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Figure S1. Proportion of variance covered by the first ten principal components of 
the transcriptomic dataset. 
 
 

 
Figure S2. Numbers of differentially regulated genes for aquaporin mutant genotypes 
vs. wild type under control condition (DM, pip2;1 pip2;2 double mutant; TM, pip2;1 
pip2;2 pip2;4 triple mutant). 
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Figure S3. Log2 leaf expression levels of major intrinsic protein (MIP) genes from 
microarray analysis, comparing for each environmental condition (indicated in the title 
of the chart, see Fig. 1 for full names) the following three genotypes: DM, pip2;1 
pip2;2 double mutant; TM, pip2;1 pip2;2 pip2;4 triple mutant; WT, Col-0 wild type. 
PIP2;1 and PIP2;2 are the major aquaporins in leaf tissue. The corresponding genes 
are non-functional in both mutants; in the triple mutant, also the gene encoding 
PIP2;4 is non-functional. Locus identifiers: PIP1;1: AT3G61430, PIP1;2: AT2G45960, 
PIP1;3: AT1G01620, PIP1;4: AT4G00430, PIP1;5: AT4G23400, PIP2;1: AT3G53420, 
PIP2;2: AT2G37170, PIP2;3: AT2G37180, PIP2;4: AT5G60660, PIP2;5: AT3G54820, 
PIP2;6: AT2G39010, PIP2;7: AT4G35100, PIP2;8: AT2G16850, TIP1;1: AT2G36830, 
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TIP1;2: AT3G26520,	TIP2;1: AT3G16240, TIP2;2: AT4G17340, TIP2;3: AT5G47450, 
TIP3;1: AT1G73190, TIP3;2: AT1G17810, TIP4;1: AT2G25810, TIP5;1: AT3G47440, 
NIP1;1: AT4G19030, NIP1;2: AT4G18910, NIP2;1: AT2G34390, NIP4;1: 
AT5G37810, NIP4;2: AT5G37820, NIP5;1: AT4G10380, NIP6;1: AT1G80760, 
NIP7;1: AT3G06100, SIP1;1: AT3G04090, SIP1;2: AT5G18290, SIP2;1: 
AT3G56950. 
 
 

 
 
 
 
 
Figure S4. Expression regulation pattern of genes encoding flavonoid backbone 
formation enzymes, integrating regulation patterns of two separate downstream 
pathways (D, drought; H, heat; D:H, drought-heat interaction term). 
 
 
 
 
 
 
 
 
 
 

•  Expression pattern of flavonoid backbone formation enzymes nicely 
integrates regulation patterns of two separate downstream pathways: 

 

 

 

 

•  So the analysis can be used to study stress regulation patterns of specific 
pathways 
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Figure S5. Water content of rosette leaves and soil substrate after heat episodes. (a) 
Changes in soil water content during a 6-hour heat episode with different air humidity 
(Methods). To monitor the loss of water from soil during the heat scenarios the 
weight of the pots from control conditions (approximately 70% water content) and 
drought treatments (approximately 30% water content) were recorded before and 
after the heat campaigns. Additional control pots (Control and D (drought)) were kept 
at ambient control conditions (22 °C, 70% relative air humidity) as a reference. N = 6, 
± SD. (b) Leaf water content of rosette leaves upon harvest after the indicated stress 
treatments (Methods). N = 5, ± SD. 
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Figure S6. Validation of the microarray results by RT-qPCR. Gene expression of 
JAZ1, JAZ7 and SnRK2.6/OST1 under stress conditions were determined by RT-
qPCR using the same samples as microarray. The expression levels were 
normalized to UBQ5 and S16 transcripts (Methods), and the levels relative to control 
condition are displayed. Data (mean ± SD) from three independent biological 
samples of each condition were used for plotting microarray and RT-qPCR analyses.   
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Figure S7. Sungear plot produced with VirtualPlant1.3 (Katari et al., 2010, 
http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/) to visualize overlaps of differentially 
regulated genes between different stress conditions. Building on the concept of Venn 
diagrams, the circles inside the polygon represent the sizes of each possible 
intersection between up-regulated (left) and down-regulated gene lists (right). Circles 
are positioned at the average of the corners taking part in the intersection; small 
arrows around the circles additionally indicate these corners. 
 
 
 

 
 
Figure S8. Projection of data onto single variable biomarkers identified from 
canonical correlation analysis between microarray and FT-ICR-MS data. The left 
panel shows the top gene (AT3G13784; CWINV5) and the top mass (putative 
sucrose) of the first component. The right panel shows the top genes of the first and 
second (AT1G55960) component on the horizontal and vertical axis, respectively. 
 
 
 
 

●

●

●

●

●

●

●
●

4 6 8 10 12

28
.5

29
.0

29
.5

30
.0

30
.5

31
.0

AT3G13784

Su
cr
os
e

●

●

●

●

●

●

●

●

4 6 8 10 12

10
.0

10
.5

11
.0

11
.5

AT3G13784

AT
1G

55
96
0

●

●
●
● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

−200 −150 −100 −50 0 50 100 150

−1
50

−1
00

−5
0

0
50

10
0

15
0

PC1

PC
2

●

Control
D
H_LrH
H_HrH
DH_LrH
DH_HrH

	



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S9. Network of strongest correlations between metabolic masses and genes 
(solid edges indicate correlation >0.85 with p.adj<10-5, dashed edges correlation <  
-0.85 with p.adj<10-5). Gray-shaded nodes mark the cliques shown in Figure 5e, 
yellow-shaded nodes mark the clique whose stress profile is given in Figure S10. 
 
 
 
 

 
 
Figure S10. Heatmap of stress response profiles of a fully connected solid-edge 
subnetwork from Figure S9, see main text for details. 
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Figure S11. Transpiration rates at different relative air humidity settings. The gas 
exchange measurements were done with soil-grown four-week-old plants using a 
portable gas-exchange system fitted with a special cuvette for Arabidopsis 
(Methods). During the measurements, the absolute CO2 concentration, cuvette 
temperature, and light intensity in the cuvette were set to 390 ppm, 23 °C and 350 
µmol m-2 s-1 PPFD (photosynthetic photon flux density), respectively. The 
transpiration rate for each air humidity setting was recorded every 30 s for a total 
time of 8 min. Average values are taken across the last 3 min. N = 8, ± SD. 
 

 
 
Figure S12. Relative fractions of metabolomic changes (up- or down-regulated 
features) and transcriptomic changes (up- or down-regulated genes) responding 
either specifically to heat with low air humidity or specifically to heat with high air 
humidity or to both. See Fig. 3a for absolute numbers in each partition. 
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Promoting biological discovery by integrated 
and reusable data from genomics to phenomics 

•  Experiment documentation: what to describe and how to describe it 

•  File format: ISA-Tab http://isa-tools.org 

•  Content: minimal information checklist http://cropnet.pl/phenotypes/ 

•  Terminology: universal identifiers, ontologies http://planteome.org 

•  Generating hypotheses by data integration: e.g. Arabidopsis study 

 

Elisabeth Georgii and Anton R. Schäffner, Institute of Biochemical Plant Pathology (BIOP) •  Large	 overlap	 of	 high	 air	 humidity-specific	 upregulaMon	 with	 experiments	
using	higher	temperature,	i.e.	higher	air	humidity	≈	higher	temperature	

•  Transcriptomics	from	combined	drought-heat	scenarios:	

	

•  Confirma5on	of	hypothesis	 that	air	humidity	modulates	 the	 relaMve	extent	
of	drought	and	temperature	components	in	heat	responses	
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Genera5ng	hypotheses	by	integrated	data	analysis	
•  Prerequisite	of	data	integra5on:	compaMble	annotaMon		
•  First	example:	abioMc	stress	study	in	Arabidopsis	thaliana	leaves	

•  Formerly:	separate	analyses,	different	people	using	own	condiMon	labels	
•  Now:	side-by-side	analysis	of	nontargeted	metabolome	&	transcriptome	

•  Result:	discovery	of	divergent	heat	response	between	omics	levels	a  c 

b  d 
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Figure S13. Correlations between mass m/z 333.0592 identified by non-targeted FT-
ICR-MS analysis (vertical axis), a putative glycerophosphoinositol, and potentially 
related metabolites quantified by targeted GC-MS measurement (horizontal axis, see 
label). 
 
 
 

 
 
Figure S14. Hypothetical data-derived Arabidopsis candidate genes for 
glycerophosphoinositol pathways known from mammals. 
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Investigation of main drought response players 

16 

•  Top drought-associated mass is putatively sucrose (first component) 

•  Top drought-associated gene is annotated as putative invertase inhibitor 

•  Correlation network of sucrose and TAIR cell-wall invertases/ inhibitors 
(identically confirmed with second dataset: transcr. + targeted metabolomics) 
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Positive correlation 
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Global network of strongest positive correlations 

17 

•  Mass-gene, gene-gene and mass-mass correlations >0.85 (p.adj<10-5) 

•  Community structure associated with stress response behavior          
(nodes colored by drought response: red up, blue down) 

•  Functional analysis of community genes consistent with stress response 
profiles 
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Genes: 33/16 ; masses: 29/1 
Up: flavonoid biosynthesis 
Down: arsenate reductase 

Genes: 6/23 ; masses: 7/1 
Up: transferase activity 
Down: defense response 

Genes: 3/13 ; masses: 6/2 
Up: - 
Down: response to JA 

Genes: 487/385 ; masses: 90/25 
Up: response to water stimulus 
Down: response to auxin 

Genes: 52/38 ; masses: 6/5 
Up: response to high light 
Down: response to biotic stim. 

Genes: 44/43 ; masses: 31/2 
Up: JA metabolism 
Down: response to chemical 

Genes: 94/112 ; masses: 4/3 
Up: response to oxygen  
Down: cytokinesis 

Genes: 14/11 ; masses: 0/0 
Up: heat resp., protein folding 
Down: nucleosome 

Genes: 5/11 ; masses: 1/1 
Up: protein folding 
Down: - 

Genes: 273/332 ; masses: 38/16 
Up: RNA methylation 
Down: chromatin silencing 

Shared and specific responses to single stresses !

C
om

bined stress response relative to single stresses !
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Concordant transcriptomic & metabolomic response to drought, heat 
or combined stress is modulated by supplemented air humidity 
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within the German-Plant-
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Federal Ministry of Education 
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 Research aims and summary  Identifying air humidity-related effects 
•  DPPN Techno aims at supporting biological 

discovery by providing infrastructure to 
facilitate coanalysis and reusability of data 

•  Study illustrates integration of heterogeneous 
datasets from different phenotypic levels 

•  Data resource can serve as starting point to 
study mechanisms of abiotic stress responses 
with ultimate goal to sustain crop production 

 Experiments and data 

 Decomposing combined stress response 
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Well-separated expression profiles...       independent of aquaporin presence  
(DM, TM: double and triple knockout of major aquaporins)  

•  A. thaliana plants subject to drought (D), heat 
(H) or combined drought-heat stress (DH) 

•  Air humidity variants for heat stress (LrH, HrH) 
•  FT-ICR-MS and microarray analysis of leaves 
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Coanalysis of transcriptomics and metabolomics 
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•  Canonical correlation analysis: generalization of PCA to two datasets 

•  First shared component separates drought and nondrought samples, 
second shared component separates heat and nonheat samples 
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 Transcriptome-metabolome correlations 
•  Canonical correlation analysis reveals 

sucrose and cell wall invertase (inhibitors) as 
top separators of drought vs. non-drought 

•  Network of strongest variable correlations 
allows for discovery of hypothetical pathways 
and function prediction for unknown masses: 
339.1409 could be a disaccharide osmolyte 

H_LrH vs. control!          H_HrH vs. control!

Dry air effect! Air humidity-independent 
temperature effect!

Reduced transpiration 
effect!

Upregulation!
57 genes, 42 masses!
Enriched processes:!
Response to water 
deprivation!
Response to JA stimulus!
Response to ABA stimulus!
!
Downregulation!
42 genes, 11 masses!
Enriched processes:!
Response to ethylene!
Defense response!
!

Upregulation!
69 genes, 9 masses!
Enriched processes:!
Response to heat!
Response to ROS!
Protein folding!
Response to temperature!
!
Downregulation!
105 genes, 0 masses!
Enriched processes:!
Regulation of ROS metabolism!
Anthocyanin biosynthesis!
Defense response!
!

Upregulation!
403 genes, 0 masses!
Enriched processes:!
Response to heat!
Protein folding!
Response to ROS!
Response to temperature!
!
Downregulation!
639 genes, 1 mass!
Enriched processes:!
Response to water deprivation!
Anthocyanin biosynthesis!
Response to JA stimulus!
!

Air humidity effects in heat stress!

DH_LrH vs. control!          DH_HrH vs. control!

Aggravated drought 
effect!

Air humidity-independent 
drought-heat effect!

Aggravated heat effect!

Upregulation!
710 genes, 85 masses!
Enriched processes:!
Response to water deprivation!
Response to ABA stimulus!
Response to JA stimulus!
!
!
Downregulation!
853 genes, 90 masses!
Enriched processes:!
Photosynthesis!
Cofactor metabolism!
Sulfur compound metabolism!

Upregulation!
1061 genes, 102 masses!
Enriched processes:!
Response to temperature!
Response to ROS!
Protein folding!
Response to water deprivation!
!
Downregulation!
1567 genes, 22 masses!
Enriched processes:!
Cell division/ cell cycle!
Response to biotic stimulus!
Regulation of ROS metabolism!
!

Upregulation!
206 genes, 44 masses!
Enriched processes:!
Protein folding!
Response to heat!
Protein refolding!
!
!
Downregulation!
185 genes, 7 masses!
Enriched processes:!
Negative regulation of 
defense response!
SA biosynthesis!
!

Air humidity effects in combined stress!

•  Pure heat vs. supplemented air humidity 
•  Dry air is central component of heat stress 

and primary trigger of metabolomic response 
•  Increased humidity reduces combined stress 

Figure 5D 
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Figure 5E 
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•  Both pathways from GroPIns to myo-inositol known from mammals exists 
in plants: 

 

 

•  Abiotic stress represses left pathway and induces right pathway 

 

Induced by abiotic stress 

Hypothesis regarding GroPIns metabolism 
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glycerophosphoinositol 

myo-inositol + sn-glycerol-3-phosphate 

glycerol + inositol phosphate 
AT1G71340 (GDPD4) 
AT5G43300 

AT4G34930 (PLC-like) 

AT5G63990 
AT4G05090 

Repressed by abiotic stress 

Investigating uncharacterized masses 

22 

•  Idea: find fully connected subnetworks (cliques) and try to transfer 
functions from annotated members to non-annotated members 

•  Example: two overlapping cliques with annotations in transport (blue) and 
drought response (yellow) suggest drought-related functions of unassigned 
members; overlapping mass could be disaccharide (ChemSpider) and 
shares gene connections with osmolytes from targeted metabolomics 
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Figure S15. Average Pearson correlation coefficient and standard errors across all 
pairs of biological replicates from microarray measurements of all experimental 
rounds. Each biological group is labeled by abiotic stress condition and genotype, 
separated by a dot (H_HrH: heat with high relative air humidity, H_LrH: heat with low 
relative air humidity, D: drought, DH_HrH: drought combined with high air humidity 
heat stress, DH_LrH: drought combined with low air humidity heat stress; WT: wild 
type, DM: double mutant, TM: triple mutant). The dotted line indicates the overall 
average pairwise correlation coefficient between biological replicates computed 
across all biological groups. 
 

 
 
Figure S16. Hierarchical clustering of microarray data. The clustering was done with 
the function hclust in R with the average linkage method; the distance measure is 1-r, 
where r is the Pearson correlation coefficient. The arrays cluster according to the 
abiotic stress conditions (H_HrH: heat with high relative air humidity, H_LrH: heat 
with low relative air humidity, D: drought, DH_HrH: drought combined with high air 
humidity heat stress, DH_LrH: drought combined with low air humidity heat stress). 
Labels of individual experiments indicate separate campaigns, genotype, conditions 
and biologically independent replicates. See also Fig. 1a.  

C
on

tro
l.W

T

C
on

tro
l.D

M

C
on

tro
l.T

M

D
.W

T

D
.D

M

D
.T

M

H
_L

rH
.W

T

H
_L

rH
.D

M

H
_L

rH
.T

M

H
_H

rH
.W

T

H
_H

rH
.D

M

H
_H

rH
.T

M

D
H

_L
rH

.W
T

D
H

_L
rH

.D
M

D
H

_L
rH

.T
M

D
H

_H
rH

.W
T

D
H

_H
rH

.D
M

D
H

_H
rH

.T
M

C
or

re
la

tio
n 

co
ef

fic
ie

nt

0.
98

6
0.

98
8

0.
99

0
0.

99
2

0.
99

4
0.

99
6

0.
99

8
1.

00
0

4.
W
T.
H
_H

rH
.3

4.
D
M
.H
_H

rH
.2

4.
D
M
.H
_H

rH
.1

2.
D
M
.H
_H

rH
.3

3.
W
T.
H
_H

rH
.1

2.
D
M
.H
_H

rH
.2

2.
W
T.
H
_H

rH
.3

3.
D
M
.H
_H

rH
.2

2.
TM

.H
_H

rH
.1

2.
TM

.H
_H

rH
.3

2.
D
M
.H
_H

rH
.1

3.
D
M
.H
_H

rH
.1

3.
D
M
.H
_H

rH
.3

3.
W
T.
H
_H

rH
.2

3.
TM

.H
_H

rH
.1

3.
TM

.H
_H

rH
.3

3.
TM

.H
_H

rH
.2

2.
W
T.
H
_H

rH
.1

2.
W
T.
H
_H

rH
.2

2.
TM

.H
_H

rH
.2 4.
TM

.H
_H

rH
.2

4.
TM

.H
_H

rH
.1

4.
TM

.H
_H

rH
.3 3.
W
T.
H
_H

rH
.3

4.
D
M
.H
_H

rH
.3

4.
W
T.
H
_H

rH
.1

4.
W
T.
H
_H

rH
.2

3.
D
M
.C
on
tro
l.2

4.
W
T.
C
on
tro
l.1

4.
W
T.
C
on
tro
l.2

4.
W
T.
C
on
tro
l.3

4.
TM

.C
on
tro
l.1

4.
D
M
.C
on
tro
l.2

4.
TM

.C
on
tro
l.2

4.
TM

.C
on
tro
l.3

2.
TM

.C
on
tro
l.2

3.
TM

.C
on
tro
l.1

3.
W
T.
C
on
tro
l.3

4.
D
M
.C
on
tro
l.3

2.
D
M
.C
on
tro
l.1

2.
D
M
.C
on
tro
l.2

2.
TM

.C
on
tro
l.3

3.
TM

.C
on
tro
l.3

2.
TM

.C
on
tro
l.1

2.
D
M
.C
on
tro
l.3

3.
D
M
.C
on
tro
l.3

3.
TM

.C
on
tro
l.2

3.
W
T.
C
on
tro
l.2

3.
W
T.
C
on
tro
l.1

3.
D
M
.C
on
tro
l.1

4.
D
M
.C
on
tro
l.1

2.
W
T.
C
on
tro
l.3

2.
W
T.
C
on
tro
l.1

2.
W
T.
C
on
tro
l.2

4.
TM

.H
_L
rH
.2

4.
D
M
.H
_L
rH
.1

4.
D
M
.H
_L
rH
.2

3.
TM

.H
_L
rH
.2

3.
D
M
.H
_L
rH
.3

3.
D
M
.H
_L
rH
.2

3.
W
T.
H
_L
rH
.2

3.
W
T.
H
_L
rH
.1

3.
TM

.H
_L
rH
.1

3.
D
M
.H
_L
rH
.1 3.
W
T.
H
_L
rH
.3

3.
TM

.H
_L
rH
.3

4.
W
T.
H
_L
rH
.3

4.
TM

.H
_L
rH
.3

4.
W
T.
H
_L
rH
.1

4.
W
T.
H
_L
rH
.2

4.
TM

.H
_L
rH
.1

4.
D
M
.H
_L
rH
.3

4.
W
T.
D
.3

2.
W
T.
D
.2

4.
W
T.
D
.1

4.
W
T.
D
.2 2.
D
M
.D
.3

2.
D
M
.D
.1

2.
W
T.
D
.1

2.
TM

.D
.1

2.
W
T.
D
.3

4.
TM

.D
.1

2.
TM

.D
.2

2.
TM

.D
.3

2.
D
M
.D
.2

4.
D
M
.D
.1

4.
TM

.D
.2

4.
D
M
.D
.2

4.
TM

.D
.3

4.
D
M
.D
.3 4.
W
T.
D
H
_H

rH
.3

4.
D
M
.D
H
_H

rH
.1 2.
D
M
.D
H
_H

rH
.3

4.
D
M
.D
H
_H

rH
.2

4.
W
T.
D
H
_H

rH
.2

4.
TM

.D
H
_H

rH
.3

4.
D
M
.D
H
_H

rH
.3

4.
TM

.D
H
_H

rH
.1

4.
TM

.D
H
_H

rH
.2 2.

W
T.
D
H
_H

rH
.2

3.
D
M
.D
H
_L
rH
.3

3.
W
T.
D
H
_H

rH
.3

3.
TM

.D
H
_H

rH
.2

3.
TM

.D
H
_H

rH
.3

3.
D
M
.D
H
_H

rH
.2

2.
TM

.D
H
_H

rH
.3

2.
W
T.
D
H
_H

rH
.3

2.
D
M
.D
H
_H

rH
.2

2.
TM

.D
H
_H

rH
.2

2.
TM

.D
H
_H

rH
.1

2.
D
M
.D
H
_H

rH
.1

3.
D
M
.D
H
_H

rH
.1

3.
W
T.
D
H
_H

rH
.2

3.
TM

.D
H
_H

rH
.1

3.
W
T.
D
H
_H

rH
.1

3.
D
M
.D
H
_H

rH
.3

3.
TM

.D
H
_L
rH
.2

3.
D
M
.D
H
_L
rH
.2

4.
TM

.D
H
_L
rH
.1

4.
TM

.D
H
_L
rH
.2

4.
TM

.D
H
_L
rH
.3

4.
D
M
.D
H
_L
rH
.1

4.
D
M
.D
H
_L
rH
.2
4.
W
T.
D
H
_L
rH
.3

4.
W
T.
D
H
_L
rH
.1

4.
W
T.
D
H
_L
rH
.2

4.
D
M
.D
H
_L
rH
.3

3.
D
M
.D
H
_L
rH
.1

3.
W
T.
D
H
_L
rH
.2

3.
W
T.
D
H
_L
rH
.1

3.
W
T.
D
H
_L
rH
.3

3.
TM

.D
H
_L
rH
.1

3.
TM

.D
H
_L
rH
.3

2.
W
T.
D
H
_H

rH
.1

4.
W
T.
D
H
_H

rH
.1

 H_HrH   Control   H_LrH   D   DH_HrH   DH_LrH
   



 
Table S1. Log2 expression values of clade A protein phosphatases type 2C across 
control, single stress and combined stress conditions. Groups are named according 
to Figure 2 and the classification of responses with respect to drought regulation, 
heat regulation and the drought:heat interaction term is given (see Additional file 2). 
 
Gene Name AGI code Control D H_LrH DH_LrH 
Group 2.1 (1,0,0)      
PP2CA AT3G11410 11.723 13.935 12.434 14.569 
HAB1 AT1G72770 8.890 11.007 9.850 11.870 
HAB2 AT1G17550 10.452 11.478 11.166 12.275 
ABI1 AT4G26080 12.998 14.171 13.448 15.026 
ABI2 AT5G57050 10.656 12.580 10.983 13.174 
Group 2.2 (1,1,0) 

     HAI1 AT5G59220 7.762 12.861 9.685 14.973 
HAI2 AT1G07430 8.810 12.243 9.988 12.900 
Group 3.1 (1,0,1) 

     HAI3 AT2G29380 4.205 5.555 4.166 6.996 
Group 4    (0,0,1) 

     AHG1 AT5G51760 4.213 4.847 4.088 6.842 
 
 
 
Table S2. High temperature heat stress experiments from Genevestigator database 
used for comparison (https://www.genevestigator.com/gv/plant.jsp; July 2015). 
 
Accession number Condition 
AT00120 38°C for 30 min, 1 h and 3 h 
AT00500 gradual increase from 22°C to 37.25°C until 20% inhibition 

of photosynthetic optimum and to 39.6°C until 30% 
inhibition of photosynthetic optimum 

AT00645 40°C for 20 min and 1 h 
 
 
Table S3. Oligonucleotide primers used for RT-qPCR. 
 
Gene AGI code Primer name sequence 

JAZ1 AT1G19180 JAZ1_F 5’-CAATGGAACTTTAGGCAACTCA-3’ 
JAZ1_R 5’-AAGCTTGGTTGCCTAGGAAA-3’ 

JAZ7 AT2G34600 JAZ7_F 5’-TTACCCATCTTGAGGCTAACG-3’ 
JAZ7_R 5’-GAGTCGAATTGTTTGGGATTG-3’ 

OST1 AT4G33950 OST1_F 5’-GGAGAGATTGTGTACGCAATGT-3’ 
OST1_R 5’-GCCAACTCAATAGCAAGCAA-3’ 

UBQ5 AT3G62250 UBQ5_F 5’-GATGGATCTGGAAAGGTTCAG-3’ 
UBQ5_R 5’-ATCTACCGCTACAACAGATCAAG-3’ 

S16 AT2G09990 S16_F 5’-TTTACGCCATCCGTCAGAGTAT-3’ 
S16_R 5’-TCTGGTAACGAGAACGAGCAC-3’ 

 



Table S4. Mass list used for internal mass calibration of spectra measured in 
negative ionization mode. 
 
Compound Formula [M-H] m/z [M-H] 
Di-alanine C6H11N2O3 - 159.07752 
Dehydroascorbate C6H5O6 - 173.0091599 
Ascorbate C6H7O6 - 175.0248108 
Glucose C6H11O6 - 179.056114 
2-Methylcitrate C7H9O7 - 205.0353666 
Hexadecanoic acid C16H31O2 - 255.2329409 
Octadecanoic acid C18H35O2 - 283.2642483 
SA-Glucoside C13H15O8 - 299.077244 
Glutathione C10H16N3O6S - 306.0765244 
Di-alanine Clusterion C12H23N4O6 - 319.162308 
Ascorbic acid glucoside C12H17O11 - 337.077639 
Sucrose C12H21O11 - 341.108939 
1-O-Sinapoyl-beta-D-glucose C17H21O10 - 385.114024 
Loganin C17H25O10 - 389.145324 
Glucoraphanin C12H22NO10S3 - 436.041135 
Glucobrassicin C16H19N2O9S2 - 447.053743 
Neoglucobrassicin C17H21N2O10S2 - 477.064308 
Raffinose C18H31O16 - 503.1618002 
Kaempferol di-rhamnoside C27H29O14 - 577.156284 
Kaempferol glucoside-rhamnoside C27H29O15 - 593.151199 
Kaempferol di-glucoside-rhamnoside C33H39O20 - 755.204024 

 


