Supporting Information

Direct Conversion of Carboxylic Acids to Alkyl Ketones

Javad Amani and Gary A. Molander *

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States

Contents:

General Considerations
Synthesis of potassium secondary alkyltrifluoroborates
General procedure for conversion of boronic acids to trifluoroborates
Synthesis of $Ir[dF(CF_3)ppy]_2(bpy)PF_6 1$ as the photocatalyst
High-throughput experiments in design and optimization of the photoredox cross-coupling of hydrocinnamic acid with potassium cyclohexyltrifluoroborate as model coupling partners S2
Control experiments for the cross-coupling of carboxylic acids with potassium alkyltrifluoroborates
General procedure for the photoredox cross-coupling reaction of carboxylic acids with potassium alkyltrifluoroborates
NMR Spectra

EXPERIMENTAL

General considerations: All reactions were carried out under an inert atmosphere of nitrogen or argon unless otherwise noted. THF was dried over activated alumina. IrCl₃·xH₂O was purchased from commercial sources. [Ni(dtbbpy)(H₂O)₄]Cl₂ was synthesized according to the literature procedure.¹ LED irradiation was accomplished using the LED reactors described in our previous reports.² All other reagents were purchased commercially and used as received. Melting points (°C) are uncorrected. NMR spectra were recorded on a 500 MHz spectrometer. Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant *J*(Hz) and integration. Analytical thin-layer chromatography (TLC) was performed on TLC silica gel plates (0.25 mm) precoated with a fluorescent indicator. TLC analysis was performed using hexanes/EtOAc as the eluant and visualized using permanganate stain, Seebach's stain, ninhydrin stain, and/or UV light. Standard flash chromatography procedures were followed using 100-200 mesh silica gel. HRMS data were obtained by either ESI or CI using a TOF mass spectrometer.

Synthesis of potassium secondary alkyltrifluoroborates:

Most of the potassium alkyltrifluoroborates were purchased commercially. In cases where the desired potassium alkyltrifluoroborate was not available, the corresponding boronic acid derivative was converted to the trifluoroborate by the following procedure.

General procedure for conversion of boronic acids to trifluoroborates. To a solution of the boronic acid derivative (2.0 mmol) in MeOH (0.1 M) at 0 °C, saturated aq KHF₂ (10.0 mmol, 5 equiv, 4.5 M) was added dropwise over 30 min. After completion of the reaction, as determined

by ¹¹B NMR, the resulting suspension was concentrated under reduced pressure. H₂O was removed by lyophilization. The remaining solid was suspended in hot acetone (3 x 100 mL) and filtered. The filtrate was concentrated to a minimal volume (5 – 20 mL), and hexane or Et₂O (~200 mL) were added to yield a white precipitate. The precipitate was isolated by filtration, washing with hexanes (~30 mL) and CH₂Cl₂ (~30 mL), to afford the desired secondary alkyltrifluoroborate.

Synthesis of Ir[dF(CF₃)ppy]₂(bpy)PF₆ as the photocatalyst 1:

Photocatalyst I was synthesized according to the literature procedure.³

High-throughput experiments in design and optimization of the photoredox cross-coupling of hydrocinnamic acid with potassium cyclohexyltrifluoroborate. High Throughput Experimentation (HTE) was performed at the Penn/Merck Center for High Throughput Experimentation at the University of Pennsylvania. The screens were performed on a 10 µmol scale. To reaction vials equipped with a Teflon-coated magnetic stir bar in a glovebox was added a solution of Ni source and ligand [1:1] dissolved in THF. The solvent was removed in vacuo under atmosphere. Then solutions of desired additives. an inert potassium cyclohexyltrifluoroborate, hydrocinnamic acid, and photocatalyst 1 in a desired solvent, were added to each vial. The vials were sealed and stirred over blue LED lights. After 24 h the reactions were opened to air, 1 µmol of 4,4'-di-tert-butylbiphenyl (500 µL of a 0.002 µM solution in MeCN) was added to each vial as an internal standard, and the reaction mixtures were diluted with MeCN. The reaction mixtures were then analyzed by UPLC. The product-to-internal standard (P/IS) ratios from the UPLC are shown in Figures S1-S6.

To find the best conditions first, the photoredox cross-coupling of hydrocinnamic acid with potassium cyclohexyltrifluoroborate was investigated in the presence of a variety of activating reagents (**1a-1f**) for the in-situ activation of carboxylic acids, two different nickel sources, and four different ligands, either with or without base (Figure S1).

First Screen Variables:

solvents	ligands	bases	activator	Ni source
THF	L1	no base	1a	Ni(COD) ₂
	L2	lutidine	1b	NiCl ₂ •dme
	L3		1c	
	L4		1d	
			1e	
			1f	

Figure S1. P/IS of the cross-coupling of hydrocinnamic acid with potassium cyclohexyltrifluoroborate using the first screen variables.

According to this screen, the best results were obtained for the reaction in the presence of DMDC,

1c, as the activating reagent, NiCl₂·dme/L1 or NiCl₂·dme/L4 without any base.

Second Screens Variables:

Figure S2. P/IS of the cross-coupling of hydrocinnamic acid with potassium cyclohexyltrifluoroborate using different bases.

It was discovered that the identity of the base decreased the yield of the reaction.

Third Screen Variables:

Figure S3. P/IS of the cross-coupling of hydrocinnamic acid with potassium cyclohexyltrifluoroborate using the third screen variables.

According to the third screen, the highest product to internal standard ratio was obtained for the reaction in the presence of [Ni(dtbbpy)(H₂O)₄]Cl₂ in isopropyl acetate as the solvent. To improve the yield of the reaction, further screens using a variety of co-solvents were carried out (Figure S4).

Figure S4. P/IS of the cross-coupling of hydrocinnamic acid with potassium cyclohexyltrifluoroborate in *i*-PrOAc using different co-solvents with a 4:1 ratio.

Consequently, the highest P/IS was obtained for the reaction in *i*-PrOAc/THF mixture. Further investigations to obtain the optimal ratio of the two solvents showed that the ratio of 2:1 (*i*-PrOAc/THF) generated the desired cross coupled product with the highest yield.

Our investigations disclosed that the presence of a base decreases the yield of the reaction (Figure S1 and S2). Therefore, we decided to explore the impact of some weak proton donors on this cross-coupling protocol (Figure S5).

Figure S5. P/IS of the cross-coupling reaction in the presence of some weak proton donors.

It was found that NH₄Cl increased the yield of the reaction. Furthermore, to find the optimal amount of DMDC the cross-coupling reaction of hydrocinnamic acid with potassium cyclohexyltrifluoroborate was carried out using different amounts of the activator (Figure S6). The highest P/IS was obtained using 3.0 equiv of **1c**.

Figure S6. P/IS of the cross-coupling reaction using different amounts of the activator 1c.

Control experiments for the cross-coupling of carboxylic acids with potassium alkyltrifluoroborates:

ſi	O OH + (BF ₃ K photocatalyst (3 mol %) [Ni(dtbbpy)(H ₂ O) ₄]Cl ₂ (6 mol %) DMDC (3.0 equiv) NH ₄ Cl (1.0 equiv)	
Ų		/PrOAc/THF 2:1 (0.1 M) rt, blue LEDs, 24 h	
	entry	Conditions ^a	% Yield ^c
	1	no Ir photocatalyst	<10
	2	no [Ni(dtbbpy)(H ₂ O) ₄]Cl ₂	0
	3	$[Ru(bpy)_3](PF_6)_3$	60
	4	4CzIPN ^b	39
	5	1.1 equiv of R-BF ₃ K	70
	6	1.3 equiv of R-BF ₃ K	76
	7	1.5 equiv of R-BF ₃ K	82

Table S1. Control Experiments.

^{*a*} Reactions were carried out at 0.1 M. ^{*b*} 2,4,5,6-Tetrakis(carbazol-9-yl)-1,3-dicyanobenzene. ^{*c*} Isolated yields.

General procedure for the photoredox cross-coupling reaction of carboxylic acids with potassium alkyltrifluoroborates:

To a two dram (8 mL) borosilicate glass vial equipped with a Teflon-coated magnetic stir bar was added [Ni(dtbbpy)(H₂O)₄]Cl₂ (14.1 mg, 0.3 mmol), the corresponding carboxylic acid (0.5 mmol), Ir[dFCF₃ppy]₂(bpy)PF₆ **1** (15.1 mg, 0.015 mmol), potassium alkyltrifluoroborate (0.75 mmol, 1.5 equiv), and NH₄Cl (26.8 mg, 0.5 mmol). The vial was sealed and subsequently purged and evacuated with Ar four times. A mixture of degassed *i*-PrOAc and anhydrous THF (2/1, 5 mL) followed by DMDC (161 μ L, 1.5 mmol) were then added by syringe under Ar. The resulting reaction mixture was stirred for 24 h in the presence of blue LEDs while a fan was blown across the reaction setup to maintain an ambient temperature of 24 °C. After completion, the crude reaction mixture was filtered through a plug of Celite and rinsed with EtOAc (20 mL). The resulting solution was concentrated, and the residue was purified by column chromatography on silica gel, with EtOAc/hexanes mixtures as the eluent, to obtain products in pure form.

Gram scale reaction: To a ~125 mL long, thin-walled vacuum flask equipped with a Tefloncoated magnetic stir bar was added [Ni(dtbbpy)(H₂O)₄]Cl₂ (98.7 mg, 0.21 mmol), potassium cyclohexyltrifluoroborate (1.99 g, 10.5 mmol, 1.5 equiv), Ir[dFCF₃ppy]₂(bpy)PF₆ **1** (105.9 mg, 0.105 mmol), hydrocinnamic acid (1.05 g, 7.0 mmol), and NH₄Cl (374.43 mg, 7.0 mmol). The vial was sealed and subsequently purged and evacuated with Ar four times. A mixture of degassed *i*-PrOAc and anhydrous THF (2:1, 70 mL) followed by DMDC (2.25 mL, 21.0 mmol) were added by syringe under Ar. The resulting mixture was stirred vigorously for 48 h in the presence of blue LEDs while a fan was blown across the reaction setup to maintain an ambient temperature of 24 °C. After completion, the crude reaction mixture was filtered through a plug of Celite and rinsed with EtOAc (50 mL). The resulting solution was concentrated and the residue was purified by column chromatography on silica gel, with EtOAc/hexanes mixtures as the eluent, to obtain the product in pure form.

1-Cyclohexyl-3-phenylpropan-1-one (2a).⁴ The title compound was obtained as a liquid in 82% yield (0.5 mmol scale, 88.6 mg) and in 70% yield on gram scale (4.5 mmol scale, 700.9 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.26-7.23 (m, 2H), 7.16-7.14 (m, 3H), 2.86 (t, *J* = 7.5 Hz, 2H), 2.74 (t, *J* = 7.5 Hz, 2H), 2.31-2.25 (m, 1H), 1.79-1.73 (m, 4H), 1.64-1.62 (m, 1H), 1.33-1.22 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 213.2, 141.6, 128.6, 128.5, 126.2, 51.2, 42.4, 30.0, 28.6, 26.1, 25.9

1-(2-Methylcyclopentyl)-3-phenylpropan-1-one (2b).⁶ The title compound was obtained as a liquid in 69% yield (0.5 mmol scale, 74.6 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.28-7.25 (m, 2H), 7.18-7.15 (m, 3H), 2.89 (t, *J* = 7.5 Hz, 2H), 2.82-2.72 (m, 2H), 2.40-2.36 (m, 1H), 2.16-2.07 (m, 1H), 1.86-1.81 (m, 2H), 1.72-1.61 (m, 3H), 1.22-1.15 (m, 1H), 1.00 (d, *J* = 6.5 Hz, 3H); ¹³C NMR

(125.8 MHz, CDCl₃): δ 212.6, 141.6, 128.6, 128.5, 126.2, 59.9, 44.1, 37.9, 35.1, 30.0, 29.9, 24.9, 20.2.

3-Methyl-1,6-diphenylhexane-1,4-dione (2c).⁶ The title compound was obtained as a liquid in 63% yield (0.5 mmol scale, 88.3 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.93-7.91 (m, 2H), 7.54.7.51 (m, 1H), 7.43-7.40 (m 2H), 7.27-7.24 (m, 2H), 7.22-7.15 (m, 3H), 3.54-3.48 (m, 1H), 3.22-3.15 (m, 1H), 2.98-2.88 (m, 5H), 1.11 (dd, J = 7.0, 0.5 Hz, 3H); ¹³C NMR (125.8 MHz, CDCl₃): δ 212.7, 198.7, 141.6, 136.8, 133.4, 128.8, 128.7, 128.6, 128.2, 126.2, 43.3, 42.1, 41.4, 29.9, 16.9.

Ethyl 3-Methyl-4-oxo-6-phenylhexanoate (2d).⁷ The title compound was obtained as a liquid in 60% yield (0.5 mmol scale, 74.5 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.28-7.25 (m, 2H), 7.19-7.16 (m, 3H), 4.09 (q, *J* = 7.0 Hz, 2H), 3.01-2.95 (m, 1H), 2.93-2.87 (m, 2H), 2.87-2.81 (m, 2H), 2.79-2.74 (m, 1H), 2.31-2.26 (m, 1H), 1.23 (t, *J* = 7.0 Hz, 3H), 1.08 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125.8 MHz, CDCl₃): δ 212.0, 172.5, 141.4, 128.7, 128.5, 126.2, 60.7, 43.0, 42.3, 37.2, 29.8, 16.7, 14.4.

3-Phenyl-1-(tetrahydro-2H-pyran-4-yl)propan-1-one (2e).⁶ The title compound was obtained as a liquid in 75% yield (0.5 mmol scale, 81.8 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.26-7.23 (m, 2H), 7.17-7.14 (m, 3H), 3.95-3.92 (m, 2H), 3.35 (dt, *J* = 11.5, 3.0 Hz, 2H), 2.87 (t, *J* = 7.5 Hz, 2H), 2.74 (t, *J* = 7.5 Hz, 2H), 2.49-2.44 (m, 1H), 1.69-1.58 (m, 4H); ¹³C NMR (125.8 MHz, CDCl₃): δ 211.1, 141.3, 128.7, 128.5, 126.3, 67.4, 47.8, 42.1, 29.8, 28.2.

1-((4-Methoxybenzyl)oxy)-4-phenylbutan-2-one (2f). The title compound was obtained as a liquid in 90% yield (0.5 mmol scale, 127.9 mg). ¹H NMR (500 MHz, CD₃CN): δ 7.25-7.21 (m, 4H), 7.17-7.13 (m, 3H), 6.85-6.84 (m, 2H), 4.44 (s, 2H), 3.95 (s, 2H), 3.75 (s, 3H), 2.87 (t, *J* = 7.5 Hz, 2H), 2.73 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (125.8 MHz, CD₃CN): δ 208.2, 159.6, 141.0, 129.7, 129.3, 128.6, 128.5, 126.3, 114.0, 74.6, 73.1, 55.3, 40.6, 29.4; FT-IR (neat): 1719, 1611, 1512, 1246, 1030, 699 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₈H₂₁O₃ [M+H]⁺ 285.1491, found 285.1514.

1-(2,6-Dichlorobenzyloxy)-4-phenylbutan-2-one (2g).⁸ The title compound was obtained as a white solid in 86% yield (0.5 mmol scale, 138.9 mg). mp 62-64 °C; ¹H NMR (500 MHz, CDCl₃): 7.30-7.22 (m, 4H), 7.18-7.14 (m, 4H), 4.82 (s, 2H), 4.06 (s, 2H), 2.90-2.87 (m, 2H), 2.82-2.78 (m, 2H); ¹³C NMR (125.8 MHz, CDCl₃): δ 208.1, 141.0, 137.1, 132.7, 130.4, 128.6, 128.5, 126.2, 75.7, 67.7, 40.6, 29.3.

3-Phenyl-1-(1-(pyridin-2-yl)piperidin-4-yl)propan-1-one (2h). The title compound was obtained as a liquid in 80% yield (0.5 mmol scale, 117.7 mg). ¹H NMR (500 MHz, CDCl₃): δ 8.17-8.16 (m, 1H), 7.45-7.41 (m, 1H), 7.29-7.25 (m, 2H), 7.20-7.17 (m, 3H), 6.63 (d, *J* = 8.5 Hz, 1H), 6.59-6.56 (m, 1H), 4.28-4.25 (m, 2H), 2.92-2.83 (m, 4H), 2.79 (t, *J* = 7.5 Hz, 2H), 2.53-2.47 (m, 1H), 1.88-1.85 (m, 2H), 1.67-1.59 (m, 2H); ¹³C NMR (125.8 MHz, CDCl₃): δ 211.5, 159.4, 148.1, 141.3, 137.6, 128.6, 128.5, 126.3, 113.1, 107.4, 49.2, 45.2, 42.3, 29.8, 27.2; FT-IR (neat): 1734, 1705, 1593, 1480, 1436, 1311, 1240, 976, 731 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₉H₂₃N₂O [M+H]⁺ 295.1810, found 295.1812.

tert-Butyl 3-(3-Phenylpropanoyl)azetidine-1-carboxylate (2i).⁶ The title compound was obtained as a liquid in 65% yield (0.5 mmol scale, 94.0 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.26-7.23 (m, 2H), 7.18-7.13 (m, 3H), 3.96-3.93 (m, 4H), 3.36-3.30 (m, 1H), 2.89 (t, *J* = 7.0 Hz, 2H), 2.71 (t, *J* = 7.0 Hz, 2H), 1.39 (s, 9H); ¹³C NMR (125.8 MHz, CDCl₃): δ 207.3, 156.4, 140.8, 128.8, 128.5, 126.5, 80.0, 50.6, 42.5, 38.9, 29.7, 28.5.

tert-Butyl 2-(3-Phenylpropanoyl)pyrrolidine-1-carboxylate (2j). The title compound was obtained as a liquid in 80% yield (0.5 mmol scale, 121.3 mg). ¹H NMR (500 MHz, CD₃CN): δ 7.32-7.29 (m, 2H), 7.26-7.25 (m, 2H), 7.22-7.19 (m, 1H), 4.32 (dd, *J* = 8.5, 5.0 Hz, 1H), 3.51-3.40 (m, 2H), 2.95-2.79 (m, 4H), 2.18-2.11 (m, 1H), 1.86-1.75 (m, 3H), 1.45 (s, 9H); ¹³C NMR (125.8 MHz, CD₃CN): δ 210.5, 156.1, 143.7, 130.2, 127.7, 81.2, 67.2, 48.7, 41.9, 31.1, 30.8, 29.7, 25.5; FT-IR (neat): 1726, 1690, 1390, 1365, 1160, 749, 699 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₈H₂₅NO₃Na [M+Na]⁺ 326.1732, found 326.1711.

tert-Butyl 4-(3-Phenylpropanoyl)piperidine-1-carboxylate (2k). The title compound was obtained as a liquid in 89% yield (0.5 mmol scale, 141.2 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.24-7.21 (m, 2H), 7.16-7.12 (m, 3H), 4.04-4.01 (m, 2H), 2.87 (t, *J* = 7.5 Hz, 2H), 2.76-2.71 (m, 4H), 2.42-2.36 (m, 1H), 1.73-1.70 (m, 2H), 1.51-1.40 (m, 11H); ¹³C NMR (125.8 MHz, CDCl₃): δ 210, 154.8, 141.3, 128.6, 128.4, 126.3, 79.6, 48.9, 43.4, 42.2, 29.9, 28.6, 27.6; FT-IR (neat): 1687, 1448, 1419, 1365, 1234, 1163, 698 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₉H₂₇NO₃Na [M+Na]⁺ 340.1889, found 340.1880.

Benzyl (2-Oxo-4-phenylbutyl)carbamate (2l). The title compound was obtained as a liquid in 83% yield (0.5 mmol scale, 123.4 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.36-7.27 (m, 7H), 7.22-7.16 (m, 3H), 5.53 (s, 1H), 5.13 (s, 2H), 4.00 (d, *J* = 5.0 Hz, 2H), 2.94 (t, *J* = 7.5 Hz, 2H), 2.73 (t,

J = 7.5 Hz, 2H); ¹³C NMR (125.8 MHz, CDCl₃): δ 204.6, 156.3, 140.6, 136.7, 128.8, 128.7, 128.4, 128.3, 128.2, 126.5, 67.2, 51.0, 41.6, 29.8; FT-IR (neat): 1728, 1713, 1697, 1538, 1267, 1160, 1041, 701 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₈H₂₀NO₃ [M+H]⁺ 298.1443, found 298.1432.

N-(2-Oxo-4-phenylbutyl)thiophene-2-sulfonamide (2m). The title compound was obtained as a liquid in 77% yield (0.5 mmol scale, 119.1 mg). ¹H NMR (500 MHz, CDCl₃): δ 7.57-7.56 (m, 2H), 7.27-7.24 (m, 2H), 7.20-7.18 (m, 1H), 7.11-7.09 (m, 2H), 7.07-7.05 (m, 1H), 5.44 (s, 1H), 3.86 (d, *J* = 4.5 Hz, 2H), 2.87 (t, *J* = 7.5 Hz, 2H), 2.71 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (125.8 MHz, CDCl₃): δ 202.9, 140.2, 140.1, 132.7, 132.5, 128.9, 128.4, 127.8, 126.7, 52.1, 41.8, 29.7; FT-IR (neat): 1719, 1155, 1149, 1031, 738, 588 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₄H₁₆NO₃S₂ [M+H]⁺ 310.0572, found 310.0569.

Cyclohexyl(8-methoxychroman-3-yl)methanone (3a). The title compound was obtained as a white solid in 70% yield (0.5 mmol scale, 96.0 mg). mp 39-40 °C; ¹H NMR (500 MHz, CDCl₃): 6.81-6.78 (m, 1H), 6.72-6.66 (m, 2H), 4.48-4.45 (m, 1H), 3.98 (m, 1H), 3.84 (s, 3H), 3.25-3.19 (m, 1H), 2.99 (dd, *J* = 16.0, 11.0 Hz, 1H), 2.84-2.79 (m, 1H), 2.58-2.52 (m, 1H), 1.87-1.77 (m, 4H), 1.68-1.66 (m, 1H), 1.41-1.18 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 213.3, 148.5, 143.6, 121.9, 121.7, 120.4, 109.5, 67.4, 56.0, 50.3, 43.3, 28.6, 28.4, 28.2, 26.0, 25.8, 25.7; FT-IR (neat):

1700, 1485, 1449, 1210, 1084, 726 cm⁻¹; HRMS (ES+) m/z calcd. for $C_{17}H_{23}O_3 [M+H]^+ 275.1647$, found 275.1656.

tert-Butyl (3-Cyclohexyl-3-oxo-1-phenylpropyl)carbamate (3b). The tile compound was obtained as a liquid in 85% yield (0.5 mmol scale, 140.8 mg). ¹H NMR (500 MHz, CDCl₃): 7.30-7.25 (m, 4H), 7.22-7.19 (m, 1H), 5.46 (s, 1H), 5.05 (dd, J = 14.0, 6.0 Hz, 1H), 3.03 (dd, J = 16.5, 6.0 Hz, 1H), 2.88 (dd, J = 16.5, 6.0 Hz, 1H), 2.22-2.19 (m, 1H), 1.72-1.60 (m, 5H), 1.40 (s, 9H), 1.25-1.22 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 211.9, 155.4, 142.4, 128.7, 127.4, 126.5, 79.7, 51.8, 51.5, 46.5, 28.6, 28.3, 26.1, 25.9, 25.8; FT-IR (neat): 3352, 1696, 1687, 1531, 1171, 698 cm⁻¹; HRMS (ES+) m/z calcd. for C₂₀H₂₉NO₃Na [M+Na]⁺ 354.2045, found 354.2054.

5-(2-Cyclohexyl-2-oxoethyl)pyrrolidin-2-one (3c). The title compound was obtained as a liquid in 81% yield (0.5 mmol scale, 125.3 mg). ¹H NMR (500 MHz, CDCl₃): 4.45-4.41 (m, 1H), 2.94 (dd, J = 17.0, 2.5 Hz, 1H), 2.59 (dd, J = 17.0, 10.0 Hz, 1H), 2.50-2.43 (m, 1H), 2.36-2.30 (m, 1H), 2.26-2.21 (m, 1H), 2.18-2.10 (m, 1H), 1.75-1.68 (m, 4H), 1.63-1.57 (m, 2H), 1.42 (s, 9H), 1.29-1.09 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 211.1, 173.8, 150.0, 83.0, 54.2, 51.2, 44.1, 31.1, 28.5, 28.4, 28.2, 25.9, 25.7, 25.6, 23.6; FT-IR (neat): 1784, 1749, 1704, 1368, 1307, 1148, 730 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₇H₂₇NO₄Na [M+Na]⁺ 332.1838, found 332.1840.

Cyclohexyl(3-ethyloxetan-3-yl)methanone (3d). The title compound was obtained as a liquid in 60% yield (0.5 mmol scale, 58.8 mg). ¹H NMR (500 MHz, CDCl₃): 4.83 (d, J = 6.0 Hz, 2H), 4.38 (d, J = 6.0 Hz, 2H), 2.54-2.48 (m, 1H), 2.02 (q, J = 7.5 Hz, 2H), 1.77-1.74 (m, 2H), 1.68-1.66 (m, 3H), 1.44-1.37 (m, 2H), 1.25-1.19 (m, 3H), 0.80 (t, J = 7.5 Hz, 3H); ¹³C NMR (125.8 MHz, CDCl₃): δ 213.6, 77.3, 55.6, 46.6, 29.5, 28.5, 25.9, 25.8, 8.9; FT-IR (neat): 2929, 2856, 1699, 1449, 981, cm⁻¹; HRMS (CI+) m/z calcd. for C₁₂H₂₁O₂ [M+H]⁺ 197.1542, found 197.1547.

(9H-Fluoren-9-yl)methyl 4-(2-cyclohexyl-2-oxoethyl)piperidine-1-carboxylate (3e). The title compound was obtained as a yellow solid in 75% yield (0.5 mmol scale, 161.8 mg). mp 85-86 °C; ¹H NMR (500 MHz, CDCl₃): 7.71 (d, J = 7.5 Hz, 2H), 7.54 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.26 (t, J = 7.5 Hz, 2H), 4.41 (d, J = 6.5 Hz, 2H), 4.19 (t, J = 6.5 Hz, 1H), 4.03-4.01 (m, 2H), 2.75 (t, J = 12.5 Hz, 2H), 2.29-2.22 (m, 3H), 2.00-1.96 (m, 1H), 1.79-1.74 (m, 4H), 1.65-1.58 (m, 3H), 1.35-1.17 (m, 5H), 1.05-0.99 (m, 2H); ¹³C NMR (125.8 MHz, CDCl₃): δ 212.4, 155.3, 144.4, 141.6, 127.7, 127.1, 125.1, 120.0, 67.2, 51.5, 47.8, 47.0, 44.3, 32.1, 31.7, 28.5, 26.0, 25.8; FT-IR (neat): 1692, 1441, 1277, 1236, 1089, 760 cm⁻¹; HRMS (ES+) m/z calcd. for C₂₈H₃₄NO₃ [M+H]⁺ 432.2539, found 432.2537.

1-Cyclohexyl-3-(1H-indol-3-yl)propan-1-one (3f). The title compound was obtained as a pale yellow solid in 35% yield (0.5 mmol scale, 44.6 mg). mp 95-96 °C; ¹H NMR (500 MHz, CDCl₃): 7.99 (s,1H), 7.59 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0, 0.5 Hz, 1H), 7.21-7.18 (m, 1H), 7.14-7.11 (m, 1H), 6.97 (d, J = 1.5 Hz, 1H), 3.04 (t, J = 7.5 Hz, 2H), 2.86-2.83 (m, 2H), 2.36-2.30 (m, 1H), 1.83-1.75 (m, 4H), 1.66-1.63 (m, 1H), 1.37-1.17 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 214.2, 136.6, 127.5, 122.2, 121.7, 119.5, 119.0, 115.8, 111.4, 51.2, 41.4, 28.7, 26.1, 25.9, 19.5; FT-IR (neat): 3405, 1694, 1338, 745 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₇H₂₂NO [M+H]⁺ 256.1701, found 256.1725.

Methyl 4-(Cyclohexanecarbonyl)bicyclo[2.2.2]octane-1-carboxylate (3g). The title compound was obtained as a white solid in 78% yield (0.5 mmol scale, 108.5 mg). mp 104-105 °C; ¹H NMR (500 MHz, CDCl₃): δ 3.61 (s, 3H), 2.76-2.72 (m, 1H), 1.79-1.73 (m, 6H), 1.72-1.69 (m, 8H), 1.63-1.62 (m, 1H), 1.55-1.52 (m, 2H), 1.31-1.18 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 217.9, 178.0, 51.9, 51.9, 45.4, 45.2, 39.1, 29.7, 27.9, 26.8, 25.9; FT-IR (neat): 1724, 1686, 1449, 1253, 1236, 1079, 1010, 854 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₇H₂₇O₃ [M+H]⁺ 279.1960, found 279.1966.

(Adamantan-1-yl)(cyclohexyl)methanone (3h).⁶ The title compound was obtained as a white solid in 70% yield (0.5 mmol scale, 86.2 mg). mp 80-81 °C; ¹H NMR (500 MHz, CDCl₃): δ 2.85-2.80 (m, 1H), 2.02 (s, 3H), 1.79-1.65 (m, 15H), 1.56-1.53 (m, 2H), 1.35-1.21 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 218.5, 47.1, 44.2, 38.0, 36.9, 30.0, 28.2, 26.0.

2-(3-Bromoadamantan-1-yl)-1-cyclohexylethan-1-one (3i). The title compound was obtained as a liquid in 88% yield (0.5 mmol scale, 149.3 mg). ¹H NMR (500 MHz, CDCl₃): 2.27-2.20 (m, 9H), 2.09 (m, 2H), 1.76-1.72 (m, 4H), 1.63-1.57 (m, 7H), 1.24-1.17 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 213.0, 65.7, 53.8, 52.7, 52.5, 48.6, 40.4, 38.1, 34.9, 32.6, 28.3, 26.0, 25.8; FT-IR (neat): 2925, 2852, 1704, 1448, 677 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₈H₂₈OBr [M+H]⁺ 339.1324, found 339.1334.

1-Cyclohexyl-6-hydroxyhexan-1-one (3j). The title compound was obtained as a liquid in 86% yield (0.5 mmol scale, 85.2 mg). ¹H NMR (500 MHz, CDCl₃): 3.54 (t, *J* = 6.5 Hz, 2H), 2.46 (s, 1H), 2.37 (t, *J* = 7.0 Hz, 2H), 2.28-2.23 (m, 1H), 1.75-1.68 (m, 4H), 1.60-1.58 (m, 1H), 1.53-1.47

(m, 4H), 1.29-1.10 (m, 7H); ¹³C NMR (125.8 MHz, CDCl₃): δ 214.7, 62.5, 51.0, 40.6, 32.6, 28.6, 26.0, 25.8, 25.6, 23.5; FT-IR (neat): 3405, 2927, 2854, 1702, 1053, cm⁻¹; HRMS (ES+) m/z calcd. for C₁₂H₂₃O₂ [M+H]⁺ 199.1698, found 199.1700.

3-(Cyclohexanecarbonyl)cyclopentan-1-one (3k). The title compound was obtained as a liquid in 65% yield (0.5 mmol scale, 63.1 mg). ¹H NMR (500 MHz, CDCl₃): 3.39-3.32 (m, 1H), 2.48-2.39 (m, 2H), 2.34-2.12 (m, 4H), 1.97-1.91 (m, 1H), 1.83-1.75 (m, 4H), 1.66-1.64 (m, 1H), 1.41-1.15 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 217.0, 214.1, 50.2, 46.0, 40.8, 37.6, 28.8, 28.4, 26.5, 26.0, 25.9, 25.6; FT-IR (neat): 1741, 1700, 1449, 480 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₂H₁₉O₂ [M+H]⁺ 195.1385, found 195.1358.

1-Cyclohexyl-4-(thiophen-2-yl)butane-1,4-dione (3l). The title compound was obtained as a yellow solid in 37% yield (0.5 mmol scale, 46.3 mg). mp: 47-49 °C; ¹H NMR (500 MHz, CDCl₃): 7.74 (d, J = 3.5 Hz, 1H), 7.59 (d, J = 5.0 Hz, 1H), 7.11-7.09 (m, 1H), 3.18 (t, J = 6.5 Hz, 2H), 2.86 (d, J = 6.5 Hz, 2H), 2.44-2.39 (m, 1H), 1.90-1.88 (m, 2H), 1.79-1.76 (m, 2H), 1.67-1.65 (m, 1H), 1.42-1.19 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 212.4, 191.9, 144.2, 133.6, 132.1, 128.3, 51.2, 34.5, 33.3, 28.9, 26.2, 26.0; FT-IR (neat): 1736, 1706, 1664, 1415, 1246, 849, 735 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₄H₁₉O₂S [M+H]⁺ 251.1106, found 251.1098.

10-Cyclohexyl-10-oxodecanenitrile (3m). The title compound was obtained as a liquid in 70% yield (0.5 mmol scale, 87.2 mg). ¹H NMR (500 MHz, CDCl₃): 2.36 (t, J = 7.0 Hz, 2H), 2.29-2.26 (m, 3H), 1.76-1.70 (m, 4H), 1.61-1.55 (m, 3H), 1.51-1.46 (m, 2H), 1.39-1.36 (m, 2H), 1.29-1.11 (m, 11H); ¹³C NMR (125.8 MHz, CDCl₃): δ 214.3, 119.9, 50.9, 40.6, 29.2, 28.7, 28.6, 26.0, 25.8, 25.5, 23.7, 17.2; FT-IR (neat): 2927, 2854, 2245, 1704, 1449, 1373 cm⁻¹; HRMS (CI+) m/z calcd. for C₁₆H₂₈NO [M+H]⁺ 250.2171, found 250.2175.

tert-Butyl 3-(Cyclohexanecarbonyl)pyrrolidine-1-carboxylate (3n). The title compound was obtained as a liquid in 70% yield (0.5 mmol scale, 87.2 mg). ¹H NMR (500 MHz, CDCl₃): 3.48-3.32 (m, 3H), 3.27-3.17 (m, 2H), 2.41-2.35 (m, 1H), 1.96 (s, 2H), 1.76-1.70 (m, 4H), 1.62-1.60 (m, 1H), 1.38 (s, 9H), 1.32-1.14 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 212.5, 154.5, 79.5, 50.4, 48.0, 45.7, 28.7, 28.6, 26.0, 25.9, 25.8; FT-IR (neat): 1691, 1401, 1365, 1166, 1115, 731 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₆H₂₇NO₃Na [M+Na]⁺ 304.1889, found 304.1899.

5-(2-Cyclohexyl-2-oxoethyl)-6,7-dihydrobenzofuran-4(5H)-one (30). The title compound was obtained as a liquid in 68% yield (0.5 mmol scale, 88.5 mg). ¹H NMR (500 MHz, CDCl₃): 7.29

(d, J = 2.0 Hz, 1H), 6.62 (d, J = 2.0 Hz, 1H), 3.14 (dd, J = 17.5, 5.0 Hz, 1H), 3.04-2.85 (m, 3H), 2.46-2.38 (m, 2H), 2.22-2.17 (m, 1H), 1.95-1.86 (m, 3H), 1.80-1.76 (m, 2H), 1.67-1.64 (m, 1H), 1.43-1.18 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 212.5, 195.0, 166.6, 143.0, 120.8, 106.9, 51.3, 42.8, 40.4, 29.1, 28.8, 28.6, 26.1, 25.9, 25.8, 23.6; FT-IR (neat): 1736, 1704, 1673, 1443, 1118, 733 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₆H₂₁O₃ [M+H]⁺ 261.1491, found 261.1491.

(5S,8R,9S,10S,13R,14S,17R)-17-((R)-5-Cyclohexyl-5-oxopentan-2-yl)-10,13-

dimethyldodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (3p). The title compound was obtained as a liquid in 60% yield (0.5 mmol scale, 140.6 mg). ¹H NMR (500 MHz, CDCl₃): 2.91-2.79 (m, 3H), 2.50-2.43 (m, 1H), 2.40-2.17 (m, 8H), 2.12-2.07 (m, 2H), 2.03-1.91 (m, 4H), 1.85-1.73 (m, 6H), 1.67-1.55 (m, 2H), 1.37-1.17 (m, 12H), 1.04 (s, 3H), 0.80 (d, J = 6.0 Hz, 3H); ¹³C NMR (125.8 MHz, CDCl₃): δ 214.8, 212.3, 209.2, 208.9, 57.2, 52.0, 51.2, 49.3, 47.1, 45.9, 45.8, 45.2, 43.0, 38.9, 37.6, 36.7, 36.3, 35.6, 35.5, 29.3, 28.9, 28.8, 27.8; FT-IR (neat): 1704, 1448, 1385, 1123, 620 cm⁻¹; HRMS (ES+) m/z calcd. for C₃₀H₄₅O₄ [M+H]⁺ 469.3318, found 469.3316.

4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluoro-1-(1-(pyridin-2-yl)piperidin-4-yl)nonan-1-one (3q). The title compound was obtained as a white solid in 68% yield (0.5 mmol scale, 182.3 mg). mp: 68-70 °C; ¹H NMR (500 MHz, CDCl₃): 8.15 (dd, J = 5.0, 1.5 Hz, 1H), 7.45-7.41 (m, 1H), 6.64 (d, J = 9.0 Hz, 1H), 6.57 (dd, J = 35.5, 5.0 Hz, 1H), 4.30 (dd, J = 10.5, 3.0 Hz, 2H), 2.91-2.85 (m, 2H), 2.79-2.76 (m, 2H), 2.62-2.56 (m, 1H), 2.46-2.35 (m, 2H), 1.93-1.91 (m, 2H), 1.72-1.63 (m, 2H); ¹³C NMR (125.8 MHz, CDCl₃): δ 208.8, 159.5, 148.2, 137.7, 120.6-120.3 (m, 1C), 118.9-118.3 (m, 1C), 116.8-116.0 (m, 1C), 113.6-112.4 (m, 2C), 111.5-110.2 (m, 1C), 109.1-108.6 (m, 1C), 107.5, 49.2, 45.2, 31.4, 27.4, 25.3 (t, J = 22.0 Hz, 1C); ¹⁹F NMR (470.7 MHz, CDCl₃): -80.7 (t, J = 9.5 Hz, 3F), -114.2 (t, J = 14.0 Hz, 2F), -121.8 (s, 2F), -122.8 (s, 2F), -123.4 (s, 2F), 126.1 (dd, J = 14.0, 9.5 Hz, 2F); FT-IR (neat): 1710, 1600, 1486, 1318, 1206, 1128, 735 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₉H₁₈N₂OF₁₃ [M+H]⁺ 537.1212, found 537.1230.

Benzyl (*S*)-3-((*tert*-Butoxycarbonyl)amino)-5-cyclohexyl-5-oxopentanoate (3r). The title compound was obtained as a liquid in 87% yield (0.5 mmol scale, 175.5 mg). ¹H NMR (500 MHz, CDCl₃): 7.30-7.25 (m, 5H), 5.25 (s, 1H), 5.10-5.04 (m, 2H), 4.26-4.19 (m, 1H), 2.81-2.58 (m, 4H), 2.24-2.19 (m, 1H), 1.72-1.59 (m, 5H), 1.38 (s, 9H), 1.25-1.14 (m, 5H); ¹³C NMR (125.8 MHz,

CDCl₃): δ 212.2, 171.3, 155.2, 136.1, 128.7, 128.4, 79.5, 66.5, 51.3, 44.7, 43.6, 38.5, 28.5, 28.5, 28.4, 26.0, 25.8, 25.7; FT-IR (neat): 3351, 1726, 1698, 1686, 1523, 1273, 1169, 695 cm⁻¹; HRMS (ES+) m/z calcd. for C₂₃H₃₄NO₅ [M+H]⁺ 404.2437, found 404.2420.

5-(Cyclohexanecarbonyl)tricyclo[2.2.1.0^{2,6}]heptan-3-one (3s). The title compound was obtained as a liquid in 83% yield (0.5 mmol scale, 90.5 mg). ¹H NMR (500 MHz, CDCl₃): 3.11 (s, 1H), 2.40-2.34 (m, 1H), 2.26-2.14 (m, 3H), 1.84-1.80 (m, 2H), 1.72-1.60 (m, 5H), 1.41 (t, J = 5.5 Hz, 1H), 1.37-1.12 (m, 5H); ¹³C NMR (125.8 MHz, CDCl₃): δ 211.8, 210.5, 51.4, 49.3, 41.3, 29.2, 28.7, 28.2, 25.9, 25.8, 25.5, 21.4, 19.9, 19.8; FT-IR (neat): 1756, 1700, 1239, 943, 832 cm⁻¹; HRMS (CI+) m/z calcd. for C₁₄H₁₉O₂ [M+H]⁺ 219.1385, found 219.1382.

(*Z*)-1-(1-(Pyridin-2-yl)piperidin-4-yl)octadec-9-en-1-one (3t). The title compound was obtained as a liquid in 57% yield (0.5 mmol scale, 121.6 mg). ¹H NMR (500 MHz, CDCl₃): 8.14 (dd, *J* = 5.0, 1.5 Hz, 1H), 7.43-7.40 (m, 1H), 6.62 (d, *J* = 8.5 Hz, 1H), 6.55 (dd, *J* = 7.0, 5.0 Hz, 1H), 5.33-5.31 (m, 2H), 4.27 (dd, *J* = 13.0, 3.5 Hz, 2H), 2.89-2.84 (m, 2H), 2.54-2.49 (m, 1H), 2.44 (t, *J* =

7.5 Hz, 2H), 2.01-1.97 (m, 3H), 1.89-1.86 (m, 2H), 1.68-1.60 (m, 2H), 1.56-1.53 (m, 2H), 1.27-1.23 (m, 21H), 0.87-0.84 (m, 3H); ¹³C NMR (125.8 MHz, CDCl₃): δ 212.7, 159.5, 148.1, 137.6, 130.2, 129.9, 113.1, 107.4, 49.1, 45.3, 40.7, 32.1, 30.0, 29.9, 29.7, 29.6, 29.5, 29.5, 29.5, 29.3, 27.5, 27.4, 23.8, 22.9, 14.3; FT-IR (neat): 2922, 2852, 1708, 1594, 1481, 1436, 769 cm⁻¹; HRMS (ES+) m/z calcd. for C₂₈H₄₇N₂O [M+H]⁺ 427.3688, found 427.3692.

Cyclohexyl(2-phenylcyclopropyl)methanone (3u). The title compound was obtained as a liquid in 81% yield (0.5 mmol scale, 92.4 mg). ¹H NMR (500 MHz, CDCl₃): 7.30-7.27 (m, 2H), 7.22-7.19 (m, 1H), 7.11-7.09 (m, 2H), 2.55-2.49 (m, 1H), 2.47-2.43 (m, 1H), 2.25-2.22 (m, 1H), 1.95-1.91 (m, 2H), 1.82-1.76 (m, 2H), 1.69-1.63 (m, 2H), 1.44-1.18 (m, 6H); ¹³C NMR (125.8 MHz, CDCl₃): δ 211.9, 140.8, 128.7, 126.6, 126.3, 51.8, 31.1, 29.1, 28.6, 28.5, 26.1, 26.0, 25.9, 18.7; FT-IR (neat): 1689, 1398, 1067, 749, 695 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₆H₂₁O [M+H]⁺ 229.1592, found 229.1570.

References:

- Bonet, A. G.; Tellis, J. C.; Matsui, J. K.; Vara, B. A.; Molander, G. A. ACS Catal. 2016, 6, 8004.
- For information on these reactors and their construction see the supporting information of:
 (a) Patel, N. R.; Kelly, C. B.; Jouffroy, M.; Molander, G. A. *Org. Lett.* 2016, *18*, 764. (b) Jouffroy, M.; Kelly, C. B.; Molander, G. A. *Org. Lett.* 2016, *18*, 876.

- 3) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
- 4) Gooodman, C. A.; Janci, E. M.; Onwodi, O.; Simpson, C. C.; Hamaker, C. G.; Hitchcock, S. R. *Tetrahedron Lett.* 2015, *56*, 4468.
- 5) Chen, M.; Wang, J.; Chai, Z.; You, C.; Lei, A. Adv. Synth. Catal. 2012, 354, 341.
- 6) Amani, J.; Molander, G. A. J. Org. Chem. 2017, 82, 1856.
- 7) Fujimura, T.; Aoki, S.; Nakamura, E. J. Org. Chem. 1991, 56, 2809.
- 8) Amani, J.; Sodagar, E.; Molander, G. A. Org. Lett. 2016, 18, 732.

¹H NMR (500 MHz, CDCl₃) Spectrum of 1-cyclohexyl-3-phenylpropan-1-one (2a)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 1-cyclohexyl-3-phenylpropan-1-one (2a)

¹H NMR (500 MHz, CDCl₃) Spectrum of 1-(2-Methylcyclopentyl)-3-phenylpropan-1-one (2b)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 1-(2-methylcyclopentyl)-3-phenylpropan-1-one (2b)

¹H NMR (500 MHz, CDCl₃) Spectrum of 3-methyl-1,6-diphenylhexane-1,4-dione (2c)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 3-methyl-1,6-diphenylhexane-1,4-dione (2c)

¹H NMR (500 MHz, CDCl₃) Spectrum of ethyl 3-Methyl-4-oxo-6-phenylhexanoate (2d)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of ethyl 3-Methyl-4-oxo-6-phenylhexanoate (2d)

¹H NMR (500 MHz, CDCl₃) Spectrum of 3-phenyl-1-(tetrahydro-2H-pyran-4-yl)propan-1-one (2e)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 3-phenyl-1-(tetrahydro-2H-pyran-4-yl)propan-1-one (2e)

¹H NMR (500 MHz, CDCl₃) Spectrum of 1-((4-methoxybenzyl)oxy)-4-phenylbutan-2-one (2f)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 1-((4-methoxybenzyl)oxy)-4-phenylbutan-2-one (2f)

¹H NMR (500 MHz, CDCl₃) Spectrum of 1-(2,6-dichlorobenzyloxy)-4-phenylbutan-2-one (2g)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 1-(2,6-dichlorobenzyloxy)-4-phenylbutan-2-one (2g)

¹H NMR (500 MHz, CDCl₃) Spectrum of 3-phenyl-1-(1-(pyridin-2-yl)piperidin-4-yl)propan-1-one (2h)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 3-phenyl-1-(1-(pyridin-2-yl)piperidin-4-yl)propan-1-one (2h)

¹H NMR (500 MHz, CDCl₃) Spectrum of *tert*-butyl 3-(3-phenylpropanoyl)azetidine-1-carboxylate (2i)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of *tert*-butyl 3-(3-phenylpropanoyl)azetidine-1-carboxylate (2i)

¹H NMR (500 MHz, CDCl₃) Spectrum of *tert*-butyl-2-(3-phenylpropanoyl)pyrrolidine-1-carboxylate (2j)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of *tert*-butyl-2-(3-phenylpropanoyl)pyrrolidine-1-carboxylate (2j)

¹H NMR (500 MHz, CDCl₃) Spectrum of *tert*-butyl 4-(3-phenylpropanoyl)piperidine-1-carboxylate (2k)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of *tert*-butyl 4-(3-phenylpropanoyl)piperidine-1-carboxylate (2k)

¹H NMR (500 MHz, CDCl₃) Spectrum of benzyl (2-oxo-4-phenylbutyl)carbamate (2l)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of benzyl (2-oxo-4-phenylbutyl)carbamate (2l)

¹H NMR (500 MHz, CDCl₃) Spectrum of *N*-(2-oxo-4-phenylbutyl)thiophene-2-sulfonamide (2m)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of *N*-(2-oxo-4-phenylbutyl)thiophene-2-sulfonamide (2m)

¹H NMR (500 MHz, CDCl₃) Spectrum of cyclohexyl(8-methoxychroman-3-yl)methanone (3a)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of cyclohexyl(8-methoxychroman-3-yl)methanone (3a)

¹H NMR (500 MHz, CDCl₃) Spectrum of *tert*-butyl -(3-cyclohexyl-3-oxo-1-phenylpropyl)carbamate (3b)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of *tert*-butyl -(3-cyclohexyl-3-oxo-1-phenylpropyl)carbamate (3b)

¹H NMR (500 MHz, CDCl₃) Spectrum of 5-(2-cyclohexyl-2-oxoethyl)pyrrolidin-2-one (3c)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 5-(2-cyclohexyl-2-oxoethyl)pyrrolidin-2-one (3c)

¹H NMR (500 MHz, CDCl₃) Spectrum of cyclohexyl(3-ethyloxetan-3-yl)methanone (3d)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of cyclohexyl(3-ethyloxetan-3-yl)methanone (3d)

¹H NMR (500 MHz, CDCl₃) Spectrum of (9H-fluoren-9-yl)methyl 4-(2-cyclohexyl-2-oxoethyl)piperidine-1-carboxylate (3e)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of (9H-fluoren-9-yl)methyl 4-(2-cyclohexyl-2-oxoethyl)piperidine-1-carboxylate (3e)

¹H NMR (500 MHz, CDCl₃) Spectrum of 1-cyclohexyl-3-(1H-indol-3-yl)propan-1-one (3f)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 1-cyclohexyl-3-(1H-indol-3-yl)propan-1-one (3f)

¹H NMR (500 MHz, CDCl₃) Spectrum of methyl 4-(cyclohexanecarbonyl)bicyclo[2.2.2]octane-1-carboxylate (3g)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of methyl 4-(cyclohexanecarbonyl)bicyclo[2.2.2]octane-1-carboxylate (3g)

¹H NMR (500 MHz, CDCl₃) Spectrum of (adamantan-1-yl)(cyclohexyl)methanone (3h)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of (adamantan-1-yl)(cyclohexyl)methanone (3h)

¹H NMR (500 MHz, CDCl₃) Spectrum of 2-(3-bromoadamantan-1-yl)-1-cyclohexylethan-1-one (3i)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 2-(3-bromoadamantan-1-yl)-1-cyclohexylethan-1-one (3i)

¹H NMR (500 MHz, CDCl₃) Spectrum of 1-cyclohexyl-6-hydroxyhexan-1-one (3j)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 1-cyclohexyl-6-hydroxyhexan-1-one (3j)

¹H NMR (500 MHz, CDCl₃) Spectrum of 3-(cyclohexanecarbonyl)cyclopentan-1-one (3k)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 3-(cyclohexanecarbonyl)cyclopentan-1-one (3k)

¹H NMR (500 MHz, CDCl₃) Spectrum of 1-cyclohexyl-4-(thiophen-2-yl)butane-1,4-dione (3l)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 1-cyclohexyl-4-(thiophen-2-yl)butane-1,4-dione (3l)

¹H NMR (500 MHz, CDCl₃) Spectrum of 10-cyclohexyl-10-oxodecanenitrile (3m)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 10-cyclohexyl-10-oxodecanenitrile (3m)

¹H NMR (500 MHz, CDCl₃) Spectrum of *tert*-butyl 3-(cyclohexanecarbonyl)pyrrolidine-1-carboxylate (3n)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of *tert*-butyl 3-(cyclohexanecarbonyl)pyrrolidine-1-carboxylate (3n)

¹H NMR (500 MHz, CDCl₃) Spectrum of 5-(2-cyclohexyl-2-oxoethyl)-6,7-dihydrobenzofuran-4(5H)-one (30)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 5-(2-cyclohexyl-2-oxoethyl)-6,7-dihydrobenzofuran-4(5H)-one (30)

¹H NMR (500 MHz, CDCl₃) Spectrum of (5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-17-((*R*)-5-cyclohexyl-5-oxopentan-2-yl)-10,13-dimethyldodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (3p)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of (5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-17-((*R*)-5-cyclohexyl-5-oxopentan-2-yl)-10,13dimethyldodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (3p)

¹H NMR (500 MHz, CDCl₃) Spectrum of 4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-1-(1-(pyridin-2-yl)piperidin-4-yl)nonan-1-one (3q)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-1-(1-(pyridin-2-yl)piperidin-4-yl)nonan-1-one (3q)

¹⁹F NMR (470.7 MHz, CDCl₃) Spectrum of 4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-1-(1-(pyridin-2-yl)piperidin-4-yl)nonan-1-one (3q)

¹H NMR (500 MHz, CDCl₃) Spectrum of benzyl (S)-3-((tert-butoxycarbonyl)amino)-5-cyclohexyl-5-oxopentanoate (3r)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of benzyl (S)-3-((*tert*-butoxycarbonyl)amino)-5-cyclohexyl-5-oxopentanoate (3r)

¹H NMR (500 MHz, CDCl₃) Spectrum of 5-(cyclohexanecarbonyl)tricyclo[2.2.1.0^{2,6}]heptan-3-one (3s)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of 5-(cyclohexanecarbonyl)tricyclo[2.2.1.0^{2,6}]heptan-3-one (3s)

¹H NMR (500 MHz, CDCl₃) Spectrum of (*Z*)-1-(1-(pyridin-2-yl)piperidin-4-yl)octadec-9-en-1-one (3t)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of (Z)-1-(1-(pyridin-2-yl)piperidin-4-yl)octadec-9-en-1-one (3t)

¹H NMR (500 MHz, CDCl₃) Spectrum of cyclohexyl(2-phenylcyclopropyl)methanone (3u)

¹³C NMR (125.8 MHz, CDCl₃) Spectrum of cyclohexyl(2-phenylcyclopropyl)methanone (3u)