- 1 File Name: Supplementary Information
- 2 Description: Supplementary Figures, Supplementary Tables and Supplementary References
- 3
- 4 File Name: Supplementary Dataset 1
- 5 Description: Abundance profile of the MVCs and the reference phage genomes (rows) across the
- 6 121 marine viromes (columns).
- 7
- 8 File Name: Supplementary Dataset 2
- 9 Description: Functional and taxonomic annotation of the proteins encoded by the MVCs compared
- 10 to the NCBI-nr database.
- 11
- 12 File Name: Supplementary Dataset 3
- 13 Description: Circular neighbour-joining clustering of the MVCs (blue) and the reference phage 14 genomes (red) based on Dice distances depicting the true branch lengths.
- 15
- 16 File Name: Supplementary Dataset 4
- 17 Description: Circular neighbour-joining clustering of the MVCs (blue) and the reference phage
- 18 genomes (red) based on Dice distances with the branch lengths omitted for better topology
- 19 representation.
- 20
- 21 File Name: Supplementary Dataset 5
- 22 Description: A summary of all 5 approaches used for host prediction and their respective scores for
- each MVC.
- 24
- 25 File Name: Supplementary Dataset 6
- 26 Description: The statistics of the abundance profiles of the MVCs and the reference viral genomes
- across the 121 marine viromes.
- 28
- 29 File Name: Supplementary Dataset 7
- 30 Description: Functional content derived from the MVCs and the reference phage genomes. The
- 31 values represent the average number of occurrences of the KO in each group of phages according to
- 32 the host phylum.
- 33
- 34 File Name: Supplementary Dataset 8
- 35 Description: A list of the MVCs and the reference phages enriched or depleted in abundance among
- 36 the tested samples groups.
- 37
- 38 File Name: Supplementary Dataset 9
- 39 Description: A list of the KOs enriched or depleted in abundance among the tested samples groups.
- 40
- 41 File Name: Supplementary Dataset 10
- 42 Description: A list of the bacterial and archaeal species enriched or depleted in abundance among
- 43 the tested samples groups.
- 44

Supplementary Figure 1: Effect of random sub-sampling on virome assembly. Stacked bar plots displaying the proportion of contigs obtained for each sub-sample (color coded according to subsample size fractions) across each dataset. B) A density plot displaying the distribution of identity values of the contigs to the cluster representative according to the subsample fraction from which they are derived. The contigs from smaller subsamples displayed high identity (> 98%) to the cluster representative.

Supplementary Figure 2: Relative abundance of Unassigned reads (grey) or mapped to

68 MVCs(blue) or Reference Phage Genomes (Red) in the 121 analysed marine viromes.

80 **Supplementary Figure 3:** Distribution of the SparCC correlation scores between 81 prokaryotic viruses that infect a host of the same (green) or a different (red) genus. The top 82 scores used to assign hosts to the MVCs are displayed in blue.

Supplementary Figure 4: Performance of the predictions based on the correlation scores for each taxonomic level. The X axis displays the minimum score of a correlation to be considered. A) The Y axis shows the accuracy of prediction. B) The Y axis shows the number of correlations in the network that fall within the established cut-off. The strongest scores detected (used for host prediction) were never below ~0.25. Hence, the lack of change in accuracy or the amount of predictions when the cut-off is set below the 0.25 threshold.

102 **Supplementary Figure 5:** Metagenome non-metric multidimensional scaling. The 103 Manhattan distances were calculated based on prokaryote relative abundances estimated 104 from cellular fraction microbial metagenomes and used as input for a NMDS analysis. The 105 samples are colour coded according to their environmental features. A) SAO 106 metagenomes. B) Tara oceans metagenomes.

Supplementary Table 1: Description of samples used to obtain the MVCs.

File	Reads	Bases	Average read length	Reference
EArctic.fasta	686209	68059812	99.1823365768	(Angly et al., 2006)
EBritish_Columbia.fasta	414964	42392364	102.1591366962	(Angly et al., 2006)
EGulf_of_Mexico.fasta	262501	26674941	101.6184357393	(Angly et al., 2006)
ESargasso_Sea.fasta	397939	41510756	104.3143697903	(Angly et al., 2006)
E2008OMZst3viral200m.fasta	96706	15866963	164.0742353112	(Cassman et al., 2012)
E2008OMZst3viral90m.fasta	361488	91589530	253.3681062719	(Cassman et al., 2012)
E2008OMZst5viral200m.fasta	163531	39736791	242.9924051097	(Cassman et al., 2012)
E2008OMZst5viral55m.fasta	226628	55711738	245.8290149496	(Cassman et al., 2012)
E2008OMZst5viral90m.fasta	300835	75835231	252.0824737813	(Cassman et al., 2012)
EOMZst3vral10m.tasta	128441	31647476	246.3969916148	(Cassman et al., 2012)
ECoral_Atoll_Kingman.fasta	93744	10159186	108.3715864482	(Dinsdale et al., 2008)
ECoral_Atoll_Kiritimati.rasta	2/9882	30957642	110.6096211975	(Dinsdale et al., 2008)
ECoral_Atoll_Palmyra.tasta	318178	33347087	104.8063882481	(Dinsdale et al., 2008)
ECOId_Aloli_Tabulean.idsta	116955	28055563	247 7005352788	(Dirisdale et al., 2006) (Hunvitz & Sullivon, 2013)
EPOV_Durk_Island.lasta	82739	20933303	252 4761358005	(Hunwitz & Sullivan, 2013)
EPOV_1A26A fasta	42118	13594261	322 7660620162	(Hurwitz & Sullivan, 2013)
EPOV LA26D fasta	68516	18627549	271 8715190612	(Hurwitz & Sullivan, 2013)
EPOV LA260 fasta	70596	19933260	282 356790753	(Hurwitz & Sullivan, 2013)
EPOV LA26S.fasta	165256	48389605	292.8160248342	(Hurwitz & Sullivan, 2013)
EPOV LF26A.fasta	167616	48027477	286.5327713345	(Hurwitz & Sullivan, 2013)
EPOV_LF26D.fasta	125896	33423420	265.4843680498	(Hurwitz & Sullivan, 2013)
EPOV_LF260.fasta	147537	40546266	274.8210008337	(Hurwitz & Sullivan, 2013)
EPOV_LF26S.fasta	192685	59738160	310.0301528401	(Hurwitz & Sullivan, 2013)
EPOV_LJ12A.fasta	58108	20543960	353.5478763681	(Hurwitz & Sullivan, 2013)
EPOV_LJ12D.fasta	49914	13188982	264.234122691	(Hurwitz & Sullivan, 2013)
EPOV_LJ12O.fasta	122565	45941366	374.83266838	(Hurwitz & Sullivan, 2013)
EPOV_LJ12S.fasta	92415	22582412	244.3587296435	(Hurwitz & Sullivan, 2013)
EPOV_LJ260.fasta	101179	28416547	280.8541989939	(Hurwitz & Sullivan, 2013)
EPOV_LJ26D.fasta	55332	14809960	267.6563290682	(Hurwitz & Sullivan, 2013)
EPOV_LJ26S.fasta	75036	19485257	259.6787808519	(Hurwitz & Sullivan, 2013)
EPOV_LJ4A.tasta	136876	44526523	325.305553932	(Hurwitz & Sullivan, 2013)
EPOV_LJ4D.fasta	98478	24169901	245.4345234469	(Hurwitz & Sullivan, 2013)
EPOV_LJ40.fasta	9/126	31475134	324.0649671561	(Hurwitz & Sullivan, 2013)
EPOV_LJ45.lasta	107244	20730001	240.002247212	(Hurwitz & Sullivan, 2013)
EPOV_MICS.iasta	303519	105200203	340.0017053298	(Hunvitz & Sullivan, 2013)
EPOV_W3MD fasta	31528	10027215	346 5876363867	(Hunwitz & Sullivan, 2013)
EPOV_MIOS fasta	203238	52389322	257 7732609059	(Hurwitz & Sullivan, 2013)
EPOV_M50D fasta	156509	44009470	281 1944999968	(Hurwitz & Sullivan, 2013)
EPOV M601K.fasta	225833	66311342	293.6299920738	(Hurwitz & Sullivan, 2013)
EPOV M7O4K.fasta	144588	40451144	279.7683348549	(Hurwitz & Sullivan, 2013)
EPOV_SFCS.fasta	487339	191183563	392.3009711925	(Hurwitz & Sullivan, 2013)
EPOV_SFDS.fasta	645463	218687035	338.8064614083	(Hurwitz & Sullivan, 2013)
EPOV_SFSS.fasta	504826	173099948	342.8903186444	(Hurwitz & Sullivan, 2013)
EPOV_STCS.fasta	821404	246312846	299.8680868367	(Hurwitz & Sullivan, 2013)
BO2_Virome.fasta	2392879	855153008	357.3741121051	(Solonenko et al., 2013)
EP_Compressa_Control.fasta	39191	4065098	103.7252940726	(Vega Thurber et al., 2008)
EP_Compressa_DOC.fasta	35409	3620409	102.245446073	(Vega Thurber et al., 2008)
EP_Compressa_Nutrient.fasta	34139	3661593	107.2554263452	(Vega Thurber et al., 2008)
EP_Compressa_pH.tasta	49949	5234100	104.7888846624	(Vega Thurber et al., 2008)
EP_Compressa_t0.tasta	39113	3965136	101.3764221614	(Vega Thurber et al., 2008)
EA topuio DNA SISDA footo	30402	4304749	200 6679206052	(Weynhorg et al., 2008)
EA topuis PNA SISPAIdSta	734034	215417070	203 4725781236	(Weynberg et al., 2014)
EP damicornis CEM RepliG fasta	370135	100597355	233.4723761330	(Weynberg et al., 2014)
EP damicornis LN2 RepliG fasta	292476	82138284	280 8376892463	(Weynberg et al. 2014)
EP damicornis LN2 SISPA fasta	2000000	585709573	292 8547865	(Weynberg et al. 2014)
EP damicornis NLN RepliG.fasta	435494	122300721	280.8321607186	(Weynberg et al., 2014)
EP damicornis NLN SISPA.fasta	2000000	604563712	302.281856	(Weynberg et al., 2014)
Elndian Ocean GS108.fasta	320104	125242428	391.2554294854	(Williamson et al., 2012)
EIndian_Ocean_GS112.fasta	494832	178668377	361.0687607107	(Williamson et al., 2012)
EIndian_Ocean_GS117.fasta	480375	194370437	404.6222992454	(Williamson et al., 2012)
EIndian_Ocean_GS122.fasta	341386	119422171	349.8156661375	(Williamson et al., 2012)
Elzu-Ogasawara_Trench.fasta	46458	15606815	335.9338542339	(Yoshida et al., 2013)
EMariana_Trench.fasta	49584	13814785	278.6137665376	(Yoshida et al., 2013)
EOff_Shikomita_Peninsula.fasta	76498	27935812	365.1835603545	(Yoshida et al., 2013)
EBur_Rasa2012.fasta	1943193	324123509	166.799442464	Silveira et al., 2016. In press
ECtrl_Bur_Rasa.fasta	2927179	565986037	193.3554582757	Silveira et al., 2016. In press
EFarol2011.tasta	5309048	1111783405	209.4129503067	Silveira et al., 2016. In press
EPAB2011.tasta	3353950	657983006	196.1815191043	Silveira et al., 2016. In press
EPAD2012.Tasta	870827	18283/2/1	209.9582018013	Silveira et al., 2016. In press

Sample	Abrolhos_Season	POV_Depth	TARA_Temp
BO2 Virome	ianore	ianore	ianore .
F2008OMZst3viral200m	ignore	ignore	ignore
F2008OMZst3viral90m	ignore	ignore	ignore
E2008OMZst5viral200m	ignore	ignore	ignore
E2008OMZst5viral55m	ignore	ignore	ignore
E20020MZ35Wiral00m	ignore	ignore	ignore
	ignore	ignore	ignore
	ignore	ignore	ignore
EA_tenuis_DNA_SISPA	ignore	ignore	ignore
EA_tenuis_RNA_SISPA	ignore	ignore	ignore
EArctic	ignore	ignore	ignore
EBritish_Columbia	ignore	ignore	ignore
EBur_Rasa2012	ignore	ignore	ignore
ECoral_Atoll_Kingman	ignore	ignore	ignore
ECoral Atoll Kiritimati	ignore	ignore	ignore
FCoral Atoll Palmyra	ignore	ignore	ignore
Foral Atol Taburean	ignore	ignore	ignore
Effet Bur Basa	lignore	ignore	ignore
Ear-Dat	2011	ignore	ignore
	ignoro	ignoro	ignore
	ignoro	ignore	ignore
	ignore	ignore	ignore
Lingian_Ocean_GS112	ignore	ignore	ignore
Elndian_Ocean_GS117	ignore	ignore	ignore
Elndian_Ocean_GS122	ignore	ignore	ignore
Elzu-Ogasaw ara_Trench	ignore	ignore	ignore
EMariana_Trench	ignore	ignore	ignore
EOMZst3viral10m	ianore	ianore	ianore
EOff Shikomita Peninsula	ignore	ignore	ianore
EPA 82011	2011	ignore	ignore
EPA 82012	2012	ignore	ignore
	2012	ignoro	ignore
EPOV Dunk bland	2012	Dhotio	ignore
	ignore	Photic	ignore
EPOV_Htzroy_Island	ignore	Photic	ignore
EPOV_LA26A	ignore	Aphotic	ignore
EPOV_LA26D	ignore	Aphotic	ignore
EPOV_LA260	ignore	Aphotic	ignore
EPOV_LA26S	ignore	Photic	ignore
EPOV_LF26A	ignore	Aphotic	ignore
EPOV LF26D	ianore	Aphotic	ianore
EPOV LF260	ignore	Aphotic	ianore
FPOV_LE26S	ignore	Photic	ignore
EPOV_L 12A	ignore	Anhotic	ignore
	ignoro	Aphotio	ignoro
	ignore	Apholic	ignore
	ignore	Aprillic Destin	ignore
	Ignore	Ambatia	ignore
EPOV_LJ260	ignore	Aphotic	ignore
	ignore	Apnotic	ignore
EPOV_LJ26S	ignore	Photic	ignore
EPOV_LJ4A	ignore	Aphotic	ignore
EPOV_LJ4D	ignore	Aphotic	ignore
EPOV_LJ40	ignore	Aphotic	ignore
EPOV_LJ4S	ianore	Photic	ignore
FPOV_M1CS	ignore	Photic	ignore
FPOV_M2MS	ignore	Photic	ignore
	ignore	Photic	ignore
	ignore	Photic	ignore
		Photio	ignore
	ignore	Photic	ignore
	ignore	Aphotic	ignore
EPOV_M7O4K	ignore	Aphotic	ignore
EPOV_SFCS	ignore	Photic	ignore
EPOV_SFDS	ignore	Photic	ignore
EPOV SFSS	ignore	Photic	ignore
EPOV_STCS	ignore	Photic	ignore
	-		-

126 Supplementary Table 2: Listing of sample groupings used for the enrichment analyzes.

EP Compressa Control	ignore	ignore	ignore
EP_Compressa_DOC	ignore	ignore	ignore
EP Compressa Nutrient	ignore	ignore	ignore
EP Compressa pH	ignore	ignore	ignore
EP Compressa t0	ignore	ignore	ignore
EP Compressa temperature	ignore	ignore	ignore
EP damicornis CFM RepliG	ignore	ianore	ianore
EP damicornis LN2 RepliG	ianore	ianore	ianore
EP damicornis I N2 SISPA	ignore	ignore	ignore
EP damicornis NL Benlig	ignore	ignore	ignore
EP damicornis NLN SISPA	ignore	ignore	ignore
ESG2011	2011	ignore	ignore
ESG2012b	2012	ignore	ignore
ESargasso Sea	ignore	ignore	ignore
Est Barb2011a	2011	ignore	ignore
ETA DA DEN Maditerrangan Son Black Son Province	ignore	ignore	
ETATA_010_DOW_Wedletraneal_Oce_Dlack_Oce_Towince	ignore	ignore	
ETARA_UTO_SRF_WedletTailedT_Sea_Diack_Sea_FT0Vince	ignore	ignore	Cold
ETARA_022_DCNF_IVEULEITAITEAIT_DEA_DIALK_SEA_FIOVILLE	ignore	ignore	
	ignore	ignore	
ETARA_025_DCM_Wediterranean_Sea_Black_Sea_Province	Ignore	ignore	
ETARA_025_SRF_Wediterranean_Sea_Black_Sea_Province	ignore	ignore	Cold
ETARA_030_DCM_Mediterranean_Sea_Black_Sea_Province	ignore	ignore	Cold
EIARA_031_SRF_Red_Sea_Persian_Gult_Province	ignore	ignore	Warm
ETARA_032_DCM_Red_Sea_Persian_Gulf_Province	ignore	ignore	Warm
ETARA_032_SRF_Red_Sea_Persian_Gulf_Province	ignore	ignore	Warm
ETARA_034_DCM_Red_Sea_Persian_Gulf_Province	ignore	ignore	Warm
ETARA_034_SRF_Red_Sea_Persian_Gulf_Province	ignore	ignore	Warm
ETARA_036_DCM_Northw est_Arabian_Sea_Upw elling_Province	ignore	ignore	Warm
ETARA_036_SRF_Northw est_Arabian_Sea_Upw elling_Province	ignore	ignore	Warm
ETARA_038_DCM_Indian_Monsoon_Gyres_Province	ignore	ignore	Warm
ETARA_038_SRF_Indian_Monsoon_Gyres_Province	ignore	ignore	Warm
ETARA_039_DCM_Indian_Monsoon_Gyres_Province	ignore	ignore	Warm
ETARA_039_SRF_Indian_Monsoon_Gyres_Province	ignore	ignore	Warm
ETARA 041 DCM Indian Monsoon Gyres Province	ignore	ignore	Warm
ETARA 041 SRF Indian Monsoon Gyres Province	ignore	ignore	Warm
ETARA 042 DCM Indian Monsoon Gyres Province	ignore	ianore	Warm
ETARA 042 SRF Indian Monsoon Gyres Province	ignore	ianore	Warm
ETARA 046 SRF Indian Monsoon Gyres Province	ignore	ignore	Warm
FTARA 052 DCM Indian South Subtropical Gyre Province	ignore	ignore	Warm
FTARA 064 DCM Fastern Africa Coastal Province	ignore	ignore	Warm
FTARA 064 SRF Fastern Africa Coastal Province	ignore	ignore	Warm
ETABA 065 DCM Eastern Africa Coastal Province	ignore	ignore	Warm
ETABA 065 SRE Fastern Africa Coastal Province	ignore	ignore	Warm
ETARA_066_DCM_Edition_Arreat_coastal_Province	ignore	ignore	
ETARA 066 SRE Benguela Current Coastal Province	ignore	ignore	
ETATA_000_SNE_Benguela_Current_Coastal_Province	ignore	ignore	
LTATA_007_DTA_DEgite_Current_Coasta_rovince	ignore	ignoro	
TATA_000_DEW_South_Atlantic_Cytal_Province	ignore	ignoro	
	ignore	ignore	
	ignore	ignore	
ETARA_070_SRF_SOULIT_Atlantic_Oyrat_Province	ignore	ignore	
ETARA_072_DOW_SOULI_ALIGNILC_GYTAL_PLOVINCE	ignore	ignore	Warm
ETARA_072_SRF_South_Atlantic_Gyral_Province	Ignore	ignore	warm
ETARA_U/0_DOW_SOUTH_ATIANTIC_GYTAL_Province	ignore	ignore	
	ignore	ignore	
ETARA_U82_DCM_Southwest_Atlantic_Shelves_Province	ignore	ignore	
ETARA_U85_DUM_Antarctic_Province	ignore	ignore	Cold
ETARA_109_DCM_Chile-Peru_Current_Coastal_Province	ignore	ignore	vvarm
ETARA_109_SRF_Chile-Peru_Current_Coastal_Province	Ignore	ignore	vvarm
ETimbebas2012	2012	ignore	ignore

Supplementary Table 3: Correlation scores between the viruses and the hosts across the

Microbe	Spearman_Score_Abundance	p_value_Abundance	Spearman_Score_VHR	p_value_VHR	Intercept	Coefficient	Median_VHR
Acholeplasma	-0.0897435897	0.6551148366	-0.7918192918	2.77485041906018E-006	2.6390947056	-221.356320944	0.0006731856
Burkholderia	0.0706766917	0.7673301273	-0.7518796992	0.0002005705	0.3933706386	-0.4911575602	0.0778090613
Candidatus_Pelagibacter	0.7207207207	1.91486869488262E-006	-0.5933075933	0.0001825509	7.0776174966	-0.206169233	0.5096964592
Candidatus_Puniceispirillum	0.0535714286	0.8525093768	-0.7178571429	0.0035697913	0.8253670301	-0.482693615	0.4417823791
Clostridium	0.1605616606	0.421987618	-0.8424908425	1.63711885751082E-006	1.5244503504	-2.4583227373	0.0886579336
Croceibacter	0.2295652174	0.2792184609	-0.8695652174	2.51572197322635E-006	0.7746601981	-30.9133058485	0.0011361179
Exiguobacterium	-0.0457368718	0.8403574467	-0.7312252964	0.0001678697	0.3507201017	-4.4213806776	0.0005415427
Fusobacterium	0.3415384615	0.0882030026	-0.8618803419	1.88156236780931E-006	0.1832144858	-0.3048264016	0.1021796689
Haloquadratum	-0.0336122076	0.8412189805	-0.0697196446	0.6774607402	3.3308065431	-13789.8936628182	0
Leptospira	-0.0012870013	0.994621753	-0.7292149292	1.41832304552279E-006	1.8757868748	-10.1811706671	0.0117860692
Leuconostoc	0.3081554461	0.1107833117	-0.741652983	1.15855424126558E-005	0.7661340972	-21.4115177414	0.0034241717
Magnetospirillum	-0.2631578947	0.2751840936	-0.601754386	0.0075105622	0.3000664676	-0.516229263	0.0062252617
Marinomonas	-0.1168831169	0.6127360376	-0.6662337662	0.0013002749	1.1968707761	-599.2463695185	0.0003126992
Methanobacterium	-0.0222305556	0.8976015663	-0.2011528456	0.2394372755	1.3199809909	-851.2545217336	2.33084931317066E-005
Myxococcus	0.0298584299	0.8626206951	-0.502960103	0.0020146217	0.6104927701	-19.9990135023	0.0007479578
Porphyromonas	0.0887507633	0.6945000219	-0.2560770433	0.2500183316	0.289146152	-2.8836058149	0.0009241011
Prochlorococcus	0.4062753036	0.0107797241	0.0253036437	0.8783670412	15.8161328076	-2.2742458066	0.1961558333
Rhodobacter	-0.5	0.1214291558	-0.7818181818	0.0070121129	0.2041216285	-0.091966454	0.0504024325
Rhodopirellula	-0.0207715235	0.9250525748	-0.5548964139	0.0059921124	0.790250522	-96.4408425634	0.000504267
Spiroplasma	0.2393162393	0.2282881749	-0.7490842491	1.24966777067635E-005	1.7682111785	-29.3523367065	0.0064639359
Staphylococcus	-0.0931451613	0.6169586777	-0.9116935484	7.55137262061412E-008	1.238667744	-2.5510849631	0.0835727133
Streptococcus	-0.3128851541	0.0676570391	-0.943977591	0	1.8591246303	-11.8458256952	0.0416806827
Sulfolobus	-0.4138904574	0.0566759494	-0.9480519481	3.97738009413851E-006	1.2540135467	-62.4437065058	0.0013793744
Synechococcus	0.4864957265	0.0126122509	-0.484444444	0.0130342351	2.4460221709	-0.0702163975	4.9054168419
Leptotrichia	-0.0285714286	1	-0.9428571429	0.0166666667	0.6836752584	-15.1989367014	0.0186075988
Ruegeria	0.103030303	0.785018104	-0.4666666667	0.1782193293	0.2487522074	-3.1218398561	0.0124057428
Atopobium	-0.358554489	0.1018781887	-0.8430265387	0.00000871	0.6696239452	-4.4327296023	0.0028153489
Bifidobacterium	0.2	0.4100098244	-0.601754386	0.0075105622	0.3162132879	0.1084235625	0.0109659178
Lactobacillus	-0.0303030303	0.9457098084	-0.9757575758	0	0.9724045537	-1.4384026105	0.1180761148
Mycoplasma	0.3552419355	0.0505457136	-0.8524193548	4.8258055809074E-007	0.9993676428	-33.7842023949	0.003027669
Prevotella	-0.1823529412	0.4979213725	-0.9764705882	0	2.3123656689	-64.3651237005	0.0024500631
Shewanella	-0.1	0.95	-0.9	0.0833333333	0.7163509017	-0.9440151482	0.0276617615
Spirochaeta	0.0285714286	1	-0.0857142857	0.919444444	0.1415578274	-13.1350742861	0.0013635406
Corynebacterium	-0.0714285714	0.9063492063	-0.3571428571	0.44444444	0.3798208917	1.3208445271	0.0049118479
Flavobacterium	0.1281761717	0.568312186	-0.8927159797	3.19706976253081E-006	1.1341277571	-0.1239339403	0.6624901891
Neisseria	-0.2142857143	0.6615079365	-0.6428571429	0.1388888889	0.1934000597	-0.6000173031	0.046770624
Vibrio	-0.3696969697	0.2956040892	-0.9757575758	0	1.0898577702	-4.3502075622	0.0343918727
Brachyspira	0	1	-0.75	0.0662698413	0.6816891301	-26.8040952435	0.0062675438
Coprococcus	-0.0286978514	0.9224205467	-0.7483516645	0.0020787303	0.5972249469	-128.5141800102	0.000224633
Ireponema	-0.6666666667	0.0830853175	-0.9523809524	0.001140873	1.2788442978	-393.2300271252	0.000489972
Inermus	0.6967032967	0.007343265	-0.5912087912	0.0288937236	0.2070740535	-1.7042496078	0.0525676916
Haloterax	0.1644325947	0.5581408249	-0.2252011623	0.4196781971	0.4128272456	-7.3942072781	0.0029201669
Oisenella	-0./181818182	0.016/992341	-0.8	0.0052015025	0.3364084675	-4./355863648	0.0018903593
Selenomonas	-0.1428571429	0.8027777778	-0.7714285714	0.102777778	1.0847197092	-/5.1076237115	0.0036546489
Cellulophaga	0.6	0.24166666667	-0.9428571429	0.01666666667	1.6722300243	-9.2681555217	0.0513465397
Desultovibrio	-0.2	0.7138888889	-0.6	0.24166666667	0.1042627889	-0.2308270493	0.064935013
Bacillus	0.6428571429	0.1388888889	-0.8928571429	0.0123015873	0.8440946301	-0.1930062559	0.2958520169
Xylella	0.6428571429	0.1388888889	-0.8928571429	0.0123015873	1.0002495561	-28.2940329388	0.0048490512

130 Tara Oceans samples calculated at the genus level.

133 **Supplementary Table 4**: Correlation scores between the viruses and the hosts across the

134 Tara Oceans samples calculated at the phylum level.

Microbe	Spearman_Score_Abundance	p_value_Abundance	Spearman_Score_VHR	p_value_VHR	Intercept	Coefficient	Median_VHR
Bacteroidetes	0.487854251	0.0018440462	-0.0587044534	0.7218046355	6.5718123628	-0.8691127829	0.2942114454
Proteobacteria	0.5700404858	0.0001969337	0.0714574899	0.6645328164	41.6510547139	-2.8456391386	0.4728114824
Chlamydiae	0.224785273	0.4824316437	-0.3408034784	0.2783436757	1.3054541352	-1125.5415903991	0.0001312777
Cyanobacteria	0.4287449393	0.0068892257	-0.1935222672	0.2369237852	21.7154380513	-1.5670240917	1.631312893
Nitrospirae	-0.1552539658	0.4393705456	-0.2415941814	0.2247315758	0.692990787	-757.9028606154	0
Chloroflexi	0.1402597403	0.5427637571	-0.687012987	0.0008070563	0.4365735353	-17.4971416845	0.0012303541
Synergistetes	-0.5303759999	0.0932731105	-0.8560454736	0.0007716582	0.4207727833	-77.497439152	0.0006656232
Firmicutes	0.0495951417	0.7636823368	-0.5718623482	0.0001862272	7.1450479718	-10.3560829904	0.1007878894
Planctomycetes	0.0298719772	0.8585100099	-0.644162381	2.0270257907871E-005	1.1593147267	-20.0764366062	0.0053903494
Euryarchaeota	-0.3380566802	0.03586063	-0.6386639676	1.9170771177978E-005	11.0498598531	-1047.2704950545	0.0007424886
Spirochaetes	0.2519969362	0.1267868461	-0.6544479702	1.37698760641859E-005	2.3641307508	-19.8223758252	0.0128895901
Crenarchaeota	0.0786738155	0.6376082776	-0.7439544808	4.98082163215247E-007	2.1539224633	-108.6354586489	0.0013896698
Actinobacteria	-0.1083451873	0.5218849548	-0.7598387862	4.2867457596182E-007	2.1527612906	-1.161736751	0.2030214715
Deinococcus-Thermus	0.0512091038	0.7627878024	-0.8477951636	1.14534805773338E-008	0.5870313379	-4.3343088481	0.0229846302
Fusobacteria	-0.0440967283	0.7950393182	-0.9229492651	0	0.9894272934	-2.9219067318	0.0236006339
Tenericutes	-0.14048583	0.3922637652	-0.8967611336	0	3.4383676516	-11.5564472183	0.0044451534

135

136 Supplementary References:

- 137 Angly FE., Felts B., Breitbart M., Salamon P., Edwards RA., Carlson C., Chan AM., Haynes
- 138 M., Kelley S., Liu H., Mahaffy JM., Mueller JE., Nulton J., Olson R., Parsons R., Rayhawk
- 139 S., Suttle CA., Rohwer F. 2006. The marine viromes of four oceanic regions. PLoS Biol140 4:e368.
- 141 Cassman N., Prieto-Davo A., Walsh K., Silva GG., Angly F., Akhter S., Barott K., Busch J.,
- 142 McDole T., Haggerty JM., Willner D., Alarcon G., Ulloa O., DeLong EF., Dutilh BE., Rohwer
- 143 F., Dinsdale EA. 2012. Oxygen minimum zones harbour novel viral communities with low
- 144 diversity. Environ Microbiol 14:3043–3065.
- 145 Dinsdale EA., Pantos O., Smriga S., Edwards RA., Angly F., Hatay M., Hall D., Brown E.,
- Haynes M., Krause L., Sala E., Stuart A., Thurber RV., Willis BL., Azam F., Knowlton N.,
- 147 Rohwer F. 2008. Microbial Ecology of Four Coral Atolls in the Northern Line Islands. 3.
- Hurwitz BL., Sullivan MB. 2013. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS

150 One 8:e57355.

Solonenko S a., Ignacio-Espinoza JC., Alberti A., Cruaud C., Hallam S., Konstantinidis K.,
Tyson G., Wincker P., Sullivan MB. 2013. Sequencing platform and library preparation
choices impact viral metagenomes. BMC genomics 14:320.

Vega Thurber RL., Barott KL., Hall D., Liu H., Rodriguez-Mueller B., Desnues C., Edwards
RA., Haynes M., Angly FE., Wegley L., Rohwer FL. 2008. Metagenomic analysis indicates
that stressors induce production of herpes-like viruses in the coral Porites compressa.
Proceedings of the National Academy of Sciences of the United States of America
105:18413–18418.

Weynberg KD., Wood-Charlson EM., Suttle CA., van Oppen MJ. 2014. Generating viral
metagenomes from the coral holobiont. Front Microbiol 5:206.

Williamson SJ., Allen LZ., Lorenzi H a., Fadrosh DW., Brami D., Thiagarajan M., McCrow
JP., Tovchigrechko A., Yooseph S., Venter JC. 2012. Metagenomic exploration of viruses
throughout the Indian Ocean. PloS one 7:e42047.

Yoshida M., Takaki Y., Eitoku M., Nunoura T., Takai K. 2013. Metagenomic Analysis of Viral
Communities in (Hado)Pelagic Sediments. PLoS ONE 8.

166