
Supplementary Experimental procedures 

 

Dataset pre-processing 

All raw expression datasets were downloaded from Gene Expression Omnibus (GEO) or 

European Bioinformatics Institute (EBI). A list of the datasets is shown in Table S1A. The data 

were processed using Bioconductor packages in R. Affymetrix arrays were normalized using the 

RMA method, and genes with multiple probes were represented by the arithmetic mean value. 

Illumina arrays were similarly processed using the limma package in R, and normalized using 

quantile normalization. Since the downloaded samples came from multiple labs, batch effects 

were unavoidable. We utilized ComBat to correct for batch effects (Johnson et al., 2007), which 

were then subsequently used for all downstream analysis. 

 Different human datasets were processed slightly differently. Data from Gafni et al, 

Hanna et al., and Ware et al., were processed independently using the affy library in R then RMA 

normalized. For Theunissen et al., we incorporated additional data from primed hESCs and 

fibroblasts from the literature (GSE46397 [samples GSM1129746-8 and GSM1129752-4] and 

GSE48257 [samples GSM1173414-6]) to reduced false positives in the naive module. No batch 

normalization was needed. Similarly, for Takashima et al., we also incorporated additional data 

from primed hPSCs and fibroblasts from the EBI database (E-GEOD-42807 [samples 

GSM1050275-8] and E-GEOD-48275 [samples GSM1173885-9]). No batch normalization was 

needed. For Chan et al., RNA-seq reads were mapped to the hg19 genome using BWA-aligner 

(Li and Durbin, 2009), then aligned to splice junctions if the read did not map to the genome. 

Reads counts were normalized using the Reads Per Kilobsae Million (RPKM) metric (Mortazavi 

et al., 2008), then quantile normalized.  

 For pre-implantation datasets, each dataset was analyzed separately. For microarray 

datasets (Vassena et al., 2011; Xie et al., 2010), raw data was processed using Bioconductor 

packages in R and normalized using the RMA method. Microarray datasets were performed on 

whole embryos. Single-cell RNA-seq sequencing datasets (Deng et al., 2014; Tang et al., 2011; 

Xue et al., 2013; Yan et al., 2013) were processed as previously described (Xue et al., 2013). 

However, the Xue et al. dataset was excluded from downstream analysis due to lack of samples 

in the blastocyst stage, and the mouse preimplantation dataset by Deng et al. was also excluded 

due to the large variations in the blastocyst samples that produced weakly correlated blastocyst 



modules. All processed data and scripts will be made available online at 

http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/naive_pluripotency/ 

Weighted gene co-expression network analysis (WGCNA) 

We analyzed all the datasets with weighted gene co-expression network analysis through 

the R package WGCNA (Zhang and Horvath, 2005). Analysis was carried out as previously 

described (Xue et al., 2013). Weighted gene co-expression networks were made for each pre-

implantation datasets and stem cells datasets separately. To construct the networks, we firstly 

generated similarity matrices S based on Pearson correlations between all gene pairs. Their 

component Sij was measured by the function, Sij = 0.5 + 0.5 × cor(i,j)., where cor(i,j) denotes 

Pearson correlation for expression profiles of gene i and j. Then we raised the correlation matrix 

to a user-defined power (varies for each dataset based on noise) in order to suppress noisy small 

correlations and then calculated the adjacency matrices. Based on the adjacency matrices, we 

calculated topological overlaps (TO), which reflect not only direct adjacency in gene pairs but 

also their interconnections. The degree of overlaps was used to build hierarchical trees with 

average linkage method. We divided the trees with the Dynamic Tree Cut algorithm to determine 

gene modules (Langfelder et al., 2008). Then we merged modules when their eigengenes (the 

first principal component of module expression pattern) show strong correlation. Based on the 

nature of different datasets, slightly different parameters were used. The detailed parameters for 

above calculations in each dataset are shown in Table S1B. 

 To construct consensus modules, we followed a similar logic as constructing normal 

WGCNA gene networks. We first built adjacency matrices for each dataset using a soft power 

threshold of 60, and used the adjacency matrices to calculate topological overlap matrices 

(TOM). We then determined the consensus TOM based on the 25% quantile of multiple TOMs. 

The consensus TO was used to build the hierarchical tree, and gene modules were calculated 

using the Dynamic Tree Cut algorithm. Finally, gene modules were merged when module 

eigengenes showed a correlation of 75% or better. 

Module preservation analysis 

To test whether gene modules we found were conserved in other datasets, we assessed 

their preservation degrees with following two methods. We firstly examined overlaps between 

modules derived from different datasets and estimated their statistical significance from the 

hypergeometric distribution. We secondly utilized a composite preservation statistics proposed 



by WGCNA so as to calculate Zsummary scores. Module preservation analysis uses a 

permutation test to define a test statistic that summarizes the evidence that the network 

connectivity and density of the module is preserved in an independent dataset (Langfelder et al., 

2011). The Zsummary scores correspond to degrees of how much their composition and structure 

are preserved in the network of control samples. As shown in previous study, reference modules 

with Zsummary scores > 10 are highly preserved in the other (test) dataset. In contrast, 

Zsummary scores < 2 generally represent not to be preserved. Zsummary scores, which are 

above 2 and below 10, indicate the modules are moderately or weakly preserved. 

Hub gene analysis 

Eigengenes summarize the expression profiles for modules, and show strong correlation 

with a number of genes in their modules. Therefore in order to choose intramodular hub genes, 

we calculated kME = cor(E
q
,x(i)), where E

q 
denotes eigengene of module q and x(i) denotes 

expression pattern of gene i. Since we use signed networks here, we expect that module genes 

have significant positive MM values. The advantage of using a correlation to quantify module 

membership is that the corresponding statistical significance (p-values) can be easily computed. 

In this analysis, we considered genes as hubs when they have a high kME score. We regarded 

hub genes as those with kME score greater than 0.80 (p=10
-22

).  

Gene ontology analysis 

We performed gene ontology analysis using top hub genes (kME>0.8) of respective modules 

using the web-based gene enrichment analysis tool DAVID (Huang da et al., 2009). The 

consensus module gene ontology was performed on all 308 genes. 
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Supplemental Figure and Table Legends 

 

Figure S1. Reproducible and robust gene co-expression networks in mouse 2i/LIF, 

serum/LIF, and primed datasets 

A-B) Hierarchical cluster tree of genes (black lines, n>12,000) forming co-expression modules 

identified using WGCNA. Co-expression modules correspond to branches and are labeled by 

arbitrary colors as indicated by the first color band underneath the tree. Y-axis denotes distance 

based on topology overlap (TO), a measure of gene interconnectedness. “Deep” branches 

indicate highly discrete modules. Remaining color bands indicate genes that are correlated (red) 

or anti-correlated (blue) to the 2i/LIF, serum/LIF, or primed pluripotent states. Modules that have 

significant enrichment (p<0.01) of highly correlated genes were assigned with the corresponding 

biological name for remaining figures (e.g. 2i/LIF, serum/LIF, or primed). Samples hybridized to 

the Affymetrix Mouse Gene 1.0 ST Array (A) or Illumina WG-6 expression beadchip (B) were 

analyzed separately. 

C) Heatmap representing significance of gene overlaps between 2i/LIF, serum/LIF, and primed 

modules in Illumina (y-axis) or Affymetrix (x-axis) datasets (these modules were as defined in 

Figures S1A and S1B). Values in cells indicate number of overlapped genes and P-values as 

determined by the hypergeometric test. Color legend represents –log10 p-value. 

D) Heatmap of module preservation scores between two datasets. On the top panel are module 

preservation scores of the Affymetrix 2i/LIF, serum/LIF, and primed modules (reference) in the 

Illumina dataset (test). The bottom panel shows the opposite analysis, that is, module 

preservation scores of the Illumina (reference) 2i/LIF, serum/LIF, and primed modules in the 

Affymetrix dataset (test). Generally, Zsummary score less than 2 indicates the reference module is 

not preserved in the test dataset, Zsummary greater than 10 is strongly preserved, and Zsummary 

scores between 2 and 10 are weakly or moderately preserved. Because Affymetrix appeared to 

have more robust preservation, this dataset is used as reference for all downstream analysis. 

 

Figure S2. Comparisons of naive hESCs generated from five different methods 

A) A pairwise comparison of naive and primed modules between multiple datasets (indicated on 

the x and y axis). Heatmap shows the significance of gene overlaps between naive networks (left 

panel) and primed networks (right panel). Values in the cells indicate the number of overlapped 



genes and P-values calculated from the hypergeometric distribution. Color legend represents –

log10 p-value. 

B) Hierarchical cluster tree of genes (black lines, n=12,055) forming consensus modules 

identified using WGCNA. Consensus modules correspond to branches and are labeled by 

arbitrary colors as indicated by the first color band underneath the tree. Grey color is reserved for 

genes that were unassigned, (i.e. not part of a consensus network across five datasets). 

Remaining color bands indicate genes that are highly correlated to naive pluripotent state (red) or 

primed pluripotent state (blue). White bands represent lack of correlation to either naive or 

primed states. 

C) Bar plot of enriched gene ontology terms for all genes within the consensus naive module 

(n=317). Top terms for each category were reported. X-axis represents –log10 transformed 

Benjamani-Hochberg adjusted p-values.  

 

Table S1. WGCNA of mouse and human naive and primed datasets 

A) Contains the list of samples used for WGCNA analysis in both Affymetrix and Illumina 

platforms. 

B) Details of naive and primed hESC culture conditions in multiple datasets. 

C) WGCNA parameters used for generating modules in various datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 


