
Standardization of Mechanical Measurements (Supporting 
Information)  1 
SUPPORTING INFORMATION for 
 

Standardized Nanomechanical Atomic Force Microscopy 
Procedure (SNAP) for Measuring Soft and Biological Samples 
 
Hermann Schillers1, Carmela Rianna2, Jens Schäpe2, Tomas Luque3, Holger Doschke2, Mike 

Wälte1, Juan José Uriarte3, Noelia Campillo3, Georgios PA Michanetzis4, Justyna 

Bobrowska5, Andra Dumitru6, Elena T. Herruzo6, Simone Bovio7, Pierre Parot8,9, 

Massimiliano Galluzzi10,11,12, Alessandro Podestà10, Luca Puricelli10, Simon Scheuring13,14,15, 

Yannis Missirlis4, Ricardo Garcia6, Michael Odorico9,16, Jean-Marie Teulon9,17, Frank 

Lafont7, Malgorzata Lekka5, Felix Rico13, Annafrancesca Rigato13, Jean-Luc Pellequer9,17, 

Hans Oberleithner1, Daniel Navajas3, Manfred Radmacher2* 

 

1 Institute of Physiology II, University of Münster, 48149 Münster, Germany 
2 Institute of Biophysics, University of Bremen, 28359 Bremen, Germany 
3 Institute for Bioengineering of Catalonia, University of Barcelona, and CIBER Enfermedades Respiratorias, 
08028 Barcelona, Spain 
4 Department of Mechanical Engineering & Aeronautics, University of Patras, 265 04 Patras, Greece 
5 Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland 
6 Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3. 28049 Madrid, Spain 
7 CMPI-CIIL, CNRS UMR 8204 - INSERM U1019, Institut Pasteur de Lille - Univ Lille, F-59019 Lille Cedex 
8 BIAM, CEA, Aix-Marseille Univ., Saint-Paul-Lez-Durance 13108, France 
9 CEA Marcoule, iBEB, Department of Biochemistry and Nuclear Toxicology, F-30207 Bagnols-sur-Cèze, 
France 
10 CIMaINa and Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy 
11 College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and 
Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District 
Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, PR China 
12 College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and System of Ministry of 
Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China 
13 U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 13009 Marseille, 
France 
14 Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065 
15 Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065 
16 ICSM, UMR 5257, CEA, CNRS, ENSCM, Univ. Montpellier, Site de Marcoule – Bât. 426, BP 17171, 30207 
Bagnols-sur-Cèze, France 
17 Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France 
	
  



Standardization of Mechanical Measurements (Supporting 
Information)  2 
 
Supporting Information  
 
Supporting Information 1: AFM data analysis 3 

- Thermal data - determination of force constants 3 
- Indentation data 5 
- Analysis of force indentation data  6 

 
Supporting Information 2: Calibration of AFM deflection Sensitivity  9 
 
Supporting Information 3: Deflection sensitivity of a vibrating cantilever  11 

- Eigenmodes of a vibrating or supported cantilever  11 
- Amplitude sensitivity correction: the κ factor 12 
- Effect of cantilever tilt  13 

 
Supporting Information 4: Thermal vibration spectra of cantilevers  16 

- Power spectral density of a single harmonic oscillator (SHO)  17 
- Power spectral density of a Lorentzian oscillator  18 
- PSDs of vibrating cantilevers in air and water  19 

 
Supporting Information 5:  
 SNAP: standardized nanomechanical AFM procedure  20 
 
Supporting Information 6: Application of SNAP on soft gels  22 
 
Supporting Information 7: Errors in determining elastic properties  23 

- Estimation of errors in determining the elastic modulus  23 
- Tip geometry and probe radius  24 
- Force Constants  25 
- Deflection Signal  27 
- Accuracy of the Hertz fitting procedure - contact point  27 
- Error Propagation  28 
 

Supporting Information 8: The SNAP protocol sheet  30 
 
Supporting Information 9: Typical Force Data on Gels  33 
 
Supporting Information 10: Typical Force Data on Cells  36 
 
Supporting Information References  39 
  



Standardization of Mechanical Measurements (Supporting 
Information)  3 
 
 
Supporting Information 1: AFM data analysis 
 
 
Thermal data - determination of force constants 
 
Several methods have been discussed in the literature for calibrating the force constant of AFM 
cantilevers1,2. Most prominent are the added-mass method3, the use of reference cantilevers4, 
and the thermal tune method5. An alternative is a calculation of the force constant from the 
geometrical dimensions6,7. The latter is not used here because it requires the knowledge of 
phenomenological factors and works best for stiffer cantilevers than those used here.  
 
Because the added mass method is destructive and the reference cantilever method is 
cumbersome, most often the thermal noise method is used. The principle of the thermal noise 
method is very elegant; however, it needs to be discussed here in some detail, since there are a 
few pitfalls with this method. The physics behind it is the Boltzmann's equipartition theorem: 
each degree of freedom of any physical system (e.g. an AFM cantilever) will have a thermal 
energy of 1/2 kB T, where kB is the Boltzmann's constant and T is the absolute temperature. If 
k is the cantilever's spring constant and x is the vibration amplitude, this reads as follows: 
 
!
"
𝑘 𝑥" = !

"
𝑘&𝑇    (S1) 

 
The angle brackets denote the time average of the amplitude of vibration. AFM cantilevers are 
not single harmonic oscillators, but exhibit several vibrational modes, each mode actually 
carries 1/2 kBT of energy. Because each mode has a distinct resonance frequency, it is easily 
possible to separate the modes from each other in the frequency domain. Thus, AFMs usually 
record the fluctuations of the AFM cantilever and present the data as its Fourier transform, i.e. 
as the power spectral density (PSD). In this sense eq. S1 is written here only for didactic reasons 
and should not be understood literally. 
 
The vibrational modes of a cantilever are different for a free cantilever (as used in a thermal) 
and a supported cantilever (as in contact with the sample), so the sensitivity factor used for 
converting photodiode signal (measured in volts) to cantilever deflection (in nanometres) is 
different for the two situations. Since the amplitude sensitivity of a free cantilever cannot be 
calibrated easily in AFM, usually a correction factor κ is used, to calculate the amplitude signal 
from the measured deflection signal.  
 

𝜅 = )*+,*-./012*13/./4/.56788
)*+,*-./012*13/./4/.569:8;

   (S2) 

 
𝑥 = 𝜅 ∗ 	𝑑   (S3) 
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In our experiments the value for κ slightly deviates from the common values (1.08 or 1.09), for 
reasons given in the section “Amplitude sensitivity correction: the κ factor” in the Supporting 
information 3, amplitude sensitivity correction: the k factor. 
 
Combining eq. S2 and S3 we can calculate the force constant, as soon as we know the time 
average of the deflection signal squared: 
 

𝑘 = ?@A
BC DC

= !
BC
∗ ?@A

DC
= 𝑒 ∗ ?@A

DC
   (S4) 

 
In some of the literature (e.g. 8) a correction factor e=1/κ2 can also be found. Depending on the 
instrument, the deflection signal is directly corrected by the κ factor as described above or the 
result of the power spectral density analysis is corrected accordingly.  
 
The mean square displacement could either be calculated by averaging over the deflection 
signal as a function of time, or by integrating the PSD over a specified bandwidth. Alternatively, 
and often more accurate, a model function is fitted to the PSD and then the integration is done 
analytically over the model function to yield the mean square displacement. An obvious choice 
of a model function is a single harmonic oscillator, which will give the following result for the 
force constant (see supporting information 4): 
 

𝑘2FG =
"?@A

HIJKLMNC
   (S5) 

 
where Q, ADC, and ω0 are the quality factor, the amplitude at DC (at frequency 0) and the 
resonance frequency, respectively. The derivation is given in the supporting information 4, 
Power spectral density of a single harmonic oscillator (SHO). 
 
From a physical point of view, the above derivation holds for cantilevers in air or when 
immersed in liquids. In liquids, like water, damping is increased, but more importantly the 
effective mass is also increased, since water is dragged along with the cantilever. This results 
in a decrease of resonance frequency and in a widening of the resonance peak9, which 
aggravates recording of good thermal spectra in water. Since the soft cantilevers used here are 
highly damped in liquids (low Q), it has been suggested to use the Lorentzian model instead8. 
Pirzer and Hugel have extended this model such that the phenomenological parameters C1 and 
C2 can be understood in terms of physical quantities (see supporting information 4, eq. S35 and 
S36). Here we will stick with the nomenclature used in most instruments: 
 

𝑘O0P*1.Q =
?@A

NR
NC
∗ S
CTUP-.U1

VJ
NC

   (S6) 

 
Soft cantilevers as used here, qualify as highly damped systems, independently of whether the 
data are acquired in air or in liquids. In many cases, the results of the two models do not deviate 
much, however as a general rule the fit of a SHO followed air data better, whereas the 
Lorentzian model looked better for liquid data. The difference only becomes apparent at low 
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amplitudes, i.e. at the flanks of the peaks. Here a logarithmic display can help, which is not 
available in all built-in software as provided by the AFM manufacturers. 
 
Indentation data 
 
Indentation data on gels and cells were analysed within the instrument's software, or 
alternatively by custom routines including software written in the analysis package Igor 
(Wavemetrics, Oswego, WA). A fit of the Hertz/Sneddon model (assuming a given force 
constant and tip geometry) was applied to the data to obtain the Young's modulus (E, elastic 
modulus) values. A functionally identical version of the fit procedure is available as an open 
source Java online tool10. 
 
In a force curve we measure the deflection as a function of z height of the sample. Since the 
offset of the deflection is arbitrary, we need to subtract the offset d0 (the deflection reading of 
the free cantilever) before calculating the force F: 
 
𝐹 = 𝑘- ∗ 𝑑 − 𝑑Y    (S7) 
 
The deflection offset d0 is usually determined by averaging some part of the force curve, where 
the tip is not in contact with the sample surface. This requires that the force curve be reasonably 
flat, i.e. long-range interaction forces are negligible and no other artefacts are present in the 
data. Occasionally we have found that force curves have a tilted baseline. This may be due to 
laser light being reflected from the sample, detector-cantilever-laser alignment issues, or 
mechanical drift in the optical detection system.  
 
The indentation δ is the difference between deflection and z-height, which also needs to be 
calculated relative to the contact point (z0) at which the tip contacts the sample: 
 
𝛿 = 𝑧 − 𝑧Y 	−	 𝑑 − 𝑑Y    (S8) 
 
Mathematically, we could combine the two offsets in one, however for procedural reasons it is 
easier to keep them separated. Once we have calculated force and indentation, we can employ 
an appropriate model to calculate the elastic properties of the sample, namely the elastic 
modulus. The simplest model is the Hertz model11 and its various implementations, e.g. 
originally derived by Sneddon12. Strictly speaking, the assumptions of the Hertz model (purely 
elastic sample of infinite thickness, homogeneous and isotropic sample, no adhesion) are all not 
given for cells, it works very well in many cases and is therefore widely used. The advantage 
of the Hertz model is that it allows comparing measurements between different groups, since it 
takes different tip geometries into account. Since cells behave in a viscoelastic manner, which 
means that energy is dissipated into the cell when they are indented by the AFM tip (hysteresis 
in the force-deformation curve) we had to keep the viscous part (e.g. hysteresis) constant and 
small by using a probe velocity of 8 µm/s  
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Analysis of force indentation data 
 
In AFM measurements, the Hertz model relations for force versus indentation data are usually 
used for the following three tip geometries: paraboloid, cone, and pyramid. The paraboloid 
model is also applied when using spherical probes. This is valid for small indentations only, i.e. 
much smaller than the radius, which is often neglected. Since the contact problem of a rigid 
pyramidal tip indenting an elastic half-space is not solvable analytically, most often the cone 
model is used instead in AFM studies. Alternatively, approximations could be used for 
pyramidal tip data, as outlined by Rico et al14, based on the derivations from Bilodeau15 and 
Barber et al16. We will use here the relation for a four-sided pyramid. Unfortunately, the 
pyramid model is not implemented in commercial AFM software packages. We have used here 
custom-built analysis software based on the package Igor, where all tip models are available. 
Details of the analysis procedure have been described elsewhere14,17.  
 

𝐹\UPU]0,0/D =
^
_
∗ `
!abC

∗ 𝑅 ∗ 𝛿_ "   (S9) 
 
𝐹-01* =

"
H
∗ `
!abC

∗ 𝑡𝑎𝑛 𝛼 	∗ 	𝛿"   (S10) 
 
𝐹\5PUh/D =

!
"
∗ `
!abC

∗ 𝑡𝑎𝑛 𝛼 ∗ 	𝛿"  (S11) 

 
 
where R is the radius of curvature at the apex of the paraboloid (equivalent to the radius of 
spherical probes, when this model is applied to that case), α is the half-opening angle of the 
cone or a four-sided pyramid, respectively, and ν is the Poisson ratio. However, some of the 
recent tip geometries commercially available are not regular, presenting different angles for 
each face. A reasonable approximation for that case would be using the average of all angles 
θi, or, better, the average of all tan(θi), which is the geometry factor in the force-indentation 
relationship. 
 
The most critical point of the analysis procedure is the determination of the contact point 
between the probing tip and the sample surface. On a stiff sample a force curve will exhibit a 
sharp transition at the contact point, where the slope jumps from 0 (free cantilever) to 1 (in 
contact). In soft samples, the Hertz model actually predicts a smooth transition, where not only 
the deflection data itself, but also the slope will smoothly increase from zero (see figure S1).  
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Figure S1 
Analysis of a typical force curve recorded with a colloidal tip on a soft polyacrylamide gel. The lower left panel 
shows the measured raw deflection and z-height data (the red curve is showing AFM data and the blue curve the 
Hertz fit). After subtracting the offsets of deflection and z-height (zero force and contact point) the data to be 
further analysed are plotted in the top left panel. From these data the indentation and deflection are calculated 
using eq. S7 and S8, which are plotted on a linear or logarithmic scale on the right. A fit of the appropriate Hertz 
model (sphere here) results in the elastic modulus. From this value a theoretical force vs. indentation trace (blue: 
simulated force) and a theoretical force curve is calculated, which follows very nicely the measured data (red 
trace). Deviations are visible in the log-log display of force vs. indentation (lower right panel) for very small forces 
(below 20 pN) due to the thermal noise of the cantilever. 
 
Since the soft cantilevers we are using here will have a thermal force noise level on the order 
of 20 pN, simple procedures, like thresholding, will result in contact point values, which are 
systematically off. We have used the following procedure here to determine the contact point:  
 
(1) Determining the deflection offset by averaging some portion of the force curve data 
(typically the first 10 % of the data). 
(2) Introducing a first guess of the contact point position as the z height where the deflection is 
larger than some threshold value (typically 10 nm). This value will be systematically wrong! 
(3) Calculating the force vs. indentation data based on known offsets values (from points 1 and 
2). A fit of the Hertz model to the data within some range, safely above the threshold value 
(typically between 50 nm and 200 nm deflection), is done. Here, z0 is included as a fit 
parameter, so in addition to the elastic modulus E a new estimate of the contact point is obtained 
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(4) This new contact point position is used to recalculate force vs. indentation data and a Hertz 
fit is done again. 
(5) We repeat points 3 and 4 until the contact point does not change considerably any more 
(typically 3 fit rounds are sufficient). 
 
The final result of this procedure is shown in figure S1, where the four values for the contact 
point (one after thresholding, three by the successive rounds of fit) are depicted as vertical lines 
in the upper left panel. The grey vertical line shows the contact point determined by 
thresholding, which is systematically different from the other three obtained by the fit, which 
change only marginally, showing that our procedure converges nicely. 
 
To test how well this fitting procedure works, we have analysed artificial force indentation data 
with added noise (see supporting information 7). We have picked a noise value of 0.5 nm in the 
deflection signal, which corresponds to the thermal noise level typical in our AFM data. In a 
second simulation, a noise level of 2 nm has been picked, which could serve as an upper limit 
of noise in AFMs. 
 
Noise in the data will lead to a misjudgement of elastic modulus, but also in the contact point. 
The latter is actually more important, since if the contact point is wrong by same value, this 
will translate in different indentation values and thus affect the elastic modulus calculated. We 
have calculated, for different analysis ranges, the elastic moduli of our fake data with a nominal 
modulus of 10 kPa. When including only a small portion of the data in our fit, errors in elastic 
moduli can be very substantial, i.e. up to 5 % for the data with 0.5 nm and up to 20 % for the 
noisy data (see supporting information 7, figure S11). If the analysis range is extended to more 
than 300 nm and the contact point is included in the analysis, errors will become very small: 
less than 0.2 % in the 0.5 nm noise data, and less than 1 % in the noisy data (2 nm noise). There 
is a clear correlation between misjudgement of contact point and calculated elastic modulus. 
This supports the above argumentation that the most critical part of data analysis is the way the 
contact point is determined. In our experience, it is necessary to control the range of data 
included in the fit and to include the contact point as a parameter adjusted by the fit itself. Only 
an iterative procedure, i.e. applying the fit routine several times to the data, and adjusting the 
contact point and recalculating the force and indentation data accordingly, will lead to 
reasonable elastic values, if the results of this iteration process are converging. The importance 
of determination of the contact point in analysing mechanical data, has been pointed out 
previously18,19. 
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Supporting Information 2: Calibration of AFM deflection sensitivity 
 
Figure S2 shows a typical force curve recorded with a pyramidal tip on a clean glass substrate 
in air and in water, respectively. When using soft cantilevers, we see large adhesion forces 
(capillary forces) in air, resulting in non-linearities in the deflection signal due to saturation 
and/or friction. This may result in differences in slope between approach and retract curves. 
Therefore, we do recommend using only force curves in liquids (water, buffer, cell culture 
medium) to set the deflection sensitivity. 
 

 
Figure S2 
Force curve taken in air (left) and water (right) with a soft cantilever (nominal force constant 10 mN/m). Very 
large adhesion can be seen on retract. This results in high friction and saturation of the cantilever sensor in contact, 
which makes it difficult to determine the slope accurately. The force curve taken in water shows virtually no 
adhesion and no difference between approach and retract curve is visible in the contact region. 
 
Even in perfect conditions, i.e. in water with negligible adhesion, there are still some non-
linearities present in the data. This is apparent when looking at force curves with sufficient 
detail. Figure S3 shows two force curves, recorded in water on a clean glass support, with a 
pyramidal tip and a colloidal probe as used in this study. When zooming in the region around 
the contact point very little electrostatic repulsion can be seen in the case of the pyramidal probe 
(on the order of 1 nm corresponding to 10 pN), but some substantial rounding of the deflection 
in the case of the colloidal probe is visible. This could possibly be due to a thin (20-40 nm) 
layer of contaminants on these tips, which is inevitable after using them repeatedly. 
 
When calculating the slope of the force curve for different parts of this force curve, we get 
values, which differ slightly from each other. Figure S4 shows the mean slope calculating from 
sliding windows of 50 nm width along the force curve. The ones centred around 25 nm give 
much smaller values than the ones at larger deflections. However, even in the range between 
100 to 350 nm, where the data looks reasonably linear to the eye, the variations are on the order 
of 7 % for the pyramidal probe and 10 % for the colloidal probe.  
Since these deviations from the slope 1 are probably due to systematic errors (non-linearities in 
the deflections sensor, or in piezo, or due to friction and interaction forces between tip and 
sample), the situation does not improve by averaging several force curves as is often done. 
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Figure S3 
Two force curves taken in water with a pyramidal (red trace in A & B) and a colloidal probe (6.62 µm silicon 
dioxide bead) (blue trace in A & B). Panel B is a zoom-in of the entire dataset (A), showing that close to the 
contact point we get deviations from a perfect force curve. In the case of the pyramidal probe this may be due to 
electrostatic repulsion, in the case of the colloidal probe this may reflect the fact that the surface of the bead this 
may be due to some surface contamination layer. In C the slope values calculated in sliding windows of 50 nm 
width calculated from the force data of A are shown. Even when disregarding the extreme values at 25 nm close 
to the contact point, the variation in slope is 7 % for the pyramidal probe and 10 % for the colloidal probe. 
 
Figure S4 shows a histogram of slopes of 100 force curves measured over an area of 10 µm 
times 10 µm. The variation between force curves, when analysed in the same way is very small, 
hence the systematic errors discussed in figure S3 is larger than the measurement error reflected 
in repeated measurements. 
 

 
Figure S4 
Histogram of the slope of 100 force curves taken over an area of 10 by 10 µm. The standard deviation is about 
0.01. 
  

C 

A B 
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Supporting Information 3: Deflection sensitivity of a vibrating cantilever 
 
Eigenmodes of a vibrating or supported cantilever 
 
For a rectangular beam the normal modes will have the following shapes20: 
 

𝑥 5 = 𝐴 ∗ 𝑠𝑖𝑛 𝛼/ + 	𝑠𝑖𝑛ℎ 𝛼/ ∗ 𝑐𝑜𝑠 𝛼/ ∗
5
O
	− 	𝑐𝑜𝑠ℎ 𝛼/ ∗

5
O

− − 𝑐𝑜𝑠 𝛼/ +

	𝑐𝑜𝑠ℎ 𝛼/ ∗ 𝑠𝑖𝑛 𝛼/ ∗
5
O
	− 	𝑠𝑖𝑛ℎ 𝛼/ ∗

5
O

  (S12) 

 
where x is the amplitude at position y of a cantilever of length L. The parameters αi depend on 
the boundary conditions, thus being different for free and fixed beams, corresponding to the 
cases of a free cantilever and a cantilever in contact with a support, respectively. 
 
The resonance angular frequency ωi of each mode is given by: 
 

𝜔/ = 𝛼/" ∗
`qC

!"rOC
  

 (S13) 
 (S13) 
 
 Free cantilever Fixed cantilever 

Mode αi ωi [kHz] αi ωi [kHz] 

0 1.8751 ω0 3.9266 4.39 * ω0 

1 4.69409 6.27 * ω0 7.06858 14.21 * ω0 

2 7.85476 17.54 * ω0 10.2102 29.65 * ω0 

3 10.9955 34.39 * ω0 13.3518 50.70 * ω0 
 
Table S1 
Values for the first four αi for a free cantilever and a cantilever in contact with the sample, and the resulting 
fundamental frequencies. 
 
The modes are well separated in frequency, thus the analysis of thermal fluctuations of a 
cantilever in frequency space will easily separate the different modes. Figure S5 shows the first 
three modes of a free and a fixed AFM cantilever. 
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Figure S5 
First three normal modes of a freely oscillating (A) and fixed (B) AFM cantilever. As can be seen all modes will 
change the orientation at the end of the cantilever, thus they will be picked up (to some degree) by the optical lever 
detection. The easiest way to discriminate between different modes is by frequency, i.e. looking at the PSD (power 
spectral density) of the deflection signal. 
 
 
Amplitude sensitivity correction: the κ factor 
 
As shown before, the mode of vibration of a free and a supported cantilever is different, and 
hence the orientation at its end will be different for the two cases, even for the same deflection, 
or better amplitude in the case of the free cantilever. Thus, the signal measured by the optical 
lever scheme, and calibrated for an end supported cantilever (a tip in contact with a rigid 
substrate in a force curve) needs to be corrected to give the right amplitude value.  
This correction factor κ can be derived from first principles, taking into account the different 
eigenmodes of oscillations in the case of a rectangular cantilever. 
 
Based on the work by Butt and Jaschke, Proksch et al suggested a value of 1.0922 for κ.  
 
In a subsequent work Hutter23 modified this correction considering cantilever tilt and finite tip 
height:  
 

𝜅 = 	1.09 ∗ 	
!aCMw .U1 ∝

!ayMCw.U1 z
  (S14) 

 
Here D is the tip height, L the cantilever length and α the tilt angle of the cantilever. For 
pyramidal tips typical values (D = 4µm, L = 320 µm, α = 12 degrees) we will get the following 
value, which is used in this study: 
  
𝜅 = 	1.09	 ∗ 	0.9989	 = 	1.088	~1.09  (S15) 
 
Hutter23 suggested a further correction, which considers cantilever tilt by adding a cos(α) term 
to eq. S14. However, as outlined (but not supported by a derivation) by Ben Ohler24 this 
correction is not necessary (see below: effect of cantilever tilt).  
 

A B 
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The applicability of this κ factor has been tested experimentally by directly measuring the 
deflection of free and fixed end cantilevers with a vibrometer25. However, the above result is 
only exact for rectangular cantilevers and not for triangular cantilevers as used in this study and 
in most other AFM studies. There is a number of publications, where κ values have been 
determined by finite element simulations (e.g. see Pirzer and Hugel8), or more elaborate models, 
like equivalent point mass models26, which basically come to similar values. The best guess, 
which is accepted by the community, for the soft triangular cantilevers used in this study seems 
to be a value of 1.10, which is used throughout this manuscript. Nota bene: in most commercial 
instruments a deflection correction factor of 1.08 or 1.09 is set by default by the manufacturer, 
which needs to be corrected. 
 
Effect of cantilever tilt 
 
Hutter23 pointed out that an error is made in calibration of the force constant by a thermal tune, 
when neglecting the tilt angle of the cantilever. In short: in AFM the deflection perpendicular 
to the surface is measured, or more accurately the deflection sensitivity is set by a force curve, 
thus it is calibrated such that the deflection signal measures only the component of the true 
motion of the cantilever. This effect is in addition to the above-discussed point of considering 
the different modes of motion of a free and a supported cantilever, which are dealt with the κ 
factor.  
So, to obtain the true force constant of the cantilever, we need to multiply the amplitude of 
motion by a factor of 1 / cos(α), thus the force constant obtained from the thermal tune using 
eq. S33 or S39 needs to be multiplied by a factor 1 / cos2(α) to obtain the true force constant. 
However, as it has been pointed out by Ohler24, in AFM we do not use the true force constant 
of an AFM cantilever, but only its component, which is perpendicular to the surface. Again 
here the tilt angle has to be considered. Naively, one would expect that this could be taken care 
of by an additional correction factor cos(α). Ben Ohler stated, without derivation, that actually 
a correction factor of cos2(α) is appropriate here. In consequence, the two factors cancel and 
can be neglected, which is done in all instruments and in virtually all literature on this topic. 
Since, the derivation has not been published yet, we will give the argument here: 
 
Let's assume we have calibrated a cantilever using the thermal tune in an AFM with a tilt angle 
α and obtained a value kAFM. Since we have measured only a component of the cantilever's true 
motion, we need to correct the deflection signal by a factor of 1 / cos(α), or we get the true force 
constant ktrue by the following expression: 
 
𝑘.P}* = 𝑐𝑜𝑠" 𝛼 ∗ 𝑘L~�  	S16) 
 
This can be understood by the following rationale. The measured deflection signal d in AFM is 
actually identical to the z-motion of the sample Δz. The true deflection of the cantilever Δx can 
be written as: 
 
𝑑 = ∆𝑧	 = ∆𝑥	 ∗ 	𝑐𝑜𝑠𝛼  (S17) 
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Here α is the tilt angle of the cantilever (see figure S6). 
 

 
Figure S6 
Schematic drawing illustrating cantilever tilt and the parameters used in the text 
 
Consequently, we need to distinguish between the apparent force measured in AFM FAFM and 
the true force acting perpendicularly on the cantilever Ftrue. The work to deflect the cantilever 
can then be expressed as true force times true deflection, or apparent force times apparent 
deflection, which needs to be identical since we describe the same process here in two different 
ways: 
 
𝑊L~� = 𝐹L~� ∗ 	∆𝑧 (S18a) 
𝑊.P}* = 𝐹.P}* ∗ 	∆𝑥  (S18b) 
 
The forces can be expressed by their respective force constant and the corresponding distance: 
 
𝐹L~� ∗ 	∆𝑧	 = 	𝐹.P}* ∗ 	∆𝑥 (S19a) 
𝑘L~� ∗ 	∆𝑧" 	= 	𝑘.P}* ∗ 	∆𝑥"  (S19b) 
 
By rewriting eq. S19b and using eq. S17, we get:  
 

𝑘L~� 		= 	 𝑘.P}* ∗
∆�C

∆�C∗-03Cz	
	 (S20) 

 
𝑘L~� 		= 	 𝑘.P}* ∗

!
-03Cz	

	 (S21) 
 
Eq. S21 is identical with S16. 
 
Using an AFM thermal for determining the force constant, we do not need to consider cantilever 
tilt. If we just use the apparent deflection signal, we will actually only measure a component of 
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the true deflection, hence we will get the apparent force constant and not the true constant, 
which is actually what we need in AFM measurements.  
 
However, if the force constant is measured in a vibrometer, which will measure the true 
deflection, we will get the true force constant. This has to be corrected for cantilever tilt angle, 
when the cantilever is used in AFM. 
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Supporting Information 4: Thermal vibration spectra of cantilevers 
 
The thermal vibration spectrum of a cantilever can be understood by looking at a dampened 
single harmonic oscillator (SHO). This will reproduce the spectrum for one vibration mode, or 
in other words the higher modes will need to be modelled by another SHO, which may have a 
different force constant and resonance frequency. A SHO is characterized by its resonance 
frequency, force constant, mass, and damping coefficient. The resonance frequency and the 
force constant are measurable quantities, whereas mass and damping will be effective 
quantities, which are hard to derive from first principles due to the complicated motion of a 
cantilever in a viscous medium (air or water). Since damping for the soft cantilevers is high, 
even in air, it has been suggested to use a Lorentzian spectrum as an alternative. We have used 
both and found that a SHO fits best our data in air, whereas a Lorentzian seems to work better 
in water (see below). 
 
A vibrating cantilever will obey Boltzmann's equipartition theorem: in each vibrational mode 
the average kinetic and potential energy will be 1/2 kB T each, where kB is Boltzmann's constant 
and T is the absolute temperature. The average potential energy of the vibrating cantilever is 
given by multiplying its force constant k with the time average of the amplitude squared <x2>, 
often referred to as mean square displacement MSD: 
 
!
"
𝑘 𝑥" = !

"
𝑘&𝑇  (S22) 

 
To calculate the MSD in real space, we need first to subtract the average value x0 from the 
displacement. 
 

𝑥Y = lim
A→�

!
A

𝑥	𝑑𝑡A
Y   (S23) 

 
The mean square displacement will then be: 
 

𝑥" = lim
A→�

!
A

𝑥 − 𝑥Y 	"𝑑𝑡
A
Y   (S24) 

 
If the mean square displacement has been measured directly, or it has been calculated from the 
Power Spectral Density, we can calculate the stiffness: 
 

𝑘 = ?@A
�C

  (S25) 
 
Since it is difficult (actually impossible) to disentangle the contributions of the different 
oscillating modes in the time domain, we need to process our data in the frequency domain. 
This approach is feasible since the eigenmodes are well separated in frequency space. 
 
  



Standardization of Mechanical Measurements (Supporting 
Information)  17 
Power spectral density of a single harmonic oscillator (SHO) 
 
The SHO with an external (thermal) force, which has a white power spectrum, will obey the 
following equation of motion: 
 
𝑚𝑥 +𝑚𝛾𝑥 + 𝑘𝑥 = 𝐹Aq*PhU,		 (S26)  
 
If driven at the frequency ω the resulting amplitude will be: 
 

𝐴I = 	
~J
h

!
IJCaIC CTIC�C

  (S27) 

 
This can be rewritten in: 
 

𝐴I = 	𝐴)�𝜔Y"
!

IJCaIC CTVJ
CVC

�C

  (S28) 

 
or in terms of power: 
 

𝑃I = 	𝐴)�" ∗ 	𝜔Y^
!

IJCaIC CTVJ
CVC

�C
  (S29) 

 
The thermal force is assumed to be white noise; so all frequencies are excited with the same 
amount of force. The total energy in the oscillator is given by Boltzmann's equipartition 
theorem. Since Parseval's theorem connects frequency space with real space, we can find the 
following relations: 
 
If we have measured data xt in the time domain, the Fourier transform xω will be given by: 
 

𝑥I =
!
"H

𝑥.𝑒a/I.
�
a� 𝑑𝑡  (S30) 

 
Parseval's theorem says: 
 

𝑥" = 𝑥."𝑑𝑡
�
a� = 𝑥I"𝑑𝜔

�
a�   (S31) 

 
We can use this result in combination with equation (S25) to find an expression for the force 
constant: 
 

𝑘 = ?@A
�C

= ?@A
�VCDI

�
��

= ?@A
LVCDI

�
��

  (S32) 

 

𝑘 = "?@A
HIJKLMNC

  (S33) 
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Power spectral density of a Lorentzian oscillator 
 
Since the soft cantilevers used here are highly dampened (in air the Q is on the order of 10, in 
water it may even be on the order of 1) Pirzer and Hugel 8,27 have suggested to use a Lorentzian 
PSD instead of the PSD of a SHO (eq. S29): 
 
𝑃IO0P*1.Q = 	

�R
IaIJ CT�C

+ 𝐴�q/.*
"   (S34) 

 
Here C1 and C2 are phenomenological parameters, which can be related to physical quantities, 
by the following substitutions: 
 

𝐶! = 	
LMN
C ∗	IJC

^KC
  (S35) 

𝐶" = 	
IJC

^KC
= �R

LMN
C   (S36) 

 

𝑃IO0P*1.Q =
LMN
C ∗	IJC

^KC
∗ 	 !

IaIJ CTVJ
C

��C
+ 𝐴�q/.*

"   (S37) 

 
Integrating equation (S34 or S37) will result in the following mean square displacement1: 
 

𝑥" = �R
�C
∗ H

"
+ 𝑎𝑟𝑐𝑡𝑎𝑛 IJ

�C
  (S38) 

 

𝑥" = LMN
C ∗	IJ
"K

∗ H
"
+ 𝑎𝑟𝑐𝑡𝑎𝑛 2𝑄   (S39) 

 
For low damping, i.e. in air, Q will be large and the square brackets can be approximated by a 
value of π. Here, we use the exact formula (eq. S38, S39), since we want to apply it to high 
damping, i.e. low Q cases.  
 
Combining eq. S38 and eq. S39 we get the final result: 
 
𝑘O0P*1.Q =

?@A
NR
NC
∗ S
CTUP-.U1

VJ
NC

  (S40) 

 
The alternative form using the replacements (eq. S35 and S36) will look like:  
 
𝑘O0P*1.Q =

?@A
�MN
C ∗	VJ
C� ∗ S

CTUP-.U1 "K
    (S41) 

 
                                                             
1 The analytical integration has been done with Wolfram Mathematica Online Integrator: 
http://integrals.wolfram.com/index.jsp 
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PSDs of vibrating cantilevers in air and water 
 

   
Figure S7 
PSD of thermal noise of the same soft cantilever recorded in air (A) and in water (B). Data are acquired with a 
MFP3D instrument and analysed in Igor. Both data are fitted by a Lorentzian and a SHO model to calculate the 
force constant. Values agree reasonably well for all cases and are on the order of 14 mN/m. 
 
Besides numerical errors due to fitting the model function, there are only two main error sources 
in this procedure: 
(1) Frequency dependent noise in the instrument will show up as additional PSD, thus 
artificially resulting in a force constant, which is lower than the true value. In AFM usually 
noise filter (low pass filters) are implemented that will reduce high-frequency noise. In state of 
the art instruments this filter will have a cut-off frequency of 1 MHz or even higher. So they 
are not relevant for the soft cantilevers used here. Low frequency noise, which may be due to 
thermal drift in the instrument or environmental noise like building vibrations, is a more serious 
problem, especially for the soft cantilevers used here in liquids, where the resonance drops to 1 
kHz. In some instruments a high pass filter is implemented, to cut off low-frequency noise. This 
will result in substantial errors in thermals. 
(2) The force constant will in both cases be proportional to the inverse of the deflection signal 
squared. So, if the deflection signal has not been calibrated correctly, the force constant will be 
wrong as well. This is a serious source of errors, because errors in the deflection will enter 
quadratically the force constant. 
 
 
  

B A 
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Supporting Information 5: The SNAP: standardized nanomechanical AFM procedure 
 
For highly accurate and reproducible mechanical measurements of soft and biological samples 
we found the following step-by-step protocol to give the best results: 
1. Use a cantilever with well-characterized force constant (e.g. using a vibrometer or a reference 
cantilever to measure the force constant). 
2. Use a tip with well-defined geometry. Currently this asks for spherical probes. In the future, 
it is conceivable that pyramidal tips are sufficiently defined as well (cylindrical tips may 
become an interesting alternative28 once they become commercially available).  
3. Calibrate the deflection signal in the same buffer that will be used later in the real experiment 
(e.g. water or cell buffer). 
4. Do not change laser adjustment or instrument settings, which will affect the deflection 
calibration. 
5. Record a thermal tune.  
6. Analyse the thermal tune to obtain the apparent force constant in the AFM (kAFM) and adjust 
the cantilever deflection calculating the correction factor λ as defined later (this could be done 
with the help of our open source Java applet). 
7. Record force curves or best force maps, which will allow you to correlate position and elastic 
moduli. This is of particular interest for non-homogeneous samples like cells, where the elastic 
properties strongly vary over the cell area (central or peripheral region). 
8. Analyse the force curves with the Hertz model or any other appropriate model to extract 
elastic moduli values. 
 
For step 6, if we have a very accurate value for the force constant, e.g. by vibrometer, kIF and a 
second value determined by an AFM thermal kAFM (which shall be wrong because the deflection 
signal has been calibrated erroneously) we can calculate a correction factor λ, which will give 
the correct deflection d* when being multiplied with the measured deflection d: 
 
𝑑∗ = 𝜆	 ∗ 	𝑑  (S42) 
 
Since the force constant k is proportional to the PSD (see supporting information 4), we can 
write the following proportionalities. kAFM will be proportional to the measured deflection signal 
squared. Since d is erroneous, kAFM will be as well. 
 
𝑘L~� ∝ 	 !

DC
   (S43) 

 
If d* is the accurately calibrated deflection signal, it will be proportional to the accurate force 
constant kIF.  
 
𝑘�~ ∝ 	

!
D∗C

= !
�	∗	D C  (S44) 
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However kIF should be first corrected with the tilt angle of the cantilever α (see supporting 
information 3) under which it is mounted in the AFM. 
 

𝑘�~-0PP*-.*D 	= 𝑘�~ 	 ∙
!

���C �
	 (S45) 

 
So, we can calculate the correction factor λ from the ratio of the force constants, determined by 
AFM thermal and vibrometer: 
 

𝜆	 = 	 ?�� 
?¡�¢£778¢¤8;

	  (S46) 

 
Once we know the correction factor, we can calculate d* from eq. S42, write it in the software 
and do not change anymore the experimental settings.  
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Supporting Information 6: Application of SNAP on soft gels 
 
Initially SNAP was tested on polyacrylamide gels, with elasticity values comparable to those 
of living cells. Gels were prepared in Bremen and mechanical properties were measured with 
the local AFM before sending samples to the other participating labs. When measuring gel 
elasticity with the same instrument, elastic moduli were very homogeneous. However, when 
measurements were performed from different users in different locations, values were very 
different (see Figure 1 of the main text). To test the stability of the gels after many months 
circulating in different labs, in another set of experiments mechanical properties of gels were 
measured again in Bremen with the same instrument and tip, the same deflection sensitivity and 
spring constant by one single user and under the same experimental and instrumental conditions 
(deflection sensitivity and spring constant) after circulation in several labs. Data showed that 
their properties were stable after six months from the initial preparation (Figure S8)  
 

 

 

Figure S8 
Elastic moduli of nine polyacrylamide gels prepared centrally in Bremen measured from the different 
participating labs. Each marker indicates the mean value of the elastic modulus extracted from each force map 
(three force maps per gel). Red dots show elastic moduli of the same polyacrylamide gels re-measured in 
Bremen after cycling through all participating labs, with the same instrument and tip by one single user and 
under the same experimental and instrumental conditions. 
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Supporting Information 7: Errors in determining elastic properties 
 
Estimation of errors in determining the elastic modulus 
 
In order to discuss possible error sources, we want to rewrite equations S9 and S11 (the Hertz 
model for a spherical and pyramidal indenter, respectively) in terms of the measurable 
quantities deflection d and height z: 
 

𝐹\UPU]0,0/D = 	𝑘- ∗ 𝑑 − 𝑑Y = ^
_
∗ `
!abC

∗ 𝑅 ∗ 𝑧 − 𝑧Y − 	𝑑 + 𝑑Y
_
"   (S47) 

 
	𝐹\5PUh/D = 	𝑘- ∗ 𝑑 − 𝑑Y = !

"
∗ `
!abC

∗ 𝑡𝑎𝑛 𝛼 ∗	 𝑧 − 𝑧Y − 	𝑑 + 𝑑Y "  (S48) 
 
The offset d0 can be determined very accurately (<1 %) assuming that force curves are 
reasonably horizontal in the part of data, where the tip is not in contact with the sample. As 
discussed above determining the contact point z0 is from a mathematical and a practical point 
of view very difficult. With our data and data processing routines the error in the elastic 
modulus E resulting from this point can be estimated to be below 1 % (typically 0.5 %). 
 
Since in most commercial instruments, the z height is either measured by a sensor built in the 
piezo, in some instruments force curves are run in closed loop, so that creep and non-linearity 
are ruled out to a large extent. It is very important that in the force curve deflection data is 
plotted as a function of true z height (either the z position sensor signal or the z height signal 
applied in the case of closed loop scanners) and not as a function of z-voltage applied to the 
piezo, as has been done in the "old days" of AFM. If we assume that state of the art position 
sensors are used, which often have an accuracy of better than 1 nm, we can neglect errors in the 
z signal as well. 
 
The Poisson ratio is usually assumed to be 0.5 for cells, since the cytoskeleton of cells behaves 
like a soft gel, where the volume is conserved during compression. The same argument applies 
to the gels used here. To avoid a discussion here, we could resort to determining the reduced 
E-modulus `

!abC
 instead of the E-modulus E itself, but for the sake of simplicity of the argument 

we will follow here the common procedure to assume a value of 0.5 for the Poisson ratio. 
 
So, we are left with three final and major error sources: errors in the force constant of the 
cantilever, in the tip geometry (either radius R for colloidal probes, or opening angle for 
pyramidal tips), and in the deflection signal. 
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Tip geometry and probe radius 
 
Sharp pyramidal tips present some issues when used for nanomechanical characterization of 
soft samples, like living cells (see Ref. 30 for a detailed discussion). Shortly, sharp tips, with 
their radius of curvature typically below 50nm, cause the application of high stress, with large 
induced strain, in soft samples, also at small applied forces. Indentation is typically larger than 
the tip radius. The basic assumptions of the most used contact mechanical models, including 
the Hertz model, are typically not respected. Moreover, significant deviations from the nominal 
geometries are frequent with sharp tips, the evaluation of the relevant geometrical parameters 
(the side angles, the tip radius) being not straightforward. We have characterized by Scanning 
Electron Microscopy the tip angle values of sharp pyramidal tips and found discrepancies from 
the nominal values as large as 20%; these errors will then directly translate in an error of 10-
20% in the Young's modulus, since the tip angle will enter at least linearity (by the tangent) in 
E values (Eq. S48). 
We decided to use micrometer-sized, spherical probes (colloidal probes), since they represent 
a better alternative to sharp tips in terms of well-defined (and well characterizable) geometry 
and best fitting to contact mechanical models 30. 
 
When using large spherical indenters of radius R, in the fitting procedure aimed at extracting 
the Young’s modulus value, the latter is proportional to 1/ÖR (Eq. S49). It is important either 
characterizing accurately the value of this parameter, or relying on a certification provided by 
the colloidal probe manufacturer. Since the error on the tip radius propagates via the square 
root, a target accuracy of 1% on the determination of the probe radius would be enough, as the 
resulting error in the elastic modulus will be smaller. Such 1% accuracy in the determination 
of the probe radius is typically obtained when the colloidal probe is characterized by means of 
reverse imaging against a spiked grating (like the TGT1 by NT-MDT)29. We have characterized 
some of the SiO2 colloidal probes following the procedure described in detail in Refs 29-30 and 
found that the diameter deviates by less than 50 nm from the nominal value (6.62 µm).  
 
While the radius of colloidal probes is typically reasonably well characterized and conserved 
within a batch, it is recommended to monitor the probe status since surface contamination 
(during the gluing of the sphere or the mechanical analysis), as well as intrinsic morphological 
defects of the micro-spheres used to assemble the probes, are not unlikely. 
In Figure S9 we provide some examples of such defects, whose impact on the consistency of 
the mechanical measurement can be important, though not easily predictable. All images 
represent inverted AFM images of colloidal probes, obtained by scanning the probes across a 
TGT1 spiked grating. Each spike provides an independent replica of the probe shape, including 
surface defects and contamination. In order to highlight the residual roughness of the probe, in 
some cases the underlying spherical baseline has been subtracted. It should be noted that in 
general the surface defects proved to be firmly attached to the sphere surface, so to resist to 
prolonged scrubbing against the sharp needles of the grating at high applied forces. Some 
defects are as tall as a few hundred nanometres. If not properly removed (i.e. by cleaning the 
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probe in suitable detergents and solvents, like ethanol, Alconox, or Helyzime), such defects can 
significantly modify the local contact geometry, impacting on the accuracy of the mechanical 
analysis. 
 
 

   

  

 

  

 

Figure S9 
Surface contamination and defects observed by AFM reverse imaging on colloidal probes, after, and sometimes 
before, use. First row: a defect present on the probe surface since the beginning of the analysis. Due to its size, it 
clearly bring the effective contact geometry far from the sphere on flat regime. Second row: another original 
surface defect, probably a remnant of the glue used to attach the sphere to the tipless cantilever. Third rows: after 
use on soft samples (cells and gels), the surface of the probe gets easily coated by a layer of material, whose 
thickness can be of a few tens of nanometers. A similar contamination should not sensibly affect the effective 
probe radius, although it could affect the force-indentation curve in the low load/small indentation region. 
 
 
Force Constants 
 
In figure S10, we have compiled the force constants from various colloidal probes used in this 
study. For each cantilever, we plot the force constant as measured by the manufacturer with a 
vibrometer, and as determined by a thermal tune recorded in an AFM. As it can be seen, the 
measured force constants can deviate by as much as 20 % from the manufacturer's value. The 
manufacturer's values have been corrected for cantilever tilt in the AFM. Since cantilevers are 
mounted under a small angle (10˚-12˚ in most instruments) in AFM the effective force constant 
is only a component of the true force constant (see supporting information 3, effect of cantilever 
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tilt). In a vibrometer the true amplitude of a vibrating cantilever is measured and thus the true 
force constant is determined. A thermal tune in an AFM will only measure the component of 
the true vibration of the cantilever, which is perpendicular to the sample. This component is 
usually called deflection. Analysing a thermal of the deflection signal will result in the effective 
force constant as used in AFM. So, here cantilever tilt has not to be considered. However, when 
using a cantilever in an AFM, we need to correct the true force constant, as measured by a 
vibrometer accordingly. 
 
The most likely explanation for errors in determining the force constant is errors in calibrating 
the deflection signal. This hypothesis could only be tested strictly when testing the deflection 
calibration independently, e.g. with a vibrometer built in an AFM. Since this option is not 
accessible to us, the only proof of this idea will be the performance of mechanical 
measurements as discussed below. 
 
 

 
Figure S10 
Force constants of several colloidal probe cantilevers as measured by the manufacturer using a vibrometer and 
measured by a thermal tune in air by AFM. The nominal force constant of the manufacturer was 80 mN/m (CP-
PNP-SiO-C-5, NanoAndMore, Karlsruhe, Germany) (black horizontal line). 
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Deflection Signal 
 
Since we do not have an experimental way to test or access errors in deflection calibration 
directly, we can only estimate them based on the following hypothesis: if the main error source 
while determining force constants by thermals in an AFM is an error in setting the deflection 
sensitivity, we can use the error in the force constant by AFM in comparison to the exact value 
determined by a vibrometer to estimate the error in the deflection signal. Since the force 
constant, as determined by a thermal is inversely proportional to the deflection signal, an error 
of say + x% in the force constant, could be explained by an error of -0.5 * x % in the deflection 
signal. 
 
 
Accuracy of the Hertz fitting procedure - contact point 
 
We have calculated a theoretical force curve for a sample with an elastic modulus of 10 kPa. 
To the deflection signal we added Gaussian noise of 0.5 nm and 2 nm amplitude. The former is 
a reasonable value for the thermal noise we expect from the cantilevers used here. The latter 
may serve as a worst-case scenario, which stands for a real instrument, where in addition to 
thermal noise other noise sources may also be present. The simulated force curve data were 
then analysed with the standard procedure described above, where only some slice of the data 
has been analysed. When using small windows (50 nm, 100 nm, 200 nm), errors in elastic 
modulus can be very large (3 %). For large window sizes (300 nm or 400 nm), especially when 
starting the analysis right at the contact point, elastic moduli are reproduced with 0.2 % of the 
nominal value (see figure S11).  
 
The effect of noise on the accuracy in determining the exact elastic modulus value is mainly 
due to misjudging of the contact point. As can be seen in figure S11, the error in elastic modulus 
is highly correlated with the error in the contact point. 
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Figure S11 
Test of the Hertz fit with simulated data (elastic modulus 10 kPa), where 0.5 nm Gaussian noise has been added 
to the deflection signal. Panel A shows the simulated force curve, Panel B the force versus indentation data 
calculated from the data of panel A. These data are fitted with the Hertz model in the range indicated by the green 
bars in panel A and B. When trying out different fit ranges (see bars in panel C) we will receive different Young's 
moduli values (panel B) and contact points (panel C) as results from the fitting procedure. Numbers in D and E 
represent the result obtained within the green marked fit range in A, B, and C. If the fit range extends over a large 
range of data, best starting at zero deflection the results will be very close to the right value (10 kPa). For smaller 
fit ranges there will be larger deviations, up to 3% in Young's modulus and 10 nm in contact point. Both errors are 
highly correlated, demonstrating that judging the contact point in the fitting process is actually the most crucial 
point.  
Fig S11 
In the above test the main reason for deviations of the calculated elastic modulus from the nominal one (10 kPa) 
is a misjudgement of the contact point by the noise of the data. The deviation in elastic modulus from the nominal 
value correlates strongly with the error in determining the contact point. 
 
 
Error Propagation 
 
Let's assume for the simplicity of the argument here that the main error source is a wrong 
calibration of the deflection sensitivity. This may be only on the order of a few per cent (see 
supporting information 2), but to be on the safe side, we may say typical errors here are 
somewhere between 5 % and 10 %. The degree of this error will depend on the cantilevers used 
and on the sample and on cleanliness of tip and sample. Since we are interested here in soft 
samples, cells actually, we tend to use very soft cantilevers, which are very prone to lateral 
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bending due to friction. And since we are dealing with cells, surface contamination will be 
inevitable due to the large amount of organic molecules dissolved in culture medium, which 
will adsorb to sample and tip. So, from our experience with the samples and cantilevers used in 
this study, we expect typical errors on the order of 5 % or even more in the deflection sensitivity. 
How will this error propagate and affect our calculated elastic moduli based on the analysis 
procedure. 
 
Let's first rewrite the basic Hertz model equation with the measurable quantities in an AFM 
experiment. We will discuss here only the model for a parabolic tip; a similar argument can be 
employed for four-sided pyramidal tips. Eq. S9 (in supporting information 1) can be written as: 
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If we neglect the offset z0 and d0 here, and replace the indentation by the measurable quantities 
z and d, we will get: 
 
𝐸 = _
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Let's assume that main error source is in an error in the deflection signal de, because the 
deflection sensitivity has been calibrated wrong by a factor c. The true deflection signal shall 
be denoted by d, whereas the measured or erroneous deflection signal de is given by c * d. So, 
our analysis will result in an erroneous elastic modulus Ee, which will be a function of the error 
factor c: 
 

𝐸* = _
^
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y
C
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^
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y
C
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So, the error in E will be at least proportional to c (through calculation of the force as force 
constant times deflection). The error through calculation of the indentation (denominator of eq. 
S52) is harder to quantify, since it depends on the ratio between the z height and the deflection 
d. In cells measurements, usually the slope of the force curve is very small (0.1 or even smaller), 
so the z height is much larger than the deflection. Errors in the deflection signal will propagate 
only partially in the indentation values. For simplifying the argument here, we will neglect this 
path of error propagation for now. 
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Supporting Information 8: The SNAP protocol sheet 
 
We report here a protocol sheet that can be followed to apply SNAP step by step:  
 
1.  Calculate of the correction factor k  
2. Calibrate the deflection sensitivity in buffer on glass 
3.  Record a first AFM thermal spectrum in buffer above glass 
4.  Change instrument parameters according to the standardized AFM protocol 
5.  Record a second force curve and thermal as consistency check  
6.  Record data on your sample 
 
 
1.  Calculate of the correction factor k 
 
Cantilever name  ___________________ 
 
Spring constant determined with a vibrometer kvibrometer : ___________________ 
 
Cantilever tilt of your instrument (a):   ___ 
 
Calculate the effective (tilt corrected) force constant kTiltCorrected using the following equation: 

𝑘A/,.�0PP*-.*D 		= 	 𝑘4/]P0h*.*P ∗
1

𝑐𝑜𝑠"𝛼		 

 
effective (tilt corrected) force constant kTiltCorrected:  _________________   1  
 
Set the k factor in your software to a value of 1.1. This number may be called amplitude 
sensitivity correction or similar.  
 
k factor:  ___________1.1________  2   
 
 
2. Calibrate the Deflection Sensitivity in buffer on glass 
 
The calibration of the deflection sensitivity needs to be done on a stiff substrate (e.g. a clean 
glass slide).  
 
Mount your probe and the sample in the AFM. Add the liquid, adjust the laser beam to the 
cantilever probe and the photo detector position. Engage the tip to the sample and possibly 
readjust at this point laser diode and detector. Do not adjust laser diode or photo detector any 
more beyond this point. If you are forced to do it within the subsequent tasks, you need to 
restart here. 
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Force curve for determining deflection sensitivity 
 
Record a force curve (at 1µm scan size, 1 Hz force rate, 2 µm/s scan speed, trigger 
threshold/maximum deflection 150 nm) and adjust the cantilever sensitivity with your 
instrument by fitting a line in a suitable data range (e.g. 25..125 nm deflection).  
 
deflection sensitivity:  __________________  3   
force constant:   __________________mN/m 
 
 
3. Record a first AFM thermal spectrum in buffer above glass 
 
Withdraw your AFM tip from the surface by at least 20 µm.  
 
Record a thermal spectrum averaging data at least over 20 seconds (try to reduce acoustic 
noise to a minimum).  
 
Analyse the spectrum in your instrument and in the online JAVA applet 
(http://www.biophysik.uni-bremen.de/start/radmacher-group/data-analysis/hertzfit/). Use 
always the Lorentzian fit both in the Java applet and in the software of your instruments (if it 
gives you the possibility to choose).  
 
kth

Inst by instrument:    ___________________ 
kth

Java by JAVA applet (Lorentzian)  ___________________  4  
 
 
4. Change instrument parameters according to the Standardized AFM protocol 
 
Change the deflection sensitivity by multiplying the old value with the correction factor l. 
 
l factor is based on the kth

Java  4  from Applet and kTiltCorrected 1  from above. 
 

𝜆	 = 	 	?¤ª«�¬�

?­9®¤N£778¢¤8;
	       l: ___________________ 

 
Multiply the deflection sensitivity from 3  by l to get the new corrected deflection sensitivity 
and enter it in your instrument's software: ___________________ 5  
 
Enter ktiltcorrected from 1 as spring constant in your AFM. 
 
Do not change the deflection sensitivity anymore.  
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5. Record a second force curve and thermal as consistency check 
 
Just for validation of the process record another force curve and a thermal without changing 
any parameter. 
 
Read the following values from your instrument: 
deflection sensitivity:   __________________  
force constant:    __________________ 
k factor:    __________________ 
These values shall be identical to the ones from 5   1  and 2 . 
 
 
6. Record data on your sample 
 
At this point you can proceed acquiring data on your sample without changing parameters 
anymore. 
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Supporting Information 9: Typical Force Data on Gels 
 

 
Figure S12 
Typical force curve on a gel. A shows the raw deflection data, B is the curve of interest (approach) after 
subtracting the deflection offset and showing in blue the simulated curve, which have been obtained by a Hertz 
fit. The vertical blue line denotes the contact point, which has been obtained during the Hertz fit. The horizontal 
green lines show the range of deflection data used for the fit. Panel C shows the loading force versus indentation 
data as calculated from the force curve data together with the corresponding data from the Hertz fit (blue line). 
Panel D shows the residuals (i.e. the simulated data versus measured data). Except at very low indentation no 
systematic variations can be seen. Panel E shows the loading force versus indentation on a log scale (same data 
as in panel C). Except at very low forces (which correspond to the noise level of the cantilever/instrument) the 
data lie on a line, which shows that the Hertz model describes the data adequately. 
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Figure S13 
Sample height (using the contact point from the Hertz fit) on a gel. 
 

 
Figure S14 
Young's modulus as calculated by the Hertz fit on a gel. 
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Figure S15 
Histogram of Young's moduli presented in fig S17. This force map shows a rather narrow distribution with a 
well defined peak. We choose as a descriptor of the Young's modulus the median, since the distribution is 
asymmetric which will lead to systematic errors using the mean values. 
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Supporting Information 10: Typical Force Data on Cells 
 

 
Figure S16 
Typical force curve on a cell. A shows the raw deflection data, B is the curve of interest (approach) after 
subtracting the deflection offset and showing in blue the simulated curve, which have been obtained by a Hertz 
fit. The vertical blue line denotes the contact point, which has been obtained during the Hertz fit. The horizontal 
green lines show the range of deflection data used for the fit. Panel C shows the loading force versus indentation 
data as calculated from the force curve data together with the corresponding data from the Hertz fit (blue line). 
Panel D shows the residuals (i.e. the simulated data versus measured data). Except at very low indentation no 
systematic variations can be seen. Panel E shows the loading force versus indentation on a log scale (same data 
as in panel C). Except at very low forces (which correspond to the noise level of the cantilever/instrument) the 
data lie on a line, which shows that the Hertz model describes the data adequately. 
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Figure S17 
Sample height (using the contact point from the Hertz fit) shows that this force map was centered around one 
cell, but also covers the periphery, i.e. the junctions to the neighboring cells. 
 

 
Figure S18 
Young's modulus as calculated by the Hertz fit. In the center of the cell (see topography in fig S17, the cell is 
softest and stiffer in the periphery, i.e. the junctions to the neighboring cells. 
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Figure S19 
Histogram of Young's moduli presented in fig S17. This force map shows a rather narrow distribution (for cells) 
with a well defined peak. We choose as a descriptor of the cell's Young's modulus the median, since the 
distribution is asymmetric which will lead to systematic errors using the mean values. 
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