
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors present results of an energy-landscape analysis applied to resting state fMRI 

data collected from adults with autism and neurotypical adults. They find that the brains of 

individuals with autism show fewer transitions, and that frequency of transitions predicted 

severity of symptoms. They also report relationships with strength of functional segregation 

between brain networks and symptoms. This is an interesting approach applied to an 

important clinical question. Some suggestions are below.  

 

I appreciate the approach to focus on data collected at one site to avoid issues related to 

cross-site comparison. However, the study would be greatly increased by demonstrating 

replicability of the current results over several additional sites containing comparable adult 

datasets.  

 

The main finding is that minor states appeared less frequently in the autism group than in 

the control group. Can the authors comment on the potential impact between-subject 

heterogeneity and whether this may affect the autism and control groups differently?  

 

The finding of increased state duration in autism seems more likely to be related to 

symptoms of rigidity, rather than social communication deficits. Did the authors examine 

relationships between the dynamic metrics and scores on subscales of the ADOS to test for 

this?  

 

Did the authors test for age-related effects?  

 

  



Brain network dynamics in high-functioning autism

December 12, 2016

Comments

In this submission the authors leverage an energy landscape and maximum entropy approach to model brain-
wide dynamics in a cohort of high-functioning autistic adults and a control group. Using this approach they
show that transitions to a particular brain state (a vector of binarized activity profile) occur less frequently
as a function of autism symptom severity. They go on to show other relationships between measures derived
from the dynamical model and behavior. Finally, they show that the extent to which brain networks are
segregated also differ between the two groups.

Overall, the submission is quite stanard in that the authors use an established set of techniques (energy
landscape analysis, which they have applied before [4, 5]) to compare a control cohort with a clinical cohort
(in this case, patients with autism). It goes a bit beyond the run-of-the-mill article in that its three principal
findings (infrequent transitions to intermediate state, relation of cognitive performance with measures from
the model, and network segregation differences) each could be crafted into a separate paper. Nonetheless,
due to the overlap with the authors’ past work, the novelty of the present submission is lessened.

I am not an expert in autism and social cognitive disorders, so it is difficult for me to judge how the find-
ings reported in this submission will influence current autism research. From a methodological standpoint,
however, there are a number of shortcomings that should temper enthusiasm over the findings and should
be discussed in greater detail by the authors and/or addressed with supplementary analyses.

One of the greatest shortcomings, in my opinion, is the limitations imposed on the analysis by the
maximum entropy model. Fitting the model becomes computationally challenging when the number of
nodes/brain regions is greater a handful (which is why the authors group brain regions into seven systems
rather than analyzing all nodes). While there is ongoing debate over the “correct” number of brain re-
gions/nodes/systems into which the brain should be divided (there is likely a degeneracy of solutions for
this problem), fixing that number at seven seems like a far too few as it almost certainly overlooks nuanced
functional and anatomical connectivity profiles of the systems’ sub-regions. I expand on this in the next
section.

1. (p. 4) The accuracy of model fit is based on binarized, system-averaged time series. It is unclear,
however, whether those system time series accurately represent the time series of each system’s constituent
voxels/brain regions. The authors could demonstrate a good match by calclating some measure of voxel-
wise homogeneity (e.g. calculate the fraction of variance explained in voxel time series by the system time
series).

2. (p. 5) The compare controls-ASD using t-tests. It would be good to see similar results with non-parametric
tests; e.g. compute effect size and compare to random re-assignments of individuals to each group.

3. (p. 5) Why 105 steps and not some other number of steps? Does the frequency with which states are
visited stabilize by that point?

4. (p. 9) The authors assert that transition frequency is associated with the strength of module segregation
(as measured using Pearson correlation). My sense is that this finding might be a mathematical inevitabil-
ity stemming from the interdependence of dynamics and FC. Variation in FC across time is constrained
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by the organization of “static” (long-time averaged) FC [3, 2, 1]. The correlation magnitude of two times
series over short intervals is constrained by the correlation over long intervals, with strong constraints for
high-amplitude correlations and liberal constraints for low-amplitude correlations.

Segregated modules imply strong within-module correlations and equally strong between-module anti-
correlations. Thus, a possible interpretation is that both the increased appearance of an intermediate
state (due to liberal dynamical constraints) and the weak segregation are manifestations of the same
phenomenon.

5. (p. 9) Change “weaken” to “weaker”.

6. (p. 14) The abbreviation should be “WASI”.

7. (p. 14) What is the rationale for selecting data from just the Utah site? The authors could leverage the
other sites for reproducibility analysis, even if the data quality/number of subjects/controls are less than
ideal.

8. (p. 15) Why 214 ROIs? The paper the authors reference includes 264.

9. (p. 15) I would expect that cognitive control and attentional networks play distinct roles in social disorders
like ASD. I recognize the convenience of combining them for computational reasons, but is this actually
justified? It would be good if the authors could either demonstrate that these three systems independently
follow similar time series (thus justifying the merger) or reproduce their analyses by adding either one
(split ATN but retain merger of attention networks) or two (split ATN into three components) new nodes.

10. (p. 15) The authors note that activity was binarized using the “average brain activity value”. They
reference several papers but provide no further explanation as to what this entails. It would be good to
be didactic in this explanation. I am also curious, then, about the robustness of their findings with respect
to alternative thresholds (as the technique for selecting the threshold they reference is one of many and,
in and of itself, is not priveleged in any real way).

11. (p. 19) Another possible concern is that the segregation of systems (which the authors define as the
different of within - between module connectivity) could be influenced by global connectivity levels. It
would be good to show that the segregation measure is not significantly correlated across subjects with
any of (A) sum of absolute value of all connections, (B) sum of all connections, (C ), sum of only positive
connections, or (D) sum only negative connections. If any of these correlations are strong, it suggests
that the segregation measure may, in fact, be driven by network-wide connectivity differences rather than
connectivity differences specific to the systems in question.

I hope that the authors find these comments useful.
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Reviewer #3 (Remarks to the Author):  

 

This manuscript uses an energy-landscape of resting state fMRI data to compare brain 

network dynamics in individuals with ASD and TD individuals. Very little research has 

probed brain network dynamics in autism, but based on theoretical and empirical work it is 

likely disrupted in autism. Therefore, this is an innovative and important addition to the 

literature. The authors found that in ASD, brain states are more stable and show fewer 

transitions of intermediate states than in TD individuals, and that these atypical dynamics 

are related to ASD symptomatology and IQ.  

 

Following are suggestions to make this manuscript more suitable for publication:  

 

This is a minor point, but I believe it’s more standard to refer to people who have a 

diagnosis of autism as individuals with autism or ASD, and their brains as the brains of 

individuals with autism/ASD (or phrases similar to that), as opposed to “autistic” individuals 

or brains.  

 

A relevant article that you did not cite is: Uddin, Supekar, Lynch, Cheng, Odriozola, Barth, 

Phillips, Feinstein, Abrams & Menon (2015). Brain state differentiation and behavioral 

inflexibility in autism. Cerebral Cortex, 25, 4740-7. It is one of the few articles to date that 

has measured temporal changes in functional connectivity in autism, and supports your 

findings that brain states are too stable in autism.  

 

Did you look at data for any of the other ABIDE sites? Given that you chose to only look at a 

single site because of potential across-site differences and confounds, it would be useful to 

be able to demonstrate that these results are not a quirk of the single site you chose. 

Relating Utah results to results from one of the other sites would be informative.  

 

In Table 1, why not include p-values comparing ADOS scores across TD and ASD groups? It 

would be a nice way to emphasize the expected difference in scores.  

 

On page 4, line 113, you write “Coincidentally, we identified the same six locally stable 

brain activity patterns in the TD and ASD individuals…” Why do you think this is a 

coincidence? You write that in the Figure 2 caption as well. This finding is consistent with 

the work from Vince Calhoun’s lab demonstrating that different populations (i.e., 

schizophrenia versus healthy control subjects) have the same brain states, but different 

dwell time and transition patterns across brain states. Most likely, it is meaningful that 

individuals with autism have the same brain activity patterns as healthy individual, but 

different transition patterns and dynamics. This should be written about in the discussion as 

well.  

 

Overall, your figures are very busy and therefore hard to follow. Perhaps separating them 

into more figures, spreading the different plots out more, shortening the axis titles, and 

adding legends so you do not have to have words written over the plots, would help.  

 

Page 7, line 199: “…whereas such difference was seen in duration of Major states (P > 



0.56).” I do not understand what this phrase means, please elaborate in the text. In that 

same paragraph, what is the ADOS score you are correlating? Overall score? One of  the 

subscales? Please specify.  

 

The last sentence of that section: “These observations indicate that atypically unstable 

Intermediate state in autistic brains reduces their Indirect transition, which increases the 

severity of autistic symptoms (Figs. 4c).” is a bit strong, given that you do not know if the 

decreased indirect transition is what causes increased severity of ASD symptomatology. 

From this analysis you know that decreased indirect transitions are related to increased ASD 

symptomatology. Whether it is a direct cause or a hierarchical relationship caused by an 

unmeasured variable you do not know from this analysis. The same goes for the other 

results of similar analyses that you describe throughout the text.  

 

In Figure 4a, if you remove and/or deweight the outlier with the low ADOS score and the 

highest indirect transition frequency, does the reported relationship still hold?  

 

Last line of page 8 “…and a module with the other four networks…” it would be helpful for 

the reader to list those four networks out. Same goes for the 5 networks mentioned on lines 

279 and 296 on page 10.  

 

In Figures 6 and 7 (and the corresponding results section), did you also relate major state 

functional segregation to IQ in TD, and intermediate state functional segregation to ASD? It 

would be interesting to report those results.  

 

The discussion should be fleshed out a bit:  

1) What do you make of the different relationship between FIQ and brain states in TD and 

ASD? This is an interesting result and should be written about in the discussion.  

2) If you were to look at connectivity patterns across the 7 systems that describe each of 

these states, how do these patterns relate to what we know about network organization in 

ASD based on previous literature?  

3) Why is it that increased segregation during intermediate states and decreased 

segregation during major states is more typical/relevant to healthy cognition and brain 

dynamics?  

 

In the Data Preprocessing section of the methods (page 15), you can quantify if the 

timeseries of the DAN, VAN, and CO networks are similar enough to justify averaging 

together. Please report that.  
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We have addressed all the comments of the editor and reviewers. Page numbers in our responses 
refer to those in the revised manuscript unless otherwise mentioned. The modified or added text is in 
blue in the revised manuscript. 

[1] Reproducibility.

First, we confirmed the reproducibility of the original observations using two independent datasets, 
which were collected in the Indiana University (9 ASD and 12 TD individuals) and ETH Zürich (10 
ASD and 15 TD individuals).  We clarified this reproducibility by adding four new supplementary 
figures (Supplementary Figs. 6-9) and two tables (Supplementary Tables 2 and 3) with the following 
descriptions: 

Results section (lines 9-21 in p. 11) 

Reproducibility tests 

We confirmed the reproducibility of these observations using two independent datasets 
collected in Indiana University (Supplementary Table 2) and ETH Zürich 
(Supplementary Table 3).  

Analysis of both datasets yielded qualitatively the same hierarchal structures of the 
energy landscapes, consisting of the same six brain states (Supplementary Figs. 6b and 
8b). In addition, significant differences in the major/intermediate state frequency 
between TD and ASD groups were also reproduced (Supplementary Figs. 6c and 8c). 
Moreover, we could identify the atypically lower indirect transition frequency and 
aberrantly longer duration of the major states in the ASD groups (Supplementary Figs. 
6d-g, and 8d-g). Finally, we confirmed that the correlations between brain dynamics and 
behavioural indices were reproduced (Supplementary Figs. 6h-j and 8h-j), and the 
associations between these brain dynamics and across-network functional coordination 
were also replicated (Supplementary Figs. 7 and 9).  

Methods section (lines 12-24 in p. 23) 

Reproducibility test 

We tested the reproducibility of the current results using two other datasets in ABIDE29: 
data recorded in Indiana University (9 ASD and 12 TD individuals; TR 0.813s, TE 28ms, 
Flip angle 60° for fMRI data; Supplementary Table 2) and those collected in ETH Zürich 
(10 ASD and 15 TD individuals; TR 2s, TE 25ms, Flip angle 90° for fMRI data; 
Supplementary Table 3). These two datasets were chosen because except the data of the 
University of Utah, they had the largest or second largest MRI images of ASD adult 
males in the ABIDE database.  

We first selected high-functioning ASD adult males and age-/sex-/IQ-matched TD 
individuals based on the same criteria as those applied to the data of the University of 
Utah. We then applied the same analyses to these data, and examined the robustness of 
the current observations.  

The authors' response to some of the concerns raised by the Reviewers that were 
highlighted in the original decision letter.
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[2] Diagnostic prediction

Second, according to the editor’s suggestion, we examined whether the original findings can be used 
to distinguish ASD individuals from TD individuals. To this end, we defined thresholds for the 
classification using the original dataset (University of Utah dataset), and tested them using the two 
independent datasets (Indiana University and ETH Zürich datasets). 

We found that the accuracy of the diagnostic prediction based on brain dynamics (Sensitivity = 89%, 
Specificity = 93% in a bi-variate analysis) was comparable or higher to those of previous diagnostic 
systems based on resting-state fMRI datasets (e.g., Yahata et al., 2016; Uddin et al., 2013; Anderson 
et al., 2011).  

To clarify this point, we added a new figure (Fig. 9) with the following description. 

Results section (line 23 in p. 11 – line 7 in p. 12) 

Prediction of ASD diagnosis 

Using the same independent datasets, we examined whether such differences in brain 
dynamics can potentially be used to predict the diagnosis of autism (Fig. 9 and 
Supplementary Fig. 10). We first defined a threshold for the diagnosis using the original 
dataset (University of Utah data), and then evaluated the performance of this diagnostic 
approach by applying it to the independent datasets (Indiana University and ETH Zürich 
data). For the test data, the energy-landscape analysis was performed not at a group but 
individual level, and therefore, the results were not exactly the same as those obtained in 
the above reproducibility test. 

The intermediate state frequency could predict the ASD diagnosis with relatively high 
accuracy (sensitivity = 84%, specificity = 85%; Fig. 9a). In contrast, the indirect 
transition frequency did not realise such accurate prediction (sensitivity = 68%, 
specificity = 74%; Fig. 9b). We could improve the diagnosis accuracy by combining the 
two indices in a multi-variate pattern analysis method (sensitivity = 89%, specificity = 
93%; Figs. 9c and 9d). Notably, this classification accuracy is comparable to or higher 
than previous diagnostic approaches based on resting-state fMRI data41-43. 

Methods section (line 25 in p. 23 – line 10 in p. 24) 

Diagnosis prediction 

Using the same independent datasets, we examined whether differences in brain 
dynamics can distinguish ASD individuals from TD individuals (Supplementary Fig. 
10a). First, for each participant in the two independent datasets, we performed the 
energy-landscape analysis and calculated the intermediate state frequency and the 
indirect transition frequency. We focused on these two indices for brain dynamics 
because they were clearly different between the TD and ASD groups (Figs. 3d and 3f) 

In a univariate diagnostic prediction, we set the cut-off values based on the original 
observations as follows: [(min value in the TD group) – (max value in the ASD group)] × 
0.5.  
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In a multivariate prediction, we determined the cut-off line by fitting a linear support 
vector machine to the original datasets (Fig. 9c). This fitting was performed using 
LIBSVM package (www.csie.ntu.edu.tw/~cjlin/libsvm/). 

We then applied these cut-off values and cut-off line to the two indices for brain 
dynamics observed in the independent datasets, and calculated sensitivity and specificity 
of the prediction. 

We have also illustrated the findings in a new figure (Fig. 9) 

References 

38. Yahata, N. et al. A small number of abnormal brain connections predicts adult autism
spectrum disorder. Nat Commun 7, 11254 (2016).

39. Uddin, L. Q. et al. Salience network-based classification and prediction of symptom severity
in children with autism. JAMA Psychiatry 70, 869–879 (2013).

40. Anderson, J. S. et al. Functional connectivity magnetic resonance imaging classification of
autism. Brain 134, 3742–3754 (2011).
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Responses to the reviewer #1’s comments 

We appreciate the reviewer’s useful suggestions. We have addressed all the comments of the 
reviewer. Page numbers in our responses refer to those in the revised manuscript unless otherwise 
mentioned. The modified or added text is in blue in the revised manuscript.  

Concern 1 

“I appreciate the approach to focus on data collected at one site to avoid issues 
related to cross-site comparison. However, the study would be greatly increased by 
demonstrating replicability of the current results over several additional sites 
containing comparable adult datasets.” 

We agree with the importance of the reproducibility test. Therefore, according to the reviewer’s 
suggestion, we examined and confirmed that all of our original results could be reproduced in two 
independent neuroimaging datasets, which were collected in the Indiana University (9 ASD and 12 
TD individuals) and ETH Zürich (10 ASD and 15 TD individuals).   

To clarify this reproducibility, we added four new supplementary figures (Supplementary Figs. 6-9) 
and two tables (Supplementary Tables 2 and 3) with the following descriptions: 

Results section (lines 9-21 in p. 11) 

Reproducibility tests 

We confirmed the reproducibility of these observations using two independent datasets 
collected in Indiana University (Supplementary Table 2) and ETH Zürich 
(Supplementary Table 3).  

Analysis of both datasets yielded qualitatively the same hierarchal structures of the 
energy landscapes, consisting of the same six brain states (Supplementary Figs. 6b and 
8b). In addition, significant differences in the major/intermediate state frequency 
between TD and ASD groups were also reproduced (Supplementary Figs. 6c and 8c). 
Moreover, we could identify the atypically lower indirect transition frequency and 
aberrantly longer duration of the major states in the ASD groups (Supplementary Figs. 
6d-g, and 8d-g). Finally, we confirmed that the correlations between brain dynamics and 
behavioural indices were reproduced (Supplementary Figs. 6h-j and 8h-j), and the 
associations between these brain dynamics and across-network functional coordination 
were also replicated (Supplementary Figs. 7 and 9).  

Methods section (lines 12-24 in p. 23) 

Reproducibility test 

We tested the reproducibility of the current results using two other datasets in ABIDE29: 
data recorded in Indiana University (9 ASD and 12 TD individuals; TR 0.813s, TE 28ms, 
Flip angle 60° for fMRI data; Supplementary Table 2) and those collected in ETH Zürich 
(10 ASD and 15 TD individuals; TR 2s, TE 25ms, Flip angle 90° for fMRI data; 
Supplementary Table 3). These two datasets were chosen because except the data of the 

The authors' point-by-point response to the specific concerns raised by each 
Reviewer.
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University of Utah, they had the largest or second largest MRI images of ASD adult 
males in the ABIDE database.  
 
We first selected high-functioning ASD adult males and age-/sex-/IQ-matched TD 
individuals based on the same criteria as those applied to the data of the University of 
Utah. We then applied the same analyses to these data, and examined the robustness of 
the current observations.  

 
Concern 2 
 
“The main finding is that minor states appeared less frequently in the autism group 
than in the control group. Can the authors comment on the potential impact between-
subject heterogeneity and whether this may affect the autism and control groups 
differently?” 
 
We appreciate the reviewer’s thoughtful suggestion concerning the heterogeneity of the participants. 
The current study attempted to reduce such heterogeneity by restricting age/sex/IQ scores and 
excluding individuals with any neuropsychiatric comorbidity or medication. However, it is also the 
case that not all the potential confounding effects of heterogeneity were controlled. Therefore, some 
other factors, (perhaps genetic, but other factors are also possible), might affect the current 
observations.  
 
In addition, as suggested in a recent review (Jack, A. & Pelphrey, 2017), the effects of such between-
participant heterogeneity may potentially be larger in the analysis of ASD data than in that of TD 
data. In fact, the number of outliers was larger in the ASD data than in the controls (Figs. 2d and 2e). 
 
To clarify this issue, we added the following paragraph into the Discussion section (lines 2-12 in p. 
15).   
 

Another limitation of our work concerns potential heterogeneity in the ASD group56. We 
attempted to reduce confounding effects of such heterogeneity by focusing on high-
functioning right-handed male adults without any psychiatric comorbidity including 
ADHD. However, this approach could not control all between-participant differences. 
For example, some recent studies have reported that neural responses of ASD individuals 
could be affected by their genetic patterns57,58, and other studies have pointed out 
significant diversity in executive function even in ASD individuals59. In addition, such 
heterogeneity could be larger in the ASD group than in TD cohort56. Consistent with this, 
we observed more outliers in our ASD data than neurotypical control data: the ASD data 
had seven outliers (> or < Mean ± 2SD) in the appearance frequencies of the 
major/minor brain states (Figs. 2d and 2e), whereas the TD had no outlier. Given such 
potential heterogeneity, the current observations will need to be further examined in 
more genetically and behaviourally homogeneous sub-groups of ASD.  

 
References 
 
56. Jack, A. & Pelphrey, K. A. Annual Research Review: Understudied populations within the 

autism spectrum - current trends and future directions in neuroimaging research. J Child 
Psychol Psychiatry (2017).  

57. Rudie, J. D. et al. Autism-associated promoter variant in MET impacts functional and 
structural brain networks. Neuron 75, 904–915 (2012). 
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58. Watanabe, T. et al. Oxytocin receptor gene variations predict neural and behavioral response 
to oxytocin in autism. Soc Cogn Affect Neurosci nsw150 (2016). doi:10.1093/scan/nsw150 

59. Dajani, D. R., Llabre, M. M., Nebel, M. B., Mostofsky, S. H. & Uddin, L. Q. Heterogeneity of 
executive functions among comorbid neurodevelopmental disorders. Sci. Rep. 6, 36566 (2016). 

 
 
Concern 3 
 
“The finding of increased state duration in autism seems more likely to be related to 
symptoms of rigidity, rather than social communication deficits. Did the authors 
examine relationships between the dynamic metrics and scores on subscales of the 
ADOS to test for this?” 
 
We have sympathy with the thought that inflexible brain dynamics in autism may be linked with 
rigidity symptoms of ASD.  
 
As the reviewer stated, we found a significant negative correlation between ADOS total score and 
the indirect transition frequency in autism (Fig. 4a). However, we could specify with confidence 
which core symptom of ASD was more related to these atypically stable brain dynamics. 
 
In fact, the ASD individuals with higher ADOS RRB scores showed smaller frequency of the 
indirect transitions (Cohen’s d ~ 0.6). At the same time, inflexibility of brain dynamics in the ASD 
individuals was moderately correlated with the severity of ASD social symptoms (ADOS social + 
communication scores, r ~ –0.3; ADOS social, r ~0.3; ADOS communication, r ~ –0.4). 
 
We clarified this issue by adding the following descriptions into the Results and Discussion sections 
with a new supplementary figure (Supplementary Fig. 4).  
 
Results section (lines 24-25 in p. 7). 
 

This brain-symptom association was not specific to either of the social or non-social core 
symptoms of autism (Supplementary Fig. 4). 

 
Discussion section (lines 25- 31 in p. 14).   
 

We also need to be careful not to conclude that the aberrantly stable brain dynamics of 
individuals with autism are related to every aspect of the disorder. Both the social and 
non-social core symptoms of ASD showed similar effect sizes for brain-symptom 
associations (Supplementary Fig. 4), but some previous studies have suggested the 
possibility that non-social symptoms are more relevant to such neurophysiological 
inflexibility10,25. To identify which property of atypical brain dynamics is related to a 
specific core symptom of autism would require a combination of the current energy-
landscape analysis with task-based neuroimaging data of ASD individuals.  

 
We also added a new Supplementary Fig. 4 
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Associations between the Indirect transition frequency and sub-scale scores of 
ADOS.  
 
The social and non-social ADOS scores commonly showed mild negative associations 
with the Indirect transition frequency in the ASD group, and there was no significant 
difference between the brain-symptom relationships (a and b). This tendency did not 
change even after we re-calculated the associations using all of the three datasets (c and 
d).  
 
According to DSM-5, we quantified the social symptom of autism by merging ADOS 
social score and ADOS communication score. The correlations between the merged 
ADOS scores and brain dynamics were preserved when we calculated the correlations 
for each ADOS subscale separately (ADOS social r ≤ –0.32, ADOS communication r ≤ 
–0.41). 

 
 
References 
 
10. Dajani, D. R. & Uddin, L. Q. Demystifying cognitive flexibility: Implications for clinical and 

developmental neuroscience. Trends in Neurosciences 38, 571–578 (2015). 
25. Uddin, L. Q. et al. Brain State Differentiation and Behavioral Inflexibility in Autism. Cereb. 

Cortex 25, 4740–4747 (2015). 
 
 
Concern 4 
 
“Did the authors test for age-related effects?” 
 
We have now calculated the correlations between age and three indices for brain dynamics (i.e., the 
intermediate state frequency, the indirect transition frequency, and the duration of major states), but 
found no significant associations for any of these variables.  
 
We have now reported these new analyses by adding the following descriptions into the Result 
section (lines 9-11 in p. 7) with a new supplementary table (Supplementary Table 1).  
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In both the TD and ASD groups, these three brain dynamic indices were not significantly 
correlated with the ages of the individuals (|r| ≤ 0.18, P ≥ 0.37; Supplementary Table 1).  

 
Supplementary Table 1 
 
Correlation coefficients (r) between brain dynamics and age 
 

 Intermediate state freq. Indirect transition freq. Duration of Major states 

TD 0.18 0.17 –0.12 

ASD –0.13 –0.16 –0.11 

 
 
We thank the reviewer for their helpful comments which we believe have substantially improved our 
paper. 
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Responses to the comments of the editor and reviewers for “Brain network dynamics in high-
functioning individuals with autism” by Watanabe and Rees (NCOMMS-16-26411).  
 
Responses to reviewer #2’s comments  
 
We appreciate the reviewer’s helpful suggestions and thorough review. We have replied to all the 
reviewer’s comments in the same order as used by the reviewer. The page numbers refer to those in 
the revised manuscript unless otherwise mentioned. The modified or added text is in blue in the 
revised manuscript.  
 
Concern 1 
 
“One of the greatest shortcomings, in my opinion, is the limitations imposed on the 
analysis by the maximum entropy model. Fitting the model becomes computationally 
challenging when the number of nodes/brain regions is greater a handful (which is 
why the authors group brain regions into seven systems rather than analyzing all 
nodes). While there is ongoing debate over the “correct” number of brain 
regions/nodes/systems into which the brain should be divided (there is likely a 
degeneracy of solutions for this problem), fixing that number at seven seems like a 
far too few as it almost certainly overlooks nuanced functional and anatomical 
connectivity profiles of the systems’ sub-regions. I expand on this in the next 
section.” 
 
We appreciate the reviewer’s concern about this system-level way of approximating brain signals. 
However, please note that similar network-level signal approximations were adopted in parts of 
some previous neuroimaging studies (e.g., Allen et al., 2014; Baker et al., 2014; Chen et al., 206; de 
Pasquale et al., 2012), and enabled those studies to report neurobiologically meaningful observations. 
Moreover, we found that in a binary form, such network-level activity was significantly similar to 
brain activity of the constituent ROIs (similarity ≥69%, P < 10–4; Supplementary Fig. 12a) and 
voxel-wise fMRI signals (similarity ≥66%, P < 10–3; Supplementary Fig. 12b). Thus, even though 
our approach may lose some information by being over-simplified, it is sufficient to derive 
reproducible (e.g. see our response to reviewer #1 major comment 1) findings that are associated 
with symptomatology and diagnostic category and therefore have face validity as neurobiological 
measures.  
 
Nevertheless, as the reviewer stated, it is also the case that such seemingly crude approximation may 
lose detailed information about neural activity of far smaller brain regions. Therefore, to 
acknowledge this potential limitation, we have now added the following statements to the Discussion 
section and Methods section.  
 
Discussion section (lines 14-20 in p.15) 
 

Our analytic approach also had some methodological limitations. We classified cortical 
regions into the seven systems, and examined brain dynamics in terms of changes in the 
seven system-level brain activity (Figs. 1a and 1b). Although similar approximations 
have been partly adopted in other human neuroimaging studies and yield biologically 
meaningful observations2,3,5,7, such system-level approximation of brain signals may lose 
detailed and nuanced information that should be seen at, for example, a finer 2-mm3 
voxel level60. Therefore, in future studies, it would be necessary to examine the current 
observations with finer spatial resolution and with a larger number of regions of interest.  
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Concern 2 
 
“1. (p. 4) The accuracy of model fit is based on binarized, system-averaged time 
series. It is unclear, however, whether those system time series accurately represent 
the time series of each system’s constituent voxels/brain regions. The authors could 
demonstrate a good match by calclating some measure of voxel- wise homogeneity 
(e.g. calculate the fraction of variance explained in voxel time series by the system 
time series).”   
 
According to the reviewer’s suggestion, we compared the system-averaged brain activity with ROI-
average/voxel-wise fMRI signals in a binary form, and found that the system-averaged brain activity 
was significantly similar to both types of the brain activity (mean similarity >66%, P < 10–3 in 
binominal tests).  
 
To clarify this issue, we added the following descriptions into the Methods section (lines 13- 17 in p. 
18) with a new supplementary figure (Supplementary Fig. 12).  
 

These network activity patterns sufficiently represented the activity of cortical brain 
regions that the networks cover. In all the seven networks, the similarity between the 
binary network activity and neural activity of its constituent ROIs was significantly high 
across participant (mean similarity ≥69%, P < 10–4 in a binominal test; Supplementary 
Fig. 12a). We can see such high similarity even at a voxel level across participant (mean 
similarity ≥ 66%, P < 10–3; Supplementary Fig. 12b). 

 
Supplementary Fig. 12 
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Concern 3 

 
“2. (p. 5) The compare controls-ASD using t-tests. It would be good to see similar 
results with non-parametric tests; e.g. compute effect size and compare to random 
re-assignments of individuals to each group.”   

 
According to the reviewer’s suggestion, we calculated effect sizes of the differences between the 
ASD and TD groups, and re-evaluated the differences using permutation tests. This revealed effect 
sizes and P values very similar to the original ones seen from our use of parametric t-tests. We have 
now added these findings into the revised Results section as follows: 
 
Results section 

 
Lines 20-24 in p. 5 
 
The two major brain states appeared more frequently in the ASD group than in the TD 
group (t48 > 7.8, Puncorrected < 10–9, PBonferroni < 0.05 in two-sample t-tests, P = 0.0001 in 
permutation tests, Cohen’s d ≥ 2.0; Fig. 2d), whereas the two minor states showed 
significantly less appearance frequency in the ASD group (t48 > 10.6, Puncorrected < 10–13, 
PBonferroni < 0.05 in two-sample t-tests, P = 0.0001 in permutation tests, Cohen’s d ≥ 2.4; 
Fig. 2e).  
 
Lines 8-10 in p. 6 
 
As with the minor brain states (Fig. 2e), the appearance frequency of this intermediate 
state was significantly smaller in the ASD group than in the controls (t48 = 20.3, 
Puncorrected < 10–5 in a two-sample t-test, P = 0.0002 in a permutation test, Cohen’s d = 
3.5; Fig. 3d). 
 
Lines 16-20 in p. 6 
 
no significant difference was seen in the direct transition frequency (t48 = 1.5, P = 0.13 in 
a two-sample t-test, P = 0.14 in a permutation test, Cohen’s d = 0.17), whereas the 
indirect transition frequency was significantly lower in the ASD group (t48 = 14.0, 
Puncorrected < 10–5, PBonferroni < 0.05 in a two-sample t-test, P = 0.0001 in a permutation test, 
Cohen’s d = 5.0). 
 
Lines 25-29 in p. 6 
 
In this random-walk simulation, the ASD brains showed significantly longer duration of 
the major states than TD brains (t8735 = 3.9, P < 10–4 in a two-sample t-test, P = 0.0001 in 
a permutation test, Cohen’s d = 3.1; Fig. 3g). This difference was reproduced in direct 
counting of the repetition length of the major states in the empirical data (t48 = 3.6, P = 
0.0008 in a two-sample t-test, P = 0.0013 in a permutation test, Cohen’s d = 1.0; Fig. 3h). 
 
Lines 22-25 in p. 9 
 
However, the gap between the within- and across-module FCs was significantly smaller 
in the ASD group compared to the controls (F1,96 = 272.2, P < 10–5 as an interaction in 
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the two-way factorial ANOVA; t48 = 13.1, P < 10–5 in a post-hoc two-sample t-test, P = 
0.0001 in a post-hoc permutation test, Cohen’s d = 3.0; Fig. 6c), …  
 
Line 31 in p. 9 – line 2 in p. 10 
 
Such a significant association between ADOS scores and the functional segregation 
strength was observed even in the TD data (t16 = 2.5, P = 0.025 in a two-sample t-test, P 
= 0.0001 in a post-hoc permutation test, Cohen’s d = 1.4; Supplementary Fig. 5a). 
 
Lines 20-24 in p. 10 
 
Although significant functional segregation was seen in both the TD and ASD groups 
(F1,96 = 72.3, P < 10–5 as a main effect of FC types in a two-way factorial ANOVA; Fig. 
7c), its strength was significantly larger in the ASD individuals (F1,96 = 5.6, P = 0.020 as 
an interaction in a two-way factorial ANOVA; t48 = 2.3, P = 0.02 in a post-hoc two-
sample t-test, P = 0.03 in a post-hoc permutation test, Cohen’s d = 0.63; Fig. 7c). 

 
Concern 4 
 
“3. (p. 5) Why 105 steps and not some other number of steps? Does the frequency 
with which states are visited stabilize by that point?”   

 
We set the number of random walk at 105 because the two indices representing brain dynamics 
showed sufficiently small fluctuation after such length of simulation. To confirm this, we repeated 
the random-walk simulation for each number of steps 1000 times, and calculated coefficients of 
variation (= standard deviation/mean) for each step. 
 
We found that in both of the brain dynamics indices, the coefficients of variation reached a plateau 
after approximately 60000-step random walk.  
 
We have now clarified this issue by adding the following description into the Methods section (lines 
22-25 in p.21) and a new supplementary figure (Supplementary Fig. 13). 
 

The number of random walk steps was set at 105, because the two simulation-based 
indices for brain dynamics (i.e., the duration of the major states and indirect transition 
frequency) showed sufficiently small fluctuation after 105-step simulation (coefficient of 
variation < 0.005, Supplementary Fig. 13). 

 
Supplementary Fig. 13 
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Concern 5 
 
“4. (p. 9) The authors assert that transition frequency is associated with the strength 
of module segregation (as measured using Pearson correlation). My sense is that 
this finding might be a mathematical inevitability stemming from the 
interdependence of dynamics and FC. Variation in FC across time is constrained �by 
the organization of “static” (long-time averaged) FC [3, 2, 1]. The correlation 
magnitude of two times series over short intervals is constrained by the correlation 
over long intervals, with strong constraints for high-amplitude correlations and 
liberal constraints for low-amplitude correlations. Segregated modules imply strong 
within-module correlations and equally strong between-module anti-correlations. 
Thus, a possible interpretation is that both the increased appearance of an 
intermediate state (due to liberal dynamical constraints) and the weak segregation 
are manifestations of the same phenomenon.”  
 
We appreciate the reviewer’s important point. Conceptually, we agree with the reviewer’s argument 
that these short-term phenomena (i.e., brain dynamics) are constrained by long-term organisation 
(here, Pearson correlation-based FC). However, mathematically, it cannot be always the case 
because the current brain dynamics are calculated not based on conventional FC (i.e., Pearson 
correlation), but using a pairwise maximum entropy model (MEM). 
 
If FCij between the brain networks i and j is exactly the same as Jij calculated by the pairwise MEM, 
this FC-based functional segregation strength should be correlated with the flexibility of brain 
dynamics for the following reason.  
 
Now, if the brain networks i and j belong to the same module, i j  is always 1 in the following 
equation to calculate energy values:  
 

. 

 
In contrast, if the brain networks i and j belong to the different modules, i j  is always –1.  
 
Thus, for example, during the Intermediate state, increases in the within-module FCs (Jij) and 
decreases in the across-module FCs (Jij) should decrease the energy values of the Intermediate state, 
increase the appearance frequency of the Intermediate state, and enhance the Indirect transition 
frequency. That is, if FCij is equal to Jij, the magnitude of the functional segregation of the 
Intermediate state should be positively correlated with the Indirect transition frequency.  
 
However, FCij is theoretically not equal to Jij because FC (unlike Jij,) is based on Pearson correlation 
and does not consider effects of pairwise interactions. In fact, our previous study showed that FC is 
significantly different from Jij in terms of similarity to anatomical connections (Watanabe et al., 
2013).  
 
Given such arguments, it is not mathematically trivial to examine the associations between 
functional segregation and brain dynamics. 
  
To clarify this issue, we have now added the following statements into the Methods section. 
 

Lines 7-10 in p. 22 

E(Vk ) = −Σi=1
N hiσ i (Vk ) − (1 / 2)Σi=1

N Σ j=1, j≠i
N Jijσ i (Vk )σ j (Vk )
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Finally, we examined associations between across-network functional coordination and 
atypical brain dynamics, because conceptually, neural phenomena occurring in short-
time intervals (here, brain dynamics) could be constrained by long-term static functional 
structures (here, functional connectivity)67,68.  

 
Line 22 in p. 22 – line 5 in p. 23 
 
Mathematically, if FCij between the brain networks i and j is sufficiently close to Jij 
calculated by the pairwise MEM (Supplementary Fig. 1b), this FC-based index 
representing the functional segregation strength should be highly correlated with the 
flexibility of brain dynamics for the following reason. Now, in a given brain state, if the 
brain networks i and j belong to the same module, i j  is always 1 in the equation to 
calculate the energy value of the state (i.e., eq. 2). In contrast, if the brain networks i and 
j belong to the different modules, i j  is always –1. Thus, for example, during the 
intermediate state, increases in the within-module FCs (Jij) and decrease in the across-
module FCs (Jij) should decrease the energy values of the intermediate state, increase the 
intermediate state frequency, and enhance the indirect transition frequency. That is, if 
FCij is equal to Jij, the magnitude of the functional segregation during the intermediate 
state should be positively correlated with the indirect transition frequency.  
 
However, FCij is theoretically not equal to Jij, because FC (unlike Jij) is based on Pearson 
correlation and does not consider effects of pairwise interactions. In fact, our previous 
study showed that FC is significantly different from Jij in terms of similarity to 
anatomical connections32. Thus, it is not mathematically trivial to examine the 
associations between the functional segregation and brain dynamics. 
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Concern 6 
 
“5.  (p. 9) Change “weaken” to “weaker”.” 
 
Thank you -  we have now changed the description (line 28 in p. 9).  
 
Concern 7  
 
“6. (p. 14) The abbreviation should be “WASI”.” 
 
Thank you - we have now corrected this typo (line 29 in p. 16).  
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Concern 8 
 
“7.  (p. 14) What is the rationale for selecting data from just the Utah site? The 
authors could leverage the other sites for reproducibility analysis, even if the data 
quality/number of subjects/controls are less than ideal.” 
 
We chose the original dataset because the data collected in the University of Utah contained the 
largest neuroimaging data of high-functioning ASD adult males in the ABIDE consortium. This 
rationale was stated in the first paragraph of the Method section (line xx- xx in p.x): 
 

This recording site was chosen because their data had the largest number of high-
functioning adult males with ASD.  

  
However, we agree with the reviewer’s suggestion concerning reproducibility using independent 
datasets (see also our editorial responses and those to reviewer 1). Therefore, using two new datasets 
collected in the Indiana University and ETH Zürich, we confirmed that the original observations 
were qualitatively reproduced. These two datasets were chosen because apart from the original data, 
they had the largest or second largest sample size of high-functioning ASD adult males. 
 
To clarify this, we added the following new paragraphs to the Results and Methods sections with 
four new supplementary figures (Supplementary Figs. 6-9) and two tables (Supplementary Figs. 2 
and 3).  
 
Results section (lines 9-21 in p. 11) 
 

Reproducibility tests 
 

We confirmed the reproducibility of these observations using two independent datasets 
collected in Indiana University (Supplementary Table 2) and ETH Zürich 
(Supplementary Table 3).  
 
Analysis of both datasets yielded qualitatively the same hierarchal structures of the 
energy landscapes, consisting of the same six brain states (Supplementary Figs. 6b and 
8b). In addition, significant differences in the major/intermediate state frequency 
between TD and ASD groups were also reproduced (Supplementary Figs. 6c and 8c). 
Moreover, we could identify the atypically lower indirect transition frequency and 
aberrantly longer duration of the major states in the ASD groups (Supplementary Figs. 
6d-g, and 8d-g). Finally, we confirmed that the correlations between brain dynamics and 
behavioural indices were reproduced (Supplementary Figs. 6h-j and 8h-j), and the 
associations between these brain dynamics and across-network functional coordination 
were also replicated (Supplementary Figs. 7 and 9).  

 
 
Methods section (lines 12-24 in p. 23) 
 

Reproducibility test 
 
We tested the reproducibility of the current results using two other datasets in ABIDE29: 
data recorded in Indiana University (9 ASD and 12 TD individuals; TR 0.813s, TE 28ms, 
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Flip angle 60° for fMRI data; Supplementary Table 2) and those collected in ETH Zürich 
(10 ASD and 15 TD individuals; TR 2s, TE 25ms, Flip angle 90° for fMRI data; 
Supplementary Table 3). These two datasets were chosen because except the data of the 
University of Utah, they had the largest or second largest MRI images of ASD adult 
males in the ABIDE database.  
 
We first selected high-functioning ASD adult males and age-/sex-/IQ-matched TD 
individuals based on the same criteria as those applied to the data of the University of 
Utah. We then applied the same analyses to these data, and examined the robustness of 
the current observations.  

 
Concern 9 
 
“8. (p. 15) Why 214 ROIs? The paper the authors reference includes 264.” 
 
We are sorry for our insufficient descriptions concerning the ROI definition. Because the current 
study focused on dynamics of cortical brain activity, we excluded 50 ROIs whose network names 
were defined as ‘Uncertain’ or ‘Subcortical’ in the previous studies (Power et al., 2011; Cole et al., 
2013).  
 
To clarify this issue, we have now added the following statements to the Methods section (lines 18-
20 in p. 17).  
 

We then extracted a time series of fMRI signals from each of 214 regions of interest 
(ROIs) that were selected from the 264 ROIs listed in the previous studies30,31. The other 
50 ROIs were not adopted here because they were labelled ‘Uncertain’ or ‘Subcortical’ 
and did not constitute specific cortical networks. 
 

References 
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Concern 10 
 
“9. (p. 15) I would expect that cognitive control and attentional networks play distinct 
roles in social disorders like ASD. I recognize the convenience of combining them for 
computational reasons, but is this actually justified? It would be good if the authors 
could either demonstrate that these three systems independently follow similar time 
series (thus justifying the merger) or reproduce their analyses by adding either one 
(split ATN but retain merger of attention networks) or two (split ATN into three 
components) new nodes.” 
 
We appreciate the reviewer raising this important issue. According to the reviewer’s suggestion, we 
examined the similarity between the binarised network activity in the nine cortical brain systems in 
which the DAN, VAN, and CON were not merged (Supplementary Figs. 11a and 11b). This analysis 
revealed that the similarity between the three networks was significantly higher than chance level 
(50%) for both the TD and ASD groups (≥71% in TD, ≥73% in ASD, P ≤ 10–5 in one-sample t-tests 



Page 17 of 29 

across participants). In contrast, the similarity between the other pairs of brain systems did not show 
such high similarity (<58%, P > 0.05). These results suggest that the activity of the three systems 
were significantly similar to each other even in ASD individuals.  
 
In addition, according to the reviewer’s suggestion, we examined the reproducibility of the results 
when the ATN was divided into the CON and the other two (i.e., DAN and VAN) (Supplementary 
Figs. 11c and 11d), and found qualitatively the same energy landscapes with the same six local 
minima. Notably, CON showed the same activity patterns as the DAN+VAN did.   
 
These additional results provide empirical support for our merging of brain activity from the three 
systems into one time series. We therefore clarified this issue by now adding the following 
descriptions to the Methods section (lines 2-11 in p. 18) with a new supplementary figure 
(Supplementary Fig. 11).  
 

The dorsal/ventral attention networks (DAN/VAN) and cingulo-opercular network 
(CON) were merged into the attention network (ATN), because (i) the current data size is 
not enough to perform energy-landscape analysis with nine factors and (ii) these three 
networks are considered to be responsible for the similar attention-related cognitive 
activity30. In fact, in the binary form, brain activity patterns of these three networks were 
significantly similar to each other (≥71% in TD, ≥73% in ASD, P ≤ 10–5 in one-sample t-
tests across participants; Supplementary Figs. 11a and 11b), whereas those of the other 
networks did not show such high similarity (<58%). In addition, even after we divided 
the ATN into CON and the other two systems (DAN/VAN), we observed qualitatively 
the same energy landscapes with the same six local minima (Supplementary Figs. 11c 
and 11d). These results are considered to justify our merging the three networks into one 
system.  

 
Supplementary Fig. 11 
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Concern 11 
 

“10. (p. 15) The authors note that activity was binarized using the “average brain 
activity value”. They reference several papers but provide no further explanation as 
to what this entails. It would be good to be didactic in this explanation. I am also 
curious, then, about the robustness of their findings with respect to alternative 
thresholds (as the technique for selecting the threshold they reference is one of 
many and, in and of itself, is not priveleged in any real way).” 
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According to the reviewer’s suggestion, we now added the following descriptions concerning the 
binarisation process and its purpose into the Methods section (lines 26- 31 in p. 17).  
 

Technically, in each participant, we first calculated the average brain activity for each 
network, and binarised the original brain activity using the average activity as a threshold. 
… This binarisation process enabled us to balance the number of active state and that of 
inactive state for each network, which could reduce the risk of overfitting in the 
following analysis62. 

 
In addition, we confirmed the robustness of the current results against changing the binarisation 
thresholds (Supplementary Fig. 2): we could see qualitatively the same energy landscapes with the 
same six local minima when we set the threshold at –0.1 or 0.1. 
 

Such a high accuracy of model fitting and the hierarchal structures of energy landscapes 
were preserved when we changed the threshold for the binarisation of brain activity 
(Supplementary Fig. 2).  

  
Supplementary Fig. 2 
 

 
 

Concern 12 
 
“11. (p. 19) Another possible concern is that the segregation of systems (which the 
authors define as the different of within - between module connectivity) could be 
influenced by global connectivity levels. It would be good to show that the 
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segregation measure is not significantly correlated across subjects with any of (A) 
sum of absolute value of all connections, (B) sum of all connections, (C), sum of only 
positive connections, or (D) sum only negative connections. If any of these 
correlations are strong, it suggests that the segregation measure may, in fact, be 
driven by network-wide connectivity differences rather than connectivity differences 
specific to the systems in question. �I hope that the authors find these comments 
useful.” 
 
We acknowledge the reviewer’s concern about the effects of global connectivity levels. Therefore, 
according to the reviewer’s suggestion, we examined the correlations between functional segregation 
strengths and four types of global connectivity level, but found no significant correlations (|r| ≤ 0.16) 
in both the TD and ASD groups.  
 
We clarified this issue by adding the following description into the Methods section (lines 7-10 in p. 
23) with a new supplementary table (Supplementary Table 4).  
 

Note that in both TD and ASD groups, the functional segregation strength was not 
significantly correlated with global connectivity levels (|r| ≤ 0.16, P ≥ 0.42, 
Supplementary Table 4), which suggests that observations about functional segregation 
cannot be explained simply by global network-wide connectivity.  

 
Supplementary Table 4 
 
Correlation coefficients (r) between functional segregation strength and global FC level. 
 

 
Sum of |FC| Sum of FCs 

Sum of 
positive FCs 

Sum of 
negative FCs 

TD     
Functional segregation in 
Major states 

0.082 –0.16 –0.021 –0.16 

Functional segregation in 
Intermediate state 

–0.075 0.040 –0.039 0.088 

ASD     
Functional segregation in 
Major states 

0.13 –0.0066 0.15 –0.11 

Functional segregation in 
Intermediate state 

0.073 –0.040 0.06 –0.072 

 
Sum of |FC|: summation of the absolute values of FCs. 
Sum of FCs: summation of FCs. 
Sum of positive FCs: summation of only positive FCs. 
Sum of negative FCs: summation of only negative FCs. 
All of these summations were performed using Fisher-transformed FCs (i.e., Z value).  
 
 
We thank the reviewer for their helpful comments which we believe have substantially improved our 
paper. 
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Responses to the comments of the editor and reviewers for “Brain network dynamics in high-
functioning individuals with autism” by Watanabe and Rees (NCOMMS-16-26411).  
 
Responses to reviewer #3’s comments  
 
We appreciate the reviewer’s encouraging and thoughtful comments. We replied to all the reviewer’s 
comments in the same order as used by the reviewer. The page numbers refer to those in the revised 
manuscript unless otherwise mentioned. The modified or added text is in blue in the revised 
manuscript.  
 
Concern 1 
 
“This is a minor point, but I believe it’s more standard to refer to people who have a 
diagnosis of autism as individuals with autism or ASD, and their brains as the brains 
of individuals with autism/ASD (or phrases similar to that), as opposed to “autistic” 
individuals or brains.” 
 
We appreciate the reviewer’s suggestion. We have now modified all the relevant phraseology.  
 
Concern 2 
 
“A relevant article that you did not cite is: Uddin, Supekar, Lynch, Cheng, Odriozola, 
Barth, Phillips, Feinstein, Abrams & Menon (2015). Brain state differentiation and 
behavioral inflexibility in autism. Cerebral Cortex, 25, 4740-7. It is one of the few 
articles to date that has measured temporal changes in functional connectivity in 
autism, and supports your findings that brain states are too stable in autism.” 
 
Thank you - we have now added the following text citing these important findings.  
 
Introduction section (lines 14- 15 in p. 3) 
 

Although a recent study has reported atypical temporal interactions between different 
brain networks in individuals with autism and associated them with their aberrant 
behavioural inflexibility25, how whole-brain neural activity patterns change over time in 
individuals with ASD is still poorly understood and thus, relationships between such 
brain dynamics and ASD symptoms are little identified. 

 
Discussion section (lines 28-30 in p. 12) 
 

Exceptionally, a recent fMRI study using Granger causality analysis has investigated 
patterns of temporal interactions between different brain regions and reported atypically 
stable temporal changes in functional connectivity25. 

 
Concern 3 
 
“Did you look at data for any of the other ABIDE sites? Given that you chose to only 
look at a single site because of potential across-site differences and confounds, it 
would be useful to be able to demonstrate that these results are not a quirk of the 
single site you chose. Relating Utah results to results from one of the other sites 
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would be informative.” 
 
We agree that it is important to reproduce our findings with independent datasets. Therefore, 
according to the reviewer’s suggestion (see also reviewer 1 and editorial suggestions), we have 
repeated all our analyses using two new datasets collected in Indiana University (Supplementary 
Table 2) and ETH Zürich (Supplementary Table 3), and confirmed that the original observations 
were qualitatively reproduced (Supplementary Figs. 6-9).  
 
To report these new analyses, we have now added the following descriptions into the Results and 
Methods sections with the four new supplementary figures (Supplementary Figs. 6-9) and two tables 
(Supplementary Tables 2 and 3). 
 
Results section (lines 9-21 in p. 11) 
 

Reproducibility tests 
 

We confirmed the reproducibility of these observations using two independent datasets 
collected in Indiana University (Supplementary Table 2) and ETH Zürich 
(Supplementary Table 3).  
 
Analysis of both datasets yielded qualitatively the same hierarchal structures of the 
energy landscapes, consisting of the same six brain states (Supplementary Figs. 6b and 
8b). In addition, significant differences in the major/intermediate state frequency 
between TD and ASD groups were also reproduced (Supplementary Figs. 6c and 8c). 
Moreover, we could identify the atypically lower indirect transition frequency and 
aberrantly longer duration of the major states in the ASD groups (Supplementary Figs. 
6d-g, and 8d-g). Finally, we confirmed that the correlations between brain dynamics and 
behavioural indices were reproduced (Supplementary Figs. 6h-j and 8h-j), and the 
associations between these brain dynamics and across-network functional coordination 
were also replicated (Supplementary Figs. 7 and 9).  

 
Methods section (lines 12-24 in p. 23) 
 

Reproducibility test 
 
We tested the reproducibility of the current results using two other datasets in ABIDE29: 
data recorded in Indiana University (9 ASD and 12 TD individuals; TR 0.813s, TE 28ms, 
Flip angle 60° for fMRI data; Supplementary Table 2) and those collected in ETH Zürich 
(10 ASD and 15 TD individuals; TR 2s, TE 25ms, Flip angle 90° for fMRI data; 
Supplementary Table 3). These two datasets were chosen because except the data of the 
University of Utah, they had the largest or second largest MRI images of ASD adult 
males in the ABIDE database.  
 
We first selected high-functioning ASD adult males and age-/sex-/IQ-matched TD 
individuals based on the same criteria as those applied to the data of the University of 
Utah. We then applied the same analyses to these data, and examined the robustness of 
the current observations.  

 
Concern 4 
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“In Table 1, why not include p-values comparing ADOS scores across TD and ASD 
groups? It would be a nice way to emphasize the expected difference in scores.” 
 
According to the reviewer’s suggestion, we have added P values for the ADOS scores into the 
revised Table 1. Note that the statistical values were computed based on 24 ASD and 16 TD 
individuals for whom ADOS scores were provided in the dataset.  
 
Concern 5 
 
“On page 4, line 113, you write “Coincidentally, we identified the same six locally 
stable brain activity patterns in the TD and ASD individuals…” Why do you think this 
is a coincidence? You write that in the Figure 2 caption as well. This finding is 
consistent with the work from Vince Calhoun’s lab demonstrating that different 
populations (i.e., schizophrenia versus healthy control subjects) have the same brain 
states, but different dwell time and transition patterns across brain states. Most likely, 
it is meaningful that individuals with autism have the same brain activity patterns as 
healthy individual, but different transition patterns and dynamics. This should be 
written about in the discussion as well.” 
 
We appreciate the reviewer’s important point. We have now added the following paragraph 
concerning this issue into the Discussion section, citing relevant studies from Calhoun’s lab (lines 4-
10 in p. 13).  
 

Such a critical link between symptoms and brain dynamics is not limited to autism, but 
has been reported in recent human fMRI studies on schizophrenia47,48. For example, one 
of these studies found that patients with schizophrenia and healthy controls showed 
similar static brain states, but exhibited significant differences in the dwell time in 
specific brain states and transition frequencies between such brain states47. Given such 
prior observations, the current study can be seen as additional empirical support that 
highlights the importance of investigating brain dynamics in biological understanding of 
various developmental and psychiatric disorders11,49.  
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Concern 6 
 
“Overall, your figures are very busy and therefore hard to follow. Perhaps separating 
them into more figures, spreading the different plots out more, shortening the axis 
titles, and adding legends so you do not have to have words written over the plots, 
would help.” 
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We are sorry for that the figures in our original manuscript were hard to follow. According to the 
reviewer’s suggestion, we have now modified all the figures. In particular, we have simplified the 
original Figure 3. Regarding the original Figure 4, we have reorganised it and divided it into a new 
Figure 4 and Figure 5.  
 
Concern 7 
 
“Page 7, line 199: “…whereas such difference was seen in duration of Major states (P 
> 0.56).” I do not understand what this phrase means, please elaborate in the text. In 
that same paragraph, what is the ADOS score you are correlating? Overall score? 
One of the subscales? Please specify.” 
 
Regarding the expression, “…whereas such difference was seen in duration of Major states (P > 
0.56)”, we are sorry for the unclear description in the original manuscript. Now we have modified 
the expression as follows (lines 23-25 in p. 7): 
 

..., whilst the duration of the major states was not significantly different between the TD 
individuals with higher and lower ADOS scores (P > 0.56). 

 
Regarding the ADOS scores, the scores referred to the ADOS overall score. We have now clarified 
this issue by modifying the expression as follows (lines 18-23 in p. 7): 
 

In the ASD group, the indirect transition frequency was negatively correlated with 
ADOS total scores (r = –0.47, Puncorrected = 0.01, PBonferroni < 0.05; Fig. 4a), whereas the 
duration of the major states did not show a significant correlation (r = –0.09). Even in the 
TD group, the indirect transition frequency was significantly smaller in the neurotypical 
individuals with higher ADOS scores (ADOS total = 2–4) than in those with lower 
ADOS scores (ADOS total = 0–1) (t16 = 2.6, P = 0.019 in a two-sample t-test; 
Supplementary Fig. 3),  

 
Concern 8 
 
“The last sentence of that section: “These observations indicate that atypically 
unstable Intermediate state in autistic brains reduces their Indirect transition, which 
increases the severity of autistic symptoms (Figs. 4c).” is a bit strong, given that you 
do not know if the decreased indirect transition is what causes increased severity of 
ASD symptomatology. From this analysis you know that decreased indirect 
transitions are related to increased ASD symptomatology. Whether it is a direct 
cause or a hierarchical relationship caused by an unmeasured variable you do not 
know from this analysis. The same goes for the other results of similar analyses that 
you describe throughout the text.” 
 
We agree. We have therefore toned down all of the relevant discussion throughout the entire 
manuscript. For example, the sentence the reviewer mentioned was re-written as follows (line 31 in p. 
7 – line 2 in p. 8): 
 

These observations indicate that the atypically unstable intermediate state in the brains of 
individuals with ASD is related to the reduction in the indirect transitions, and such 
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aberrant decreases in brain dynamics flexibility are associated with the severity of ASD 
symptoms.  

 
Concern 9 
 
“In Figure 4a, if you remove and/or deweight the outlier with the low ADOS score and 
the highest indirect transition frequency, does the reported relationship still hold?” 
 
According to the reviewer’s suggestion, we re-analysed the correlation between ADOS and Indirect 
transition frequency after excluding the two outliers, and found that the correlation was still 
significant (r = –0.46, P = 0.02). 
 
We have now added the following statement into the legend of Figure 4 (lines 5-6 in p. 31).  
 

This correlation was preserved even after two outliers (squares circled by dashed lines) 
were removed (r = –0.46). 

 
Concern 10 
 
“Last line of page 8 “…and a module with the other four networks…” it would be 
helpful for the reader to list those four networks out. Same goes for the 5 networks 
mentioned on lines 279 and 296 on page 10.” 
 
According to the reviewer’s suggestion, we have now modified the relevant expressions in the entire 
manuscript. For example, the expression raised by the reviewer was re-written as follows (line 8 in p. 
9): 
 

i.e., DMN/SMN/Auditory module and FPN/SAN/ATN/Visual module; Fig. 6a 
 
Concern 11 
 
“In Figures 6 and 7 (and the corresponding results section), did you also relate major 
state functional segregation to IQ in TD, and intermediate state functional 
segregation to ASD? It would be interesting to report those results.” 
 
Thank you for these interesting suggestions. We have now calculated the correlation between 
functional segregation strength during the major states and FIQ in the TD individuals. We found, 
differently to the case of ASD individuals, that functional segregation strength showed a 
significantly negative correlation with FIQ in the TD data (r = –0.44, P = 0.023). This result adds 
further support for the notion that individuals with ASD have unique cognitive styles.  
 
Second, we also investigated the association between functional segregation strength during the 
intermediate state and ADOS total scores in the TD data. We found that TD individuals with more 
‘autistic’ ADOS scores (ADOS total = 2-4) showed less functional segregation during the 
Intermediate state than those with lower ADOS scores (ADOS total = 0-1). This observation is 
consistent with observations in the ASD data (Fig. 6). 
 
We added the following descriptions about these results into the Results section with a new 
supplementary figure (Supplementary Fig. 5). 
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For the first point (lines 26-29 in p. 10):  
 

In contrast, the correlation between FIQ and the functional segregation during the major 
states was not positive but significantly negative in the TD data (r = –0.44, P = 0.023; 
Supplementary Fig. 5b), which is consistent with previous reports suggesting that high-
functioning individuals with ASD have different cognitive styles compared to TD 
individuals38-40. 

 
For the second point (line 31 in p. 9 – line 2 in p. 10): 
 

Such a significant association between ADOS scores and the functional segregation 
strength was observed even in the TD data (t16 = 2.5, P = 0.025 in a two-sample t-test, P 
= 0.0001 in a post-hoc permutation test, Cohen’s d = 1.4; Supplementary Fig. 5a). 
 

Supplementary Figure 5 
 

 
 
Concern 12 
 
“The discussion should be fleshed out a bit: 
 
We appreciate the reviewer’s suggestions of important issues to discuss. For each particular issue, 
we have now added the following text to the Discussion: 
 
1) What do you make of the different relationship between FIQ and brain states in TD 
and ASD? This is an interesting result and should be written about in the discussion. 
 

Lines 8-17 in p. 14 
 

In contrast, the general cognitive skill of the individuals with ASD was associated with 
the stability of their brain dynamics, not with its flexibility (Figs 4c and 5b), which could 
fit the unique cognitive style that high-functioning ASD individuals are supposed to 
have38-40. Behaviourally, high-functioning individuals with ASD are likely to show 
above-average performance when tasks they are engaged in require detail-focused 
information processing12 not global one55. This behavioural tendency well matches the 
overly stable brain dynamics observed in this study, if as suggested in a previous study8, 
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the stability of brain dynamics could be related to one’s capability of repeating the same 
cognitive process. Although future studies need to examine the relationships between the 
stable rain dynamics and efficiency of information processing, the current findings may 
become a new foundation for biological understanding autism-specific cognitive styles.  

 
“2) If you were to look at connectivity patterns across the 7 systems that describe 
each of these states, how do these patterns relate to what we know about network 
organization in ASD based on previous literature? 
 

Lines 12-23 in p. 13 
 

The atypical across-network functional coordination that we observed in the ASD group 
is consistent with previous observations of atypical across-ROI FCs in the brains of 
individuals with autism50-52. For example, a previous resting-state fMRI study reported 
atypical reduction in FC between the amygdala, which is often included in SAN, and 
secondary visual area50. If this observation indicates a weak FC between SAN and the 
visual network, it matches the current findings about weak segregation during the 
intermediate state (Fig. 6) and strong segregation during the major states in the ASD data 
(Fig. 7). In the same logic, the current results are consistent with another resting-state 
fMRI study51 reporting an atypical decrease in the FC between a temporal region 
(Auditory network) and a medial prefrontal area (DMN) in autism. We can also see 
consistency in a task-based fMRI study that found weak functional coupling between a 
visual area and a region in FPN in high-functining adults with ASD52. Although more 
research is needed, such consistencies between the present results and previous findings 
provide some reassurance concerning the current findings about across-network 
functional coordination in the brains of autism. 

 
“3) Why is it that increased segregation during intermediate states and decreased 
segregation during major states is more typical/relevant to healthy cognition and 
brain dynamics?” 
 

Line 25 in p. 13 – line 6 in p. 14 
 

The current study has also identified brain dynamics associated with the general 
cognitive ability in neurotypical adults (Fig. 5a). Cognitive skills in the TD participants 
were positively associated with the flexibility of brain dynamics, and such flexible brain 
dynamics were underpinned by the increased functional segregation during the 
intermediate state (Fig. 8) and the decreased functional segregation during the major 
states (Supplementary Fig. 5b). This functional coordination during the major and 
intermediate states may enable the control of diverse cognitive functions in an integrative 
manner. Theoretically, smooth integration of functionally different brain systems is 
considered to be vital for binding diverse perceptual information and achieving better 
cognitive performance in a changing environment4,6,37,53. Empirically, several 
neuroimaging studies have suggested that such an integration process is achieved by 
frequent transitions between different brain states8,54. Considering the current results with 
these theoretical and empirical observations, we can speculate that the functional 
coordination seen in the neurotypical major and intermediate states may contribute to 
integrative information processing by facilitating transitions between different brain 
activity states. 
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Concern 13 
 
“In the Data Preprocessing section of the methods (page 15), you can quantify if the 
timeseries of the DAN, VAN, and CO networks are similar enough to justify averaging 
together. Please report that.” 
 
According to the reviewer’s suggestion, we examined the similarity in the binarised brain activity 
between the three networks. As a control, we also calculated the similarity between the other pairs of 
the nine cortical brain networks listed in the previous literature (Power et al., 2011; Cole et al., 2013). 
We found that the similarity between the three networks was significantly higher than chance level 
(50%) in both the TD and ASD groups (≥71% in TD, ≥73% in ASD, P ≤ 10–5 in one-sample t-tests 
across participants). In contrast, the similarity between the other pairs of brain systems did not show 
such high similarity (<58%, P > 0.05). These results suggest that the activity of the three systems 
were significantly similar to each other even in ASD individuals. 
 
These additional results provide empirical support for our merging of brain activity from the three 
systems into one time series. We have reported these findings by adding the following descriptions 
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to the Methods section (lines 2-11 in p. 18) with a new supplementary figure (Supplementary Fig. 
11).  
 

The dorsal/ventral attention networks (DAN/VAN) and cingulo-opercular network 
(CON) were merged into the attention network (ATN), because (i) the current data size is 
not enough to perform energy-landscape analysis with nine factors and (ii) these three 
networks are considered to be responsible for the similar attention-related cognitive 
activity30. In fact, in the binary form, brain activity patterns of these three networks were 
significantly similar to each other (≥71% in TD, ≥73% in ASD, P ≤ 10–5 in one-sample t-
tests across participants; Supplementary Figs. 11a and 11b), whereas those of the other 
networks did not show such high similarity (<58%). In addition, even after we divided 
the ATN into CON and the other two systems (DAN/VAN), we observed qualitatively 
the same energy landscapes with the same six local minima (Supplementary Figs. 11c 
and 11d). These results are considered to justify our merging the three networks into one 
system.  
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We thank the reviewer for their helpful comments which we believe have substantially improved our 
paper. 



Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have done a nice job of replicating original findings and responding to all 

previous comments. This manuscript will make a significant and novel contribution to the 

autism literature.  

 

 

Reviewer #2 (Remarks to the Author):  

 

This review is of a revised manuscript, the previous version of which I had also reviewed. In 

their revision, the authors perform additional analyses, including reproducing their results 

(at least qualitatively) using additional datasets. They also go on to perform some, but not 

all, of the tests that I suggested. Overall, I only have one real concern and, provided that 

the authors can address it, I would be happy to recommend the paper for publication. 

Otherwise they addressed all of my other concerns.  

 

Major Concern:  

In my original review I noted, and the authors seem to acknowledge, that the MEM 

approach was limited by the number of regions between which connection weights can be 

estimated. They go on to note that other studies have employed similar system-level 

analysis of the BOLD signal, which I cannot dispute. With that said, it is worth 

acknowledging that there are inconsistencies across studies as to how the systems, 

themselves, should be defined. For example, the study by Thomas Yeo identifies only one 

control network (Yeo et al, 2011) while Jonathan Power's study (approximately) sub-divides 

the control network into cingulo-opercular and fronto-parietal systems (Power et al, 2011). 

Other studies have even argued that the default mode network ought to be sub-divided into 

distinct sub-systems (Uddin et al 2009).  

 

All of this to say that (1) the small number of nodes is a limitation and (2) the definition of 

nodes based on systems reported in the Power paper is not particularly priveleged. I think 

that it would still be advisable to either repeat the analysis using a different set of sub-

systems or with a finer-grained division of the current set of systems (to the extent that it is 

computational tractable). The decision of how to define nodes has implications on the 

organization of connections among those nodes (Zalesky et al 2010).  

 

Minor concern:  

In measuring the similarity of system and regional/voxel time series, what measure of 

similarity was used? The authors should report this. And are these similarity values 

calculated based on the binarized time series of the BOLD signal?  
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I hope that the authors find these comments useful.  

Richard Betzel  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors responded thoroughly to the reviewers’ comments and have made this 

manuscript a much stronger contribution to the literature. I have no other comments of 

substance.  

 

One small comment is about Figure 8b. In the text you write: “In contrast, the correlation 

between FIQ and the functional segregation during the major states was not positive but 

significantly negative in the TD data (r = –0.44, P = 0.023; Supplementary Fig. 5b), which 

is consistent with previous reports suggesting that high-functioning individuals with ASD 

have different cognitive styles compared to TD individuals.” (last sentence, page 9). But 

Figure 8b, third plot seems to report that functional segregation is positively correlated with 

FIQ (r = 0.46, p = .018). Is the difference that it is functional segregation during the 

immediate state in that plot? If so, it would be more clear if the x-axis of Figures 7 and 8 

specify of what state the Functional segregation is measured.  

 

I also noticed a few typos and missed words in the added text.  
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Responses to the comments of the editor and reviewers for “Brain network dynamics in high-
functioning individuals with autism” by Watanabe and Rees (NCOMMS-16-26411A).  
 
Responses to the reviewer #2’s comments  
 
We appreciate the reviewer’s useful suggestions. We have addressed all the comments of the 
reviewer. Page numbers in our responses refer to those in the revised manuscript unless otherwise 
mentioned. The modified or added text is in blue in the revised manuscript.  
 
Major concern 
 
“In my original review I noted, and the authors seem to acknowledge, that the MEM 
approach was limited by the number of regions between which connection weights 
can be estimated. They go on to note that other studies have employed similar 
system-level analysis of the BOLD signal, which I cannot dispute. With that said, it is 
worth acknowledging that there are inconsistencies across studies as to how the 
systems, themselves, should be defined. For example, the study by Thomas Yeo 
identifies only one control network (Yeo et al, 2011) while Jonathan Power's study 
(approximately) sub-divides the control network into cingulo-opercular and fronto-
parietal systems (Power et al, 2011). Other studies have even argued that the default 
mode network ought to be sub-divided into distinct sub-systems (Uddin et al 2009). 
 
All of this to say that (1) the small number of nodes is a limitation and (2) the 
definition of nodes based on systems reported in the Power paper is not particularly 
priveleged. I think that it would still be advisable to either repeat the analysis using a 
different set of sub-systems or with a finer-grained division of the current set of 
systems (to the extent that it is computational tractable). The decision of how to 
define nodes has implications on the organization of connections among those 
nodes (Zalesky et al 2010).” 
 
We agree with the importance of examining whether the current observations are reproduced using 
different brain parcellation methods. Therefore, according to the reviewer’s suggestion, we have now 
performed two additional analyses using two different brain parcellation methods, and confirmed the 
qualitative reproducibility of all the current findings in both cases (Supplementary Figs. 10 and 11). 
 
One of the additional parcellation methods was based on the previous resting-state fMRI study 
(Uddin et al., 2009). According to this literature, we divided the DMN into two subnetworks by 
classifying the DMN ROIs into two groups: ROIs whose activities were mainly correlated with that 
of ventromedial prefrontal cortex (vmPFC) and ROIs whose activities were mainly correlated with 
that of the posterior cingulate cortex (PCC).  
 
Technically, for each ROI of the DMN, we calculated Pearson correlation coefficients between the 
brain activity of the DMN ROI and those of vmPFC and PCC. After averaging them across 
participants, we compared the correlation with vmPFC to that with PCC, and categorised the DMN 
ROI: if the correlation with vmPFC was larger than that with PCC, the ROI was classified into 
vmPFC-DMN. Otherwise, the ROI was labelled as a region of PCC-DMN. The other six networks 
were the same as those in the original analysis, and eight brain networks were determined in total. 
Based on this network definition, we have repeated the same energy-landscape analyses, and 
confirmed that all the current observations were qualitatively reproduced (Supplementary Fig. 10).  
Note that we could not see differences in activity patterns between the two DMN subnetworks.  
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The other brain parcellation method was based on another previous study the reviewer kindly raised 
(Yeo et al., 2011). Using a “7 network tight mask” proposed in the study, we parcellated the cortical 
area into seven brain systems that were different from those adopted in the original analyses. We 
then extracted average neural activity for each brain system, and repeated the entire analyses. 
Consequently, we have observed that brain dynamics of individuals with ASD were more stable than 
those of the controls and such neural stability was correlated with the ASD severity and the cognitive 
skills of the individuals with ASD (Supplementary Fig. 11).  
 
In addition, given that the Limbic system in this new parcellation method overlaps with the SAN in 
the original analyses, and the SM system almost includes the original Auditory network, the newly-
obtained energy landscapes and their local minima appear qualitatively the same as those in the 
original analyses (see legends of Supplementary Fig. 11 for details). In this sense, the results based 
on this additional parcellation method could be seen as a qualitative replication of the original 
findings.  
 
We have reported these results by adding the following descriptions into the Results and Methods 
section with two new supplementary figures (Supplementary Figs. 10 and 11). 
 
Results section (line 21 in p.11 – line 3 in p.12): 

 
We also tested whether the current observations were robust against differences in the 
definitions of brain networks. To this end, we repeated the energy-landscape analyses 
after the brain was parcellated in two different manners40,41.  
 
In one of the brain parcellation methods, the DMN was divided into two sub-networks 
according to a previous study40 (see Methods for details). Although the accuracy of the 
model fitting was slightly reduced (82.1% for TD and 80.7% for ASD), we observed 
qualitatively the same energy landscapes, brain dynamics, and brain-behaviour 
associations as seen in the original analyses (Supplementary Fig. 10).  
 
In the other brain network definition, the cortical area was parcellated into a different set 
of seven brain systems based on another previous study41 (Supplementary Fig. 11a). 
Even in this brain division, we still found that the neural dynamics of individuals with 
ASD were more stable than those of the control (Supplementary Fig. 11c-g), and such 
neural stability showed positive correlations with the severity of their symptoms and 
their cognitive skills (Supplementary Fig. 11h-j). 

 
Methods section (line 30 in p.24 – line 5 in p.26): 

 
Reproducibility tests: different brain parcellation methods 
 
We also tested the robustness of the current observations using two different definitions 
of brain networks, because choices of brain parcellation methods could affect results of 
some calculations about large-scale brain architecture70.  
 
In one of the new brain parcellation methods, which was a finer version of the original 
brain network definition, we divided the DMN into two subnetworks according to a 
previous study40. Technically, we classified the DMN ROIs into two groups: ROIs whose 
activities were mainly correlated with that of ventromedial prefrontal cortex (vmPFC, [2, 
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54, –3] in Talairach coordinates) and ROIs whose activities were mainly correlated with 
that of posterior cingulate cortex (PCC, [–2, –51, 27] in Talairach coordinates). The 
vmPFC and PCC were chosen because the previous study showed their distinct roles in 
whole-brain network coordination40. The anatomical coordinates of the regions were 
determined based on the study. 
 
For example, we categorised an ROIi in DMN as follows. (i) For each participant, we 
calculated two Pearson correlation coefficients between the brain activities of the ROIi, 
vmPFC, and PCC (i.e., an ROIi–vmPFC correlation and an ROIi–vmPFC correlation). 
(ii) After applying Fisher’s Z transformation to the correlation coefficients and averaging 
the Z-scores across all the participants, we compared the average ROIi–vmPFC 
correlation with the average ROIi–PCC correlation. (iii) If the ROIi–vmPFC correlation 
was larger than the ROIi–PCC correlation, the ROIi was labelled as a region of vmPFC-
DMN. Otherwise, the ROIi was categorised as a region of PCC-DMN. (iv) We repeated 
this calculation for all the 59 ROIs of the DMN.  
 
As a result of this procedure, we obtained a vmPFC-DMN with 27 ROIs and a PCC-
DMN with 32 ROIs. The other six networks were the same as those in the original 
analysis. In total, we determined eight brain networks (vmPFC-DMN, PCC-DMN, FPN, 
SAN, ATN, SMN, Auditory, and Visual), and repeated the same energy-landscape 
analysis for the eight brain systems. 
 
The other brain parcellation was adopted from a different previous study41. In the study, 
the cortical area was divided into seven brain systems that were not exactly the same as 
those used in the original analyses (Supplementary Fig. 11a). Technically, we estimated 
the average neural activity for each brain system using a “7 network tight mask” 
(surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011), and repeated the 
entire analysis. This previous study also proposed a 17-network brain parcellation 
method, but we did not choose it because the size of the current dataset was too small to 
accurately perform energy-landscape analysis for such 17 networks.  
 
These robustness tests against differences in brain parcellation methods were conducted 
using the dataset collected at the University of Utah.  
 

 
 
Minor concern 
 
“In measuring the similarity of system and regional/voxel time series, what measure 
of similarity was used? The authors should report this. And are these similarity 
values calculated based on the binarized time series of the BOLD signal?” 
 
We calculated the similarity scores based on the binarised neural activity data using the following 

equation, ቀ்ܰ − ฮ࢞ − ฮଶቁ࢞ ்ܰ	ൗ , where xi were a vector representing a time series of a binarised 

neural activity of brain network i (or ROIi), and NT denoted the length of xi.  
 
We clarified this issue by adding the following description into the Methods section:  
 
Methods section (lines 10-21 in p.19): 
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The similarity between brain activity xi and xj was calculated as ቀ்ܰ − ฮ࢞ − ฮଶቁ࢞ ்ܰ	ൗ , 

where xi were a vector representing a time series of the binarised neural activity of brain 
network i (or ROIi), and NT denoted the length of xi.  

 
 
We thank the reviewer for their helpful comments which we believe have substantially improved our 
paper. 
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Responses to the comments of the editor and reviewers for “Brain network dynamics in high-
functioning individuals with autism” by Watanabe and Rees (NCOMMS-16-26411A).  
 
Responses to reviewer #3’s comments  
 
We appreciate the reviewer’s helpful comments. We have replied to all the reviewer’s comments in 
the same order as used by the reviewer. The page numbers refer to those in the revised manuscript 
unless otherwise mentioned. The modified or added text is in blue in the revised manuscript.  
 
Comment 1 
 
“One small comment is about Figure 8b. In the text you write: “In contrast, the 
correlation between FIQ and the functional segregation during the major states was 
not positive but significantly negative in the TD data (r = –0.44, P = 0.023; 
Supplementary Fig. 5b), which is consistent with previous reports suggesting that 
high-functioning individuals with ASD have different cognitive styles compared to TD 
individuals.” (last sentence, page 9). But Figure 8b, third plot seems to report that 
functional segregation is positively correlated with FIQ (r = 0.46, p = .018). Is the 
difference that it is functional segregation during the immediate state in that plot? If 
so, it would be more clear if the x-axis of Figures 7 and 8 specify of what state the 
Functional segregation is measured.” 
 
We are sorry for any lack of clarity in our figures. As the reviewer stated, the x-axis in Figure 8b 
(and 6d-6f) indicates the strength of the functional segregation for the intermediate state, whereas 
that in Figure 7d-7f denotes that for the major state.  
 
We have now clarified this issue by adding descriptions about the x-axis into the figures as follows: 
 
Fig. 6 

 
 

Fig. 7 
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Fig. 8 

 
 
 
Comment 2 
 
“I also noticed a few typos and missed words in the added text.”  
 
Thank you. We have now checked the manuscript thoroughly and corrected some typos (e.g., “high-
functioning” in line 2 in p. 14).  
 
 
We thank the reviewer for their helpful comments which we believe have substantially improved our 
paper. 
 



REVIEWERS' COMMENTS:  

 

Reviewer #2 (Remarks to the Author):  

 

The authors have addressed my concerns. I am happy to recommend this manuscript for 

publication.  
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