Type of file: PDF Size of file: 0 KB Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary Table

Type of file: MOV Size of file: 0 KB Title of file for HTML: Supplementary Movie 1 Description: Three-dimensional computer graphics for Egr1 expression in the AON. KI mice of Olfr1019-ChRWR were photo-illuminated (Photo) with a 2 Hz light for 30 min. Control mice (WT) were exposed to 10% TMT for 30 min. Brain sections were analyzed by immunohistochemistry for the activity dependent expression of Egr1, an immediate-early gene product. Pictures of fluorescence-labeled Egr1 expression in the 20 μm sections were taken every 100μm. The volume rendering software (VCAT5) was used to incorporate the pictures and to process the images. Movie is shown for the AON.

Type of file: MOV Size of file: 0 KB Title of file for HTML: Supplementary Movie 2 Description: Three-dimensional computer graphics for Egr1 expression in the APC and OT. KI mice of Olfr1019-ChRWR were photo-illuminated (Photo) with a 2 Hz light for 30 min. Control mice (WT) were exposed to 10% TMT for 30 min. Brain sections were analyzed by immunohistochemistry for the activity dependent expression of Egr1, an immediate-early gene product. Pictures of fluorescence-labeled Egr1 expression in the 20 µm sections were taken every 100µm. The volume rendering software (VCAT5) was used to incorporate the pictures and to process the images. Movie is shown for the APC and OT.

Type of file: MOV Size of file: 0 KB Title of file for HTML: Supplementary Movie 3 Description: Photo-induced responses of the KI mice (5 sec illumination). Photo-illumination, 2 Hz, 250 msec pulses, was given for 5 sec to KI and WT mice. Behaviors after illumination are compared between the KI (Olfr1019-ChRWR) and WT mice.

Type of file: MOV Size of file: 0 KB Title of file for HTML: Supplementary Movie 4 Description: Photo-induced responses of the KI mice (1 sec illumination). Photo-illumination, 2 Hz, 250 msec pulses, was given for 1 sec to KI and WT mice. Behaviors after illumination are compared between the KI (Olfr1019-ChRWR) and WT mice.

Type of file: PDF Size of file: 0 KB Title of file for HTML: Peer Review File Description:

OE

Supplementary Figure. 1 Isolation of TMT-responsive OR genes.

(a) Optical imaging of the dorsal-OB. Activation patterns are compared for three different odorants, 2MB (10%), TMT (10%), and 4MT (10%). Schematic diagrams of imaging patterns are shown (right). A, anterior; P, posterior; M, medial; and L, lateral. Scale bar is 500 μ m. (b) DiI staining of the OE and OB. DiI was injected into the glomeruli responded to 10% TMT to stain the connecting OSN axons and cell bodies. Scale bars are 500 µm. OB, olfactory bulb; OE, olfactory epithelium; A, anterior; P, posterior; M, medial; and L, lateral. (c) The cAMP-induced luciferase assay. Twelve OR genes repeatedly isolated from the DiI-labeled OSNs were analyze for their interactions to TMT by the cAMP dependent luciferase assay. Three ORs (Olfr 57, 30, and 1019) were significantly activated by 1mM TMT and subjected to further analyses. Asterisks indicate T-test. Error bars are \pm SEM. **p* <0.05, ** *p* <0.01, *** *p* <0.001. (**d**) High-throughput screening of TMT-responsive ORs. Separate from the DiI-cloning, a total of 266 published ORs (Supplementary Table 1b) were examined for their binding to TMT. Seventeen ORs (shown in red) demonstrated the significant binding to 1 mM TMT by the luciferase assay. All values in mean \pm SEM. (e) Ligand selectivity of candidate ORs. Six D-zone ORs that demonstrated high affinity to TMT were analyzed for their binding to 17 different odorants; TMT, 2, 4, 5-trimethyl thiazoline; 4MT, 4-methyl-thiazoline; 2MT, 2methyl-thiazoline; 5MT, 5-methyl-thiazoline; 2E4MT, 2-ethyl-4 methyl-thiazoline; APA, allyl-phenyl-acetate; BA, butyl-acetate; AP, acetophenone; Car, carvone; Cou, coumarine; K-8, octanone; K-6, hexanone; 8-OH, octanol; 7-OH, heptanol; 7-CHO, heptanaldehyade; Van, vanillin; 2MB, 2-methyl-butyric acid. Binding affinities are shown in are shown in various sizes of dots. (f) In situ hybridization of the OE. D zone-specific OR genes, Olfr1019, 57, and 30, were analyzed. Red lines indicate expression areas in the dorsal zone. Scale bar is 200 µm. Arrowheads indicate hybridization signals. D, dorsal; V, ventral; M, medial; and L, lateral.

С

а

Supplementary Figure. 2 KI and KO mice for the OR1019 locus.

(a) and (b) Plasmid constructs for the KI and KO mice. In the KI-allele of *Olfr1019*, coding sequences for channel-rhodopsin wide receiver (ChRWR) and a fluorescent marker (Venus) are inserted with the *ires* sequence. In the KO allele, the coding sequence of *Olfr1019* was replaced with that of *tau-EYFP*. Restriction-enzyme cleavage sites are shown for *KpnI*, *Bst*EII, *Avr*II, and *NheI*. PolyA sites are also shown. (c) Locations of Olfr1019-KI glomeruli (green) were determined based on the midline (Y axis) and blood vessels in the boundary of the OB and neocortex (X axis). n=11. TMT-responsive glomeruli were identified by optical imaging. n=25. Scale bar is 500 µm. (d) Detection of Olfr1019 glomeruli in the KI mouse. Olfr1019 gives rise to two glomeruli, one is in the medial and the other is in the dorsal OB. Both are localized in the posterior region of the OB.

Supplementary Figure. 3 Single-unit recordings in the KI-OB.

(a) A schematic diagram of layer structure in the OB. (b) A local field potential (LFP) in the OB. LFP was recorded in the different layers. Location of a microelectrode tip was determined by the configuration of field potentials of mitral and tufted cells. Action potentials were evoked by electric stimulation of the lateral olfactory tract (LOT). EPL, external plexiform layer; MCL, mitral cell layer; GCL, granule cell layer. (c) Light-evoked spike discharges in the EPL and MCL units detected by the single unit recordings. Spike timing and frequencies are shown in raster plots of spike discharges and peristimulus-time histograms. Durations of photo-illumination are indicated by cyan bars. n=5-8.

M

С

Bregma 3.0 2.6 mm 2 WT SEZ/R (Photo) WT (Photo) KI (Photo) WT (TMT) (10%) WT (TMT) (1%) KO (TMT) (1%) M72 (Photo) WT (Va) WT (Oil) reduced condition KI 27 (Photo) (20 msec) KI (Photo) (15 min)

KO (TMT) (1%)

AON

mm

BNST

Supplementary Figure. 4 | Immunohistochemistry for Egr1 expression.

Olfr1019KI, WT, M72-ChR2-YFP mice were photo-illuminated with 2 Hz light of 250 msec pulses. Olfr1019-KO and WT mice were exposed to 1% TMT, 10% TMT, and 10% vanillin (Va). The Olfr1019-KI mice were also treated with reduced condition in photo-illumination (2 Hz light of "20 msec" pulses for 30 min and 2 Hz light of 250 msec pulses for "15 min". (a) A schematic diagram of the mouse OC. (b) Egr1 expression in the OB. The Olfr1019-KI glomeruli are labeled with Venus in green. Egr1 signals are shown in red. Scale bars are 250 um. GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; and GCL, granule cell layer. Egr1 expression was also analyzed in the following regions: (c) AON, anterior olfactory nucleus; (d) APC, anterior piriform cortex; (e) OT, olfactory tubercle, (f) CoA, cortical amygdala; (g) MeA, medial amygdala; and (h) BNST, bed nucleus of stria terminals. All sections were counterstained with DAPI (**c**-**h**) to identify brain structures microscopically according to the Paxinos and Franklin's mouse brain atlas. Egr1 signals were quantified for the AON (c), APC (d), OT (e), CoA (f), MeA (g), and BNST (h). (n=5). Dorsal part, medial part, lateral part, and ventral part of the AON (d, m, l v); 1,2,3, layer 1, 2, and 3; cor, cortical zone; Icj, islands of Calleja; anterior, lateral posterior, and medial posterior cortical amygdala (CoA a, CoA pl, CoA pm); cortex amygdala transition zone (CxA); amygdalo-piriform transition area (AmPir); anterior amygdaloid area (AA); basomedial amygdalar nucleus (BMA); basolateral amygdaloid nucleus (BLA); central amygdala (CeA); piriform cortex (PIR); Anterodorsal, anteroventral, posterodorsal, and posteroventral medial amygdala (MeAad, MeAav, MeApd, and MeApv); anterolateral (al); anteromedial (am); fusiform nucleus (fu); juxta capsular nucleus (ju); oval nucleus (ov). Scale bars are 250 µm.

I

Supplementary Figure. 5 Behavioral analyses of photo-illuminated KI and TMT exposed KO mice.

(a) Analyzing the immobility behavior in the different durations of photo-illumination. (b)Time-course studies of photo-stimulated KI and shielded KI mice. For photo-illumination, 2 Hz light of 250 msec pulses for 1 sec (cyan) was given every 20 sec. Ratios of various behaviors are shown. n=9. (c) Immobility and exploratory behaviors. The KI, WT, and shielded KI mice were analyzed. One-sec of photo-stimulation was given to the mice in every 20 sec. Time spent (sec) for each behavior within 3 min after illumination is shown. Asterisks indicate two-way ANVOA followed by Bonferroni correction. *p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Error bars are \pm SD. n=9. (d) Open-field aversion analyses. Photo-stimulation for 1 sec was given to the mice every 20 sec. KI and WT mice were photo-illuminated in one particular room out of two in a cage. Total time that each animal spent within 10 min in the room where photo-illumination was given (n=3). (e) Immobility responses to photo-illumination. Olfr1019-KI WT and M72-YFP-ChR2 (M72) mice were analyzed. Olfr1019-KI with lower intensity (0.3 mW/mm²) were also analyzed. Photo-illumination of 2 Hz for 5 sec with a pulse of 250 msec was given every min. Time spent for immobility during a 3-min period of observation was measured. Asterisks indicate two-way ANVOA followed by Bonferroni correction. *p < 0.05, ** p < 0.01. Error bars are \pm SD. n=4 (KI), 3 (WT), and 3 (M72). (f) Immobility responses to 1% and 10% TMT are compared between Olfr1019-KO and WT mice. n=4 (1% TMT) and n=5 (10% TMT). Asterisks indicate two-way ANVOA followed by Bonferroni correction. *p < 0.05, **p < 0.01, ****p < 0.0001. Error bars are \pm SD. (g) Quantification of plasma ACTH induced by photo-illumination and TMT exposure. Plasma ACTH was measured in WT and KI mice. n=7. Average concentrations of plasma ACTH (pg/ml \pm SEM) are shown. *P* values of one-way ANVOA followed by Bonferroni correction are indicated: *p <0.05, ** p <0.01, **** *p* <0.0001.

a

day 1	day 2	day 3	day 4	day 5
Olfr. (freq.)	Olfr. (freq.)	Olfr. (freq.)	Olfr. (freq.)	Olfr. (freq.)
786(1)	1019 (2)	30 (4)	521 (4)	1028 (3)
211 (1)	<i>433</i> (2)	1028 (4)	786 (2)	<i>57</i> (2)
	521 (2)	876 (3)	<i>1123</i> (2)	521 (2)
	1123 (1)	786 (2)	1028 (2)	211 (1)
	211 (1)	521 (2)	57(1)	433 (1)
		1009 (2)	448(1)	448 (2)

No.	Olfr.	No.	Olfr.	No.	Olfr.	No.	Olfr.	No.	Olfr.	No.	Olfr.	No.	Olfr.
1	1048	39	920	77	1030	115	365	153	1002	191	432	229	342
2	1052	40	923	78	1031	116	395	154	1010	192	433	230	344
3	1054	41	957	79	1032	117	406	155	1023	193	435	231	345
4	1056	42	969	80	1034	118	410	156	1028	194	437	232	346
5	1104	43	974	81	1036	119	478	157	1035-ps1	195	438	233	347
6	1106	44	1019	82	1043	120	483	158	1046	196	441	234	348
7	1154	45	1044	83	1045	121	484	159	1062	197	448	235	350
8	1155	46	1045	84	1086	122	488	160	1079	198	477	236	352
9	1176	47	1047	85	1170	123	490	161	1140	199	816	237	378
10	1339	48	1497	86	1357	124	605	162	1157	200	877	238	380
11	1377	49	23	87	1361	125	739	163	1160	201	895	239	381
12	1404	50	52	88	1500	126	746	164	1215	202	922	240	382
13	1406	51	141	89	430	127	748	165	1219	203	933	241	385
14	3	52	145	90	822	128	767	166	1225	204	970	242	386
15	30	53	150	91	815	129	768	167	1317	205	982	243	389
16	38	54	247	92	73	130	780	168	1366	206	1036	244	979
17	57	55	368	93	811	131	784	169	1389	207	1039/1517	245	392
18	807	56	420	94	1358	132	792	170	1410	208	1133	246	393
19	133	57	446	95	965	133	798	171	1449	209	1156	247	394
20	134	58	456	96	16	134	805	172	1496	210	1167	248	393
21	139	59	506	97	480	135	809	173	1451	2 11	1168	249	531
22	143	60	521	98	19	136	812	174	1510	212	1328/1519	250	527
23	146	61	510	99	918	137	813	175	1512	213	1329	251	843
24	147	62	523	100	1510	138	821	176	814	214	1362	252	862
25	160	63	810	101	1511	139	876	177	20/21	215	1395	253	894
26	763	64	960	102	151	140	881	178	50	216	1396	254	898
27	355	65	937	103	482	141	884	179	62	217	1403	255	900
28	411	66	<i>93</i> 8	104	1162	142	919	180	74	218	1408	256	944
29	424	67	958	105	43/403	143	926	181	146	219	1445	257	980
30	473	68	959	106	49	144	934	182	218	220	1504	258	1022
31	481	69	973	107	54	145	935	183	239	221	55	259	1058
32	508	70	994	108	132	146	961	184	332	222	312	260	1061/151.
33	738	71	987	109	221	147	972	185	376	223	1	261	1065
34	749	72	988	110	313	148	976	186	414	224	228	262	1060
35	826	73	1009	111	338	149	978	187	419	225	255	263	1076
36	875	74	1020	112	348	150	390	188	421	226	339	264	1089
37	878	75	1026	113	350	151	984	189	426	227	340	265	1090
38	904	76	1029	114	364-ps1	152	992	190	429	228	341	266	1352

Supplementary Table 1 | Lists of OR gene clones.

(a) OR clones isolated from DiI-labeling. Isolation frequencies are shown for each OR gene clone. ORs that responded to 1mM TMT are marked in red. (b) OR gene clones analyzed by highthroughput screening. ORs that responded to 1 mM TMT are marked in red (dorsal-zone clones) or blue (ventral-zone clones).