPSNs after ASO treatment.

(a) The graph shows *NOP56* mRNA expression levels in healthy control iPSCs after ASO treatment. Data presented as mean  $\pm$  SEM from n = 3 clones. (b) The graph shows *NOP56* mRNA expression levels in healthy control iPSNs after ASO treatment. \*\*\*p < 0.001. Data presented as mean  $\pm$  SEM from n = 3 clones.