Supplementary Material

Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells

Eduardo Fernandez-Rebollo, Birgit Mentrup, Regina Ebert, Julia Franzen, Giulio Abagnale, Torsten Sieben, Alina Ostrowska, Per Hoffmann, Pierre-François Roux, Björn Rath, Michele Goodhardt, Jean-Marc Lemaitre, Oliver Bischof, Jakob Franz, Wolfgang Wagner

Supplementary Figure S1: Comparison of different FCS batches on growth and differentiation of MSCs.

Mesenchymal stromal cells of one donor with a low and one donor with a high proliferation rate were cultured in parallel for one passage in eleven different FCS preparations that were purchased by three different companies.

(a) The growth pattern differed in FCS batches, whereas the cellular morphology of MSCs was rather similar.

(b) We have then seeded 1.8×10^5 and 2.7×10^5 cells in parallel in T25 flasks and manually counted them after three days (Error bars depict variation of two technical replicas).

(c) Osteogenic differentiation was induced for four weeks and then analyzed by Alizarin Red S staining. The photos exemplarily depict the variation with different FCS batches.

(d) Adipogenic differentiation was induced for two weeks and then analyzed by Oil Red O staining. The images exemplarily depict variation with different FCS batches.

Overall, the different FCS preparations varied in their support for growth and differentiation. Based on our results (and the costs) we decided to perform the subsequent experiments with FCS#11 (Biochrom 0349X; highlighted in bold).

Supplementary Figure S2: Viability analysis of MSCs.

(a) Live/dead staining of MSCs with FDA (living cells, green) and PI (dead cells, red) for the four medium supplementation conditions.

(b) The quantification of the FDA/PI staining did not reveal any statistical differences (n = 4).

а

Supplementary Figure S3: Analysis of senescence by staining for SA-βgal or expression of marker genes.

(a) Senescence associated β -galactosidase (SA- β gal) staining at passage three did not reveal differences between the MSCs cultured with either FCS or HPL (positive control are senescent cells at passage 13).

(b) qRT-PCR analysis of the coding genes for β -galactosidase (*GLB1*)^{1,2}, P53 (*TP53*) and P16 (*CDKN2A*) showed no differences between FCS-MSCs, HPL-MSCs at passage three. For comparison we have also included MSC preparations with interchange of culture conditions for one passage (n = 4).

Supplementary Figure S4: Differentially expressed genes in FCS-MSCs versus HPL-MSCs.

(a) Gene ontology analysis of the differentially expressed genes revealed enrichment for extracellular matrix categories (analysis was performed with GoMiner tool).

(b) Scatter plot analysis of differences in DNAm as compared to gene expression changes of corresponding genes. For this comparison we utilized the mean DNAm levels of CpGs on the 450k BeadChip that correspond to each promoter region (200 base pairs upstream of transcription start site; TSS200). The difference of this mean TSS200 DNAm in FCS-MSCs *versus* HPL-MSCs was then compared to differential gene expression of the corresponding genes. Genes that comprised CpGs that are higher methylated in FCS and HPL (only 10% cutoff as depicted in Figure 2c) are indicated in red and blue, respectively. Overall, there was no clear association of mean DNAm in the promoter and corresponding gene expression – which may also be attributed to the very moderate (and non-significant) differences in DNAm.

(c) qRT-PCR analysis of the main deregulated genes in two different FCS batches did not reveal any statistical differences (n = 6 for batch#11 and n = 3 for batch#9).

Supplementary Figure S5: Analysis of senescence-associated genes in microarray data.

(a) Gene expression from the HTA 2.0 array of the coding genes for β -galactosidase (*GLB1*)^{1,2}, P53 (*TP53*) and P16 (*CDKN2A*) showed no differences between HPL or FCS supplementation (n = 6).

(b) Various senescence-associated (SA) genes were previously described to be up- or downregulated in MSCs during replicative senescence (981 upregulated and 631 downregulated)³. Scatterplot analysis of these genes in our datasets did not reveal differences between FCS-MSCs and HPL-MSCs (n = 6).

Supplementary Figure S6: Short interchange of culture conditions impacts on gene expression.

Gene expression of eight genes that were either higher expressed in microarray data of HPL-MSCs (*EMB*, *MME*, *MMP1*, and *COLEC12*) or FCS-MSCs (*IGFBP5*, *COMP*, *SUCBE3*, and *SMAD5*) were exemplarily analyzed by qRT-PCR. Differential gene expression was validated for all of these genes in FCS-MSCs versus HPL-MSCs. Notably, even interchange of culture conditions for two days impacted at least in tendency on differential gene expression.

GSE number	Reference	Samples with FCS	Samples with HPL	Age mean (min/max)	Gender (m/f)	Tissue of origin
GSE74609	4	4	0	43 (43/43)	4/0	BM (from Lonza)
GSE41933	5	0	6	NA (18/39)	6/0	AT, UC, BM
GSE55888	6	0	8	NA	NA	AT
GSE37066	7	0	5	NA (31/73)	NA	BM
GSE52114	8	34	0	37 (2/92)	7/27	BM
GSE55571	9	1	0	NA	1/0	NA

Supplementary Table S1: Publically available datasets of MSCs isolated in FCS or HPL.

BM = Bone marrow; AT = adipose tissue; UC = umbilical cord; NA = not available. Reference numbers correspond to the additional supplementary references.

Affymetrix ID	logFC	adj.P.Val	Gene ID	TC04000254.hg.1	-1.62	0.0013	LIMCH1
TC02002758.hg.1	-4.39	7.6E-05	IGFBP5	TC06001072.hg.1	-1.62	0.0259	SAMD5
TC15000842.hg.1	-4.19	4.6E-05	ACAN	TC08002397.hg.1	-1.61	0.0065	ZNF704
TC15000843.hg.1	-3.76	6.7E-05	ACAN	TC19001250.hg.1	-1.60	4.6E-05	NOTCH3
TC19001293.hg.1	-2.85	0.0071	COMP	TC09002022.hg.1	-1.61	0.0207	
TC06003119.hg.1	-2.74	0.0198	SAMD5	TC02003890.hg.1	-1.59	0.0021	
TC06000511.hg.1	-2.68	0.0021	SCUBE3	TC12000624.hg.1	-1.58	0.0116	LGR5
TC15002348.hg.1	-2.58	0.0002	ACAN	TC05002693.hg.1	-1.55	0.0296	
TC06000126.hg.1	-2.57	0.0020	ID4	TC21000346.hg.1	-1.53	0.0038	ADAMTS5
TC09000388.hg.1	-2.53	0.0003	NTRK2	TC08001214.hg.1	-1.52	0.0423	LOC100507516
TC07002404.hg.1	-2.51	0.0017	ELN	TC10001133.hg.1	-1.52	0.0035	MKX
TC01001686.hg.1	-2.46	0.0065	PRELP	TC12001933.hg.1	-1.50	0.0193	CMKLR1
TC01003722.hg.1	-2.39	0.0050	FMOD	TC01002807.hg.1	1.50	0.03378	ELTD1
TC20000621.hg.1	-2.27	0.0001	JAG1	TC12003096.hg.1	1.51	0.03708	TBX3
TC20001421.hg.1	-2.24	0.0012	JAG1	TC01005156.hg.1	1.52	0.02108	
TC06001189.hg.1	-2.23	0.0020	SMOC2	TC03001924.hg.1	1.59	0.0414	MME-AS1
TC15002695.hg.1	-2.16	0.0108		TC10002885.hg.1	1.64	0.0039	
TC15001823.hg.1	-2.12	0.0022		TC12001751.hg.1	1.66	0.0075	PHLDA1
TC12002778.hg.1	-2.07	0.0230	MGP	TC06000846.hg.1	1.70	0.0015	AIM1
TC06002124.hg.1	-2.07	0.0082	SLC2A12	TC01001053.hg.1	1.74	0.0075	EMBP1
TC02001750.hg.1	-2.02	0.0022	CYP1B1	TC11002235.hg.1	1.80	0.0256	MMP3
TC10001522.hg.1	-2.00	0.0152	PPP1R3C	TC11002175.hg.1	1.82	0.0135	CTSC
TC20000927.hg.1	-1.97	0.0148	PTGIS	TC10001389.hg.1	1.92	0.03098	
TC11002859.hg.1	-1.94	0.0174	C11orf87	TC05001331.hg.1	1.95	0.0064	EMB
TC12001181.hg.1	-1.93	0.0190	MFAP5	TC05002946.hg.1	2.00	0.0106	ADAMTS12
TC07000449.hg.1	-1.92	0.0075	ELN	TC05002960.hg.1	2.01	0.03025	GDNF
TC10002843.hg.1	-1.87	0.0104	GFRA1	TC01004676.hg.1	2.18	0.0014	EMBP1
TC12000060.hg.1	-1.85	0.0018	CCND2	TC11003312.hg.1	2.45	0.03386	MMP1
TC12001801.hg.1	-1.82	0.0239	EPYC	TC06000985.hg.1	2.45	0.0181	ENPP1
TC02001749.hg.1	-1.79	0.0078	CYP1B1	TC05002988.hg.1	2.49	0.0050	EMB
TC12001276.hg.1	-1.78	0.0110	MGP	TC03000846.hg.1	2.53	0.0422	MME
TC08002329.hg.1	-1.77	0.0322	LOC100507516	TC11002234.hg.1	2.66	0.0345	MMP1
TC06000960.hg.1	-1.76	0.0022	HEY2	TC18000273.hg.1	2.99	0.0211	COLEC12
TC10002842.hg.1	-1.66	0.0016					
TC21000892.hg.1	-1.66	0.0309	ADAMTS5				
TC04001504.hg.1	-1.63	0.0071	PDE5A				
TC06003061.hg.1	-1.63	0.0198	EYA4				

Supplementary Table S2: Differentially expressed genes in FCS-MSCs versus HPL-MSCs.

Supplementary Table S3: Table for qRT-PCR primers.

Name	5' - 3'	Size (bp)		
qhFw-EMB	GAGTGTAAAGGTTCCTGTTGGT	400		
qhRv-EMB	GCACGGCACCAGTAAGATT	120		
qhFw-MME	TGCAACCTACGATGATGGTATT	400		
qhRv-MME	AAGTCTGTACAAGGCTCAGTG	102		
qhFw-MMP1	CACATCTGACCTACAGGATTGAA	400		
qhRv-MMP1	CCTCAGAGACCTTGGTGAATG	129		
qhFw-COLEC12	TGAAAGACGACTTCGCAGAG	70		
qhRv-COLEC12	TGTGTTCCTTCCTGAATACCAA	76		
qhFw-IGFBP5	GAGCAAGTCAAGATCGAGAGAG	444		
qhRv-IGFBP5	GGAGATGCGGGTGTGTTT	114		
qhFw-COMP	140			
qhRv-COMP	ACCTGCTTGTTGGCCTT	149		
qhFw-SAMD5	CCCAAACTGAAGCTGAAGATCA	00		
qhRv-SAMD5	CCAGCCATTGGGACCTTG	90		
qhFw-SCUBE3	ACTGCAAAGACGTGGATGAG	05		
qhRv-SCUBE3	ATAGCAGGTACACCGGTAATTG	90		
qhFw-GLB1	ATCTCAGGAAGCATTCACTACTC	100		
qhRv-GLB1	CATACGTCTGGATGGCGTT	100		
qhFw-ACTB	GGCACCACACCTTCTACAAT			
qhRv-ACTB	AACATGATCTGGGTCATCTTCTC	115		
qhFw-CDKN2A	05			
qhRv-CDKN2A	ATCATCATGACCTGGATCGG	95		
qhFw-TP53	447			
qhRv-TP53	CTGGGTCTTCAGTGAACCATT	117		

Additional References for Supplementary Material

- 1. Lee, B. Y. *et al.* Senescence-associated β-galactosidase is lysosomal β-galactosidase. *Aging Cell* **5**, 187–195 (2006).
- Debacq-Chainiaux, F. *et al.* Screening of senescence-associated genes with specific DNA array reveals the role of IGFBP-3 in premature senescence of human diploid fibroblasts. *Free Radic. Biol. Med.* 44, 1817–1832 (2008).
- 3. Wagner, W. *et al.* Aging and replicative senescence have related effects on human stem and progenitor cells. *PLoS One* **4**, e5846 (2009).
- 4. van den Dungen, M. W., Murk, A. J., Kok, D. E. & Steegenga, W. T. Comprehensive DNA Methylation and Gene Expression Profiling in Differentiating Human Adipocytes. *J. Cell. Biochem.* **9999**, 1–12 (2016).
- 5. Reinisch, A. *et al.* Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. doi:10.1182/blood-2014-04
- 6. Schellenberg, A. *et al.* Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells. *Biomaterials* **35**, 6351–8 (2014).
- 7. Koch, C. M. *et al.* Pluripotent stem cells escape from senescence-associated DNA methylation changes. *Genome Res.* **23**, 248–59 (2013).
- 8. Fernández, A. F. *et al.* H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. *Genome Res.* **25**, 27–40 (2015).
- Miyata, K. *et al.* DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation. *Hum. Mol. Genet.* 24, 410–23 (2015).