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The Origins of Imaging Genetics 

Guided by convergent evidence from in vitro, psychiatric, and behavioral candidate gene studies 

(e.g., Table 1), imaging genetics began in 1998 before the draft of the human genome was 

complete. Characterizing the replication challenge that is inherent to the field, the first two 

imaging genetics studies (1, 2) reached opposing conclusions on whether the missense ankyrin 

repeat and kinase domain containing 1 (ANKK1) C/T single nucleotide polymorphism (SNP), 

rs1800497 (also known as Taq1A, previously assigned to DRD21), is associated with in vivo 

dopamine receptor type 2 (D2R) availability and density. Pohjalainen and colleagues (1) found 

that the T allele of rs1800497 is associated with reduced dopamine type 2/3 receptor availability 

in the striatum among 54 healthy volunteers. Contrastingly, Laruelle and colleagues (2) found no 

difference in binding according to rs1800497 genotype in a sample of healthy controls (n=47) 

and patients with schizophrenia (n=23); however, a consistent unreported trending association is 

observed in controls. A meta-analysis of in vivo and postmortem studies supports the association 

between the T allele and reduced D2R availability among healthy individuals (3). The 

mechanism underlying these functional associations remains controversial; it is plausible that 

they may emerge as a result of interactions between ANKK1 and DRD2 or linkage disequilibrium 

patterns with nearby SNPs within DRD2, or otherwise unknown interactions. Nonetheless, 

                                                            
1 Notably, this SNP was initially mistakenly believed to be within the dopamine receptor type gene 
(DRD2) but actually resides downstream of DRD2 within ANKK1, which codes for a protein kinase 
involved in signal transduction. 
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evidence suggests that this SNP may be associated with psychiatric phenotypes (4, 5) potentially 

as a result of these functional associations; (but see also (6)) and lack of GWAS significance (7).  

These initial imaging genetic findings were followed in 1998 and 2000 by ligand binding 

studies by Heinz and colleagues in humans and rhesus monkeys that associated SPECT imaging 

of [I-123]β-CIT binding to polymorphisms within the serotonin transporter (SLC6A4) and 

dopamine transporter (SLC6A3) genes (8-11). Alongside in vitro studies, these initial imaging 

genetics studies have been highly influential, inspiring a wealth of research examining 

associations between these genotypes and individual differences in structural and functional 

neural phenotypes as well as psychiatric disorders and variability in behavior (e.g., (12)). Thus, 

from its ligand-based beginnings, imaging genetics has produced findings that converge with 

data from multiple other modalities providing potential mechanistic pathways through which 

genetic variation in some of the most well-studied candidate loci may impact psychiatrically 

relevant behavior and risk. For further historical review please see (13). 

Imaging genetics did not become widespread until it employed functional magnetic 

resonance imaging (fMRI) to examine associations between functional polymorphisms in the 

apolipoprotein E (APOE), catechol-O-methyltransferase (COMT) and serotonin transporter 

(SLC6A4) and neural activation during memory and emotion tasks (14, 15). These studies paved 

the way for the broader adoption of imaging genetics in the context of functional and structural 

MRI due to its lower cost, wide availability and lack of ionizing radiation exposure. Further, the 

larger sample sizes that can be obtained using MRI have led to the development of massive 

datasets through data sharing and large scale studies (16-21). In addition to encouraging new 

ways of characterizing brain function and structure such as examining interactions within and 

between large scale brain networks, these large datasets allow for the application of analytic 
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techniques such as GWAS (22), gene x gene interaction (23), gene x environment interaction 

(24), and pathway analysis (25) that may link both genes and behavioral phenotypes to brain 

function in new and interesting ways. This extension to MRI has enabled the rapid expansion of 

the field and helped popularize the intermediate phenotype approach in psychiatry by helping 

contextualize gene – behavior relationships through the mediating effects of brain (Figure 1A) 

(26), which has subsequently been refined in the form of the research domain criteria (RDoC) for 

psychiatric disease (27). 

 

Gene x Environment Interaction 

Given large effects of the environment, and in particular childhood maltreatment and poverty, on 

the expression of psychopathology, a complete etiologic understanding requires the 

incorporation of environmental factors (28). The interplay between genotype and environmental 

factors (including adversity and advantage) may occur due to selective environmental exposure 

due to genotype (i.e., gene-environment correlation) or due to their interaction (i.e., gene x 

environment interaction, GxE). Inspired by GxE observations in traditional psychiatric genetics 

that have been profoundly influential (29) but have also grown increasingly contentious (30), 

imaging genetics has begun to interrogate GxE using single variant and polygenic approaches. 

For example, studies have linked a functional variant in FKBP5 that has been associated with 

stress-related psychopathology and disease, to threat-related amygdala responsiveness in the 

context of prior childhood maltreatment (31, 32). That this association occurs in the context of 

adversity occurring early in life is consistent with observations in clinical and molecular 

epigenetic research (33). In another recent example, within 3 independent samples, polygenic 

risk for schizophrenia was negatively associated with cortical thickness only among male 
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participants who used cannabis (34). While these findings are intuitively appealing and provide 

ample mechanistic speculation for psychopathology risk, it is important to highlight that GxE 

research within an imaging genetics framework is confronted by a host of unique challenges 

including assessment of the environment in resource intensive studies, the need to appropriately 

model covariates, as well as power limitations introduced by interactive terms; a more complete 

discussion of these unique challenges is presented in (24). 
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