### SUPPLEMENTAL FIGURES AND TABLES

# Biosynthesis and regulation of sulfomenaquinone, a metabolite associated with virulence in *Mycobacterium tuberculosis*\*

Kimberly M. Sogi<sup>1,#</sup>, Cynthia M. Holsclaw<sup>3,4</sup>, Gabriela K. Fragiadakis<sup>1,‡</sup>, Daniel K. Nomura<sup>5</sup>, Julie A. Leary<sup>4</sup>, Carolyn R. Bertozzi<sup>1,2</sup>

<sup>1</sup>Department of Chemistry and <sup>2</sup>Howard Hughes Medical Institute, Stanford University, 380 Roth Way MC: 5080 Stanford, CA, 94305, USA. <sup>3</sup>Campus Mass Spectrometry Facilities, 9 Hutchison Hall, One Shields Avenue, Davis, CA, 95616, USA. <sup>4</sup>Department of Molecular and Cellular Biology, University of California, Davis, 130 Briggs Hall, Davis, CA, 95616, USA. <sup>5</sup>Department of Nutritional Science and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA, 94720, USA.

Present address: <sup>#</sup> School of Public Health, University of California, Berkeley, 188 Li Ka Shing, Berkeley, CA, 94720 USA. <sup>‡</sup>Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.

To whom correspondence should be addressed: Carolyn R. Bertozzi, Department of Chemistry, Stanford University, 380 Roth Way MC 5080, Stanford, CA, 94305. Email: <u>bertozzi@stanford.edu</u>

### TABLE OF CONTENTS

| <b>Figure S1:</b> Mass spectra of TLE from <i>M. smegmatis</i> strains expressing SMK biosynthetic genes showing region m/z 880-886.                                          | S2         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure S2: DNA gel of cyp128 deletion.                                                                                                                                        | S3         |
| Figure S3: (A) TLC of 35S-labeled SMK mutants; (B) <i>in vitro</i> growth curve of ∆cyp128 and complement.                                                                    | S3         |
| <b>Figure S4:</b> Mass spectra from TLE of <i>M. tuberculosis</i> WT and SMK deletion mutants with region m/z 880-886 shown.                                                  | S4         |
| Figure S5: Scheme depicting promoters for cyp128.                                                                                                                             | S5         |
| <b>Figure S6:</b> Mass spectra of TLE from $\triangle cyp128$ complementation strains with $cyp128$ under control of three different promoters with region m/z 880-886 shown. | S5         |
| Figure S7: Structure of MK-9.                                                                                                                                                 | S6         |
| <b>Figure S8:</b> Schematic of <i>M. tuberculosis</i> electron transport chain and the inhibitors screened against WT <i>M. tuberculosis</i> and SMK mutants.                 | S6         |
| Table S1: MIC90 values for WT, SMK mutants and complements.                                                                                                                   | S6         |
| Table S2: Strains used in this study                                                                                                                                          | <b>S</b> 7 |
| Table S3: Plasmids used in this study                                                                                                                                         | <b>S</b> 8 |
| Table S4: Primers used in this study                                                                                                                                          | S9         |
| References                                                                                                                                                                    | S10        |





**FIGURE S2:** DNA gel from WT *M. tuberculosis* and △*cyp128* using primers for either *cyp128* or *hygromycin*.



**FIGURE S3:** A) TLC analysis of TLE from *M. tuberculosis* strains grown on <sup>35</sup>S-sulfate: (I) WT, (II)  $\triangle cyp128$ , (III)  $\triangle cyp128$ ; cyp128, (IV)  $\triangle stf3$ , (V)  $\triangle stf3$ :: *stf3*. Arrow indicates spot corresponding to SMK. B) Growth of  $\triangle cyp128$  and complement compared to WT in 7H9 liquid media.



**FIGURE S4:** Mass spectra from TLE of *M. tuberculosis* WT and SMK deletion mutants with region m/z 880-886 shown.



FIGURE S5: Scheme depicting promoters for cyp128.



**FIGURE S6:** Mass spectra of TLE from  $\triangle cyp128$  complementation strains with cyp128 under control of three different promoters with region m/z 880-886 shown.



FIGURE S7: Structure of menaquinone-9 (MK-9).



**FIGURE S8:** Schematic of *M. tuberculosis* electron transport chain and the inhibitors screened against WT *M. tuberculosis* and SMK mutants.



**TABLE S1:** Minimum inhibitory concentrations ( $MIC_{90}$ ) values for WT, SMK mutants and complements.

| Chemical stress            | MIC    | Cell wall inhibitors | MIC        |
|----------------------------|--------|----------------------|------------|
| $H_2O_2$                   | 110 mM | INH                  | 0.06 µg/ml |
| NaNO <sub>3</sub> , pH 5.5 | 5 mM   | ETA                  | 5 µM       |
| SDS                        | 0.025% | ЕТН                  | 6 µM       |

H<sub>2</sub>O<sub>2</sub> hydrogen peroxide; NaNO<sub>3</sub> sodium nitrate, SDS sodium dodecyl sulfate, INH isoniazid, ETA ethionamide, ETH ethambutol.

| Strains             |                    | Genotype                                                                                                                       | Source           |
|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------|
| M. smegn            | natis              |                                                                                                                                |                  |
| mc <sup>2</sup> 155 |                    | Wild type                                                                                                                      |                  |
| mc <sup>2</sup> 155 | rv2269c            | pKMS101; Kn <sup>r</sup> , contains <i>rv2269c</i>                                                                             | This study       |
| mc <sup>2</sup> 155 | cyp128             | pKMS102; Kn <sup>r</sup> , contains <i>cyp128</i>                                                                              | This study       |
| mc <sup>2</sup> 155 | stf3               | pKMS103; Kn <sup>r</sup> , contains <i>stf3</i>                                                                                | This study       |
| mc <sup>2</sup> 155 | <i>stf3</i> operon | pKMS104; Kn <sup>r</sup> , contains rv2269c, <i>cyp128, stf3</i>                                                               | This study       |
| mc <sup>2</sup> 155 | cyp128, stf3       | pKMS105; Kn <sup>r</sup> , contains <i>cyp128</i> and <i>stf3</i>                                                              | This study       |
| M. tuberc           | ulosis             |                                                                                                                                |                  |
| H37Rv               |                    | Wild type                                                                                                                      |                  |
| H37Rv               | ∆cyp128            | Hyg <sup>r</sup> , hyg cassette disrupting <i>cyp128</i>                                                                       | This study       |
| H37Rv               | ∆cyp128∷cyp128     | Hyg <sup>r</sup> , Kan <sup>r</sup> , complemented strain of $\Delta cyp128$                                                   | This study       |
| H37Rv               | ∆stf3              | Hyg <sup>r</sup> , stf3 interrupted by hyg resistance cassette                                                                 | Ref <sup>1</sup> |
| H37Rv               | ∆stf3∷stf3         | Hyg <sup>r</sup> , Kan <sup>r</sup> , complement with stf3 under the glutamine synthase promoter, modified pMV306 <sup>2</sup> | Ref <sup>1</sup> |
| H37Rv               | ∆ <b>rv2269c</b>   | Hyg <sup>r</sup> , <i>hsp60</i> promoter disrupting <i>rv2269c</i>                                                             | This study       |

## TABLE S2: Strains used in this study

| Reference name | Description                                                                                                                                                               | Source           |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| pMV261         | Kn <sup>r</sup> , pAL5000 origin, ColE1 origin, multiple cloning site, Phsp60 promoter                                                                                    | Ref <sup>2</sup> |
| pMV306         | Kn <sup>r</sup> , A derivative of pMV261 lacking the Phsp60 promoter                                                                                                      | Ref <sup>2</sup> |
| pKMS101        | pMV261 derivative; contains rv2269c                                                                                                                                       | This study       |
| pKMS102        | pMV261 derivative; contains cyp128                                                                                                                                        | This study       |
| pKMS103        | pMV261 derivative; contains <i>stf3</i>                                                                                                                                   | This study       |
| pKMS104        | pMV261 derivative; contains <i>rv2269c</i> , <i>cyp128</i> , and <i>stf3</i>                                                                                              | This study       |
| pKMS105        | pMV261 derivative; contains <i>cyp128</i> and <i>stf3</i>                                                                                                                 | This study       |
| pKMS110        | Plasmid used for cyp128 disruption with hyg cassette                                                                                                                      | This study       |
| pKMS109        | Plasmid used for rv2269c disruption with hyg cassette                                                                                                                     | This study       |
| pKMS133        | Kn <sup>r</sup> , a derivative of pMV306 encoding <i>cyp128</i> with <i>rv2269c</i> promoter.                                                                             | This study       |
| pKMS130        | Kn <sup>r</sup> , a derivative of pMV306 encoding <i>cyp128</i> with $P_{nat}$ (upstream 1 kb of the first gene in the putative operon) + <i>rv2269c</i> as the promoter. | This study       |
| pKMS118        | $Kn^{r}$ , a derivative of pMV306 encoding <i>cyp128</i> with P <sub>nat</sub> .                                                                                          | This study       |

| TABLE S3: | Plasmids | used in | this | study |
|-----------|----------|---------|------|-------|
|-----------|----------|---------|------|-------|

| Primer name | Sequence                                | Description                            |
|-------------|-----------------------------------------|----------------------------------------|
| okms102     | cacttcgcaatggccaacgatgcgcgacccttagcg    | 5' pKMS101, pKMS104 (Mscl )            |
| okms109     | actgttctacgcctctctgaatcgatagggtcatga    | 3' pKMS101 (Clal)                      |
| okms100     | ccagcgtcagaaacaatgtg                    | 5' pKMS102, pKMS105                    |
| okms101     | cgtgacaacgggctgcttag                    | 3' pKMS102                             |
| okms103     | cacttcgcaatggccaacgatgcgcgacccttagcg    | 5' pKMS103 (Mscl)                      |
| okms112     | actgttctacgcctctctga <b>atcgat</b> gtcg | 3' pKMS103, pKMS104, pKMS105<br>(Clal) |
| okms126     | ccgtacgt <b>ctcgag</b> gtgagcaactgaccg  | pKMS110 KO 5' cyp128 (Xhol)            |
| okms127     | caccatgaagcttggtcagaccaacgtcgggc        | pKMS110 KO 5' cyp128 (HindIII)         |
| okms128     | ccgggtaccgaatagaggtggtcgagc             | pKMS110 KO 3' cyp128 (KpnI)            |
| okms129     | cggtacttaagcgaacgtcggttgttgc            | pKMS110 KO 3' cyp128 (AfIII)           |
| okms213     | cgcggtaccgtggccaacgatgcgcg              | 5' pKMS133 (KpnI)                      |
| okms196     | gtcgacatcgatgcacggcgaagcggttac          | 3' pKMS133 (Clal)                      |
| okms179     | ttcgaaatgaccgcgacacagtccc               | 5' pKMS118 (BstBI)                     |
| okms180     | gacatcgattgcgcggtcagaccaac              | 3' pKMS118 cyp128 (Clal)               |
| okms181     | gcggtaccgtggcttgccatgtcgttatgag         | 5' pKMS130 (KpnI)                      |
| okms196     | gtcgacatcgatgcacggcgaagcggttac          | 3' pKMS130 (Clal)                      |
| okms122     | gtacgtctcgagttgtaggccctcggccagcg        | pKMS109 KO 5' rv2269 (Xhol)            |
| okms123     | gatccagatatcaactgggccgactgtgtagg        | pKMS109 KO 5' rv2269 (EcoRV)           |
| okms124     | gacaggactctagacgcaattattgcgatgcccg      | pKMS109 KO 3' rv2269 (Xbal)            |
| okms125     | gactagag <b>ggtacc</b> agcagtgctctcatag | pKMS109 KO 3' rv2269 (Kpnl)            |

**TABLE S4:** Primers used in this study. Restriction enzymes sequences are in bold and enzyme in parentheses.

### **References:**

- (1) Mougous, J. D.; Senaratne, R. H.; Petzold, C. J.; Jain, M.; Lee, D. H.; Schelle, M. W.; Leavell, M. D.; Cox, J. S.; Leary, J. A.; Riley, L. W.; et al. A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103* (11), 4258–4263 DOI: 10.1073/pnas.0510861103.
- (2) Stover, C. K.; la Cruz, de, V. F.; Fuerst, T. R.; Burlein, J. E.; Benson, L. A.; Bennett, L. T.; Bansal, G. P.; Young, J. F.; Lee, M. H.; Hatfull, G. F. New use of BCG for recombinant vaccines. *Nature* **1991**, *351* (6326), 456–460 DOI: 10.1038/351456a0.