Supporting Information

In culture cross-linking of bacterial cells reveals large scale dynamic protein-

protein interactions at the peptide level

Luitzen de Jong¹*, Edward A. de Koning¹, Winfried Roseboom¹, Hansuk Buncherd³, Martin J. Wanner², Irena Dapic², Petra J. Jansen², Jan H. van Maarseveen², Garry L. Corthals², Peter J.

Lewis⁴*Leendert W. Hamoen¹*and Chris G. de Koster¹*

¹Swammerdam Institute for Life Sciences, and ²Van't Hoff Institute of Molecular Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands. ³Faculty of Medical Technology, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand. ⁴School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.

- **Table S1**. Proteins identified in SCX fractions 1-12 (separate xlsx file).
- **Table S2**. Inter-protein cross-linked peptides (separate xlsx file).
- **Table S3**. Intra-protein cross-linked peptides (cross-links with different sequences from the same protein) (separate xlsx file)
- **Table S4**. Effect of variations of assignment criteria on the number of identified cross-linked peptides and the false discovery rate. Page S-3
- **Table S5**. Distance measurements for HADDOCK output data on the combined *in vitro* and *in vivo* cross-linking data for the interaction of δ with the β' subunit of RNAP. Page S-4
- Figure S1. Structures of cross-linkers used in this study. Page S-5
- **Figure S2**. Growth arrest of *Bacillus subtilis* after addition of various concentrations of BAMG. Page S-6
- **Figure S3**. Extracted proteins after in vivo cross-linking with different concentrations BAMG of exponentially growing *B. subtilis* can be digested efficiently. Page S-7
- **Figure S4**. Growth curve of E coli in MOPS medium supplemented with 0.16% N-acetylglucosamine and 0.1 mM NH_4Cl . Page S-8

Figure S5. Coomassie Briliant Blue stained SDS-PAGE of extracted proteins from exponentially growing *E. coli* before and after addition of 2mM of the cross-linker BAMG directly in the growth medium. Page S-9

Figure S6. Distribution of 135 cross-link distances derived from 31 crystal structures comprising 43 different proteins with non-overlapping cross-linked peptide sequences from the same protein sequence, denoted intra-protein cross-links. Page S-10

Table S4Supplementary Table 4. Effect of variations of assignment criteria on the number of identified cross-linked peptides (spectral counts) and the false discovery rate (FDR)

	criteria			spectral counts		FDR	
XL type	score	minimum nr of assigned y ions to peptides ≤ 10 amino acids	minimum nr of assigned y ions to peptides > 10 amino acids	unique	total	unique	total
intra protein	≥40	3	4	295	1273	0%	0%
decoy intra protein	≥40	3	4	0	0		
intraprotein	≥40	2	3	343	1614	0%	0%
decoy intra protein	≥40	2	3	0	0		
intraprotein	≥40	1	1	369	1920	0%	0%
decoy intra protein	≥40	1	1	0	0		
intra protein	≥ 25	1	1	370	1990	0%	0%
decoy intra protein	≥ 25	1	1	0	0		
interprotein (different peptides)	≥40	3	4	58	231	0%	0%
decoy interprotein	≥40	3	4	0	0		
interprotein	≥ 25	3	4	59	236	2%	0.4%
decoy interprotein	≥ 25	3	4	1	1		
interprotein	≥40	2	3	80	285	14%	4%
decoy interprotein	≥ 40	2	3	13	13		
interprotein same peptides (homodimers)	≥40	3	4	24	67	0%	0%
decoy homodimers	≥40	3	4	0	0		
homodimers	≥40	2	3	24	68	0%	0%
decoy homodimers	≥40	2	3	0	0		
homodimers	≥ 25	3	4	25	76	0%	0%
decoy homodimers	≥ 25	3	4	0	0		

Table S5. Distance measurements for HADDOCK output data on the combined *in vitro* and *in vivo* cross-linking data for the interaction of δ with the β' subunit of RNAP.

	-	Distance Å (Cα-Cα)						
Cluster	Cluster model	K208	K1104	K1152	Total	Rank		
1	1 2 3 4	15.8	34.4	25.1	75.3 0 0 0	3		
2	1 2 3 4	20.5	35.5	28.7	84.7 0 0 0	10		
3	1 2 3 4	17.2	34.5	24.5	76.2 0 0 0	4		
4	1 2 3 4	10.4 10.2 10.8 10.6	29.9 29.3 29.7 30.1	24.3 23.9 23.8 24.2	64.6 63.4 64.3 64.9	1		
5	1 2 3 4	17	34.5	25.4	76.9 0 0 0	6		
6	1 2 3 4	11.4 11.4 10.6 11	34.2 34.5 33.7 34.3	24.3 24.1 23.6 24	69.9 70 67.9 69.3	2		
7	1 2 3 4	19.2	34.1	27.9	81.2 0 0 0	7		
9	1 2 3 4	20.4	29	32	81.4 0 0 0	8		
10	1 2 3 4	19.3	35.9	27.7	82.9 0 0 0	9		
13	1 2 3	16.8	33.8	26	76.6 0 0	5		

Figure S1. Structures of cross-linkers used in this study. BAMG, bis(succinimidyl)-3-azidomethyl-glutarate; DSG, disuccinimidyl-glutarate.

Figure S2. Growth arrest of *Bacillus subtilis* after addition of various concentrations of BAMG. Six culture flasks with 10 ml pre-warmed minimal medium containing 1.2 mM glutamine were inoculated with 0.4 ml from an exponentially growing pre-culture to obtain a final $OD_{600 \text{ nm}} = 0.012$. Growth was followed in one culture flask. At t = 240 min, 50 μ l of a DMSO solution containing the required amount of BAMG was rapidly added to the each of the five other cultures. After 5 min the reaction was quenched by addition of 0.5 ml 1 M Tris-HCL pH 8.0 and 10 min later the $OD_{600 \text{ nm}}$ was measured. Values were corrected for volume changes by the additions of cross-linker and quenching solutions. Extracts of cross-linked samples were subjected to SDS-PAGE analysis before and after digestion with trypsin (See Figure S3).

Figure S3. Extracted proteins after in vivo cross-linking with different concentrations BAMG of exponentially growing *B. subtilis* can be digested efficiently. Proteins before and after digestion were concentrated by centrifugation on a 10 kDa cut-off filter before SDS-PAGE analysis on 12% gels. -, before digestion with trypsin; +, after digestion with trypsin. Gels were stained with Coomassie Briliant Blue.

Figure S4. Growth curve of E coli in MOPS medium supplemented with 0.16% N-acetylglucosamine and 0.1 mM NH_4Cl . Blue triangels, undisturbed growth; arrow, addition of 2 mM BAMG or DMSO (control). Brown squares, growth after addition of BAMG.

Figure S5. Coomassie Briliant Blue stained SDS-PAGE of extracted proteins from exponentially growing *E. coli* before and after addition of 2mM of the cross-linker BAMG directly in the growth medium. The similarity of the protein band patterns in the different lanes indicates that no substantial cross-linking had occurred, in contrast with in vivo cross-linking of exponentially growing *B. subtilis*.

Figure S6. Distribution of 135 cross-link distances derived from 31 crystal structures comprising 43 different proteins with non-overlapping cross-linked peptide sequences from the same protein sequence, denoted intra-protein cross-links. The dataset was obtained from 12 crystal structures comprising 20 *B. subtilis* proteins and 19 crystal structures from homologous proteins, selected for 23 other *B. subtilis* proteins with at least three cross-linked peptides (**Table S3**). Upper panel, distribution of distances assuming only intra-protein cross-linked peptides. The majority (85,2%,) of the cross-links is within the 25.7 Å limit of BAMG. Lower panel, distribution of distances upon mapping cross-links exceeding the 25.7 Å between identical proteins in the crystal structures (inter-protein cross-links). This was the case with 14 cross-links, raising the percentage of species with distances < 25.7 Å to 95.6%.