SUPPLEMENTARY MATERIAL

1 Appendix A: Neuronal equations

The dynamics of the spiking neurons on the ROLLS chip can be approximated by the differential equation Eqs. (1-3), obtained by performing circuit analysis:

$$\tau \frac{dImem}{dt} = \frac{\frac{I_{th}}{I_{\tau}}(I_{in} - I_{ahp} - I_{\tau}) + \frac{I_a}{I_{\tau}}(I_{mem} + I_{th}) - I_{mem}(1 + \frac{I_{ahp}}{I_{\tau}})}{(1 + \frac{I_{th}}{I_{mem}})},$$
(1)

$$\tau_{ahp}\frac{dI_{ahp}}{dt} = \frac{I_{thahp}}{I_{\tau ahp}}I_{Ca}u(t) - I_{ahp},\tag{2}$$

- 2 where I_{mem} is the membrane potential, I_{ahp} is the adaptation current, u(t) is a step function that is one
- 3 during spikes and zero otherwise, I_{τ} and $I_{\tau ahp}$ are time constant currents, I_th and I_{thahp} are currents
- 4 through N-type MOSFETs, τ and τ_{ahp} are time constants, and I_{in} is the input current from the synapses.
- 5 The time constants are dependent on the time constant currents and can be calculated by:

$$\tau = \frac{C_{mem}U_T}{\kappa I_{tau}},\tag{3}$$

- 6 where κ is a MOSFET property, U_T is the thermal potential, and C_{mem} is the membrane capacitance. τ_{ahp}
- 7 is calculated similarly except it substitutes I_{τ} with $I_{\tau ahp}$ and C_{mem} with C_p .

8 These equations approximate an adaptive integrate-and-fire dynamics (Brette and Gerstner, 2005).

9 Appendix B: Biases of the ROLLS chip used in our experiments

Table 1 shows the biases used for our experiments to set-up non-plastic connections between the neuronal populations; Table 2 shows biases for the integrate-and-fire neurons on chip. Each bias corresponds to a

12 current, supplied to the neuronal circuits and is calculated as Range \times Value, where letters near the range

- mean the order of magnitude: "p" piko, "n" nano, "u" micro (see (Qiao et al., 2015) for details of
 the circuit and functional meaning of the biases). The biases are set using software and FPGA-mapping,
 - implemented on the Parallella board.

Bias name	Range (A)	Value	Flags
NPA_PWLK_P	820p	200	Н
NPA_WEIGHT_STD_N	15p	15	HN
NPA_WEIGHT_EXC_P	820p	123	Н
NPA_WEIGHT_EXC0_P	0.4u	15	Н
NPA_WEIGHT_EXC1_P	0.4u	82	H
NPDPIE_THR_P	820p	38	Н
NPDPIE_TAU_P	105p	22	Н
NPA_WEIGHT_INH_N	820p	82	ΗN
NPA_WEIGHT_INH_N0	820p	200	HN
NPA_WEIGHT_INH_N1	6.5n	71	HN
NPDPII_TAU_P	15p	51	H
NPDPII_THR_P	820p	177	Н

Table 1. Hardware biases for the non-plastic synapses

Bias name	Range (A)	Value	Flags
IF_RST_N	15p	17	ΗN
IF_BUR_P	50p	56	ΗN
IF_ATHR_N	15p	0	ΗN
IF_RFR1_N	820p	50	ΗN
IF_RFR2_N	820p	50	ΗN
IF_AHW_P	15p	0	Н
IF_AHTAU_N	820p	37	Ν
IF_DC_P	15p	0	Н
IF_TAU2_N	105p	77	Ν
IF_TAU1_N	105p	100	Ν
IF_NMDA_N	15p	17	ΗN
IF_CASC_N	15p	17	ΗN
IF_THR_N	820p	100	ΗN

Table 2. Hardware biases for integrate-and-fire neurons

The eight different values of the synaptic weights that we used in our architecture (-4 : 4) are obtained combining the NPA_WEIGHT_INH_N, NPA_WEIGHT_INH_N1, and NPA_WEIGHT_INH_N2 biases for negative weights and the NPA_WEIGHT_EXC_P, NPA_WEIGHT_EXC_P1, and NPA_WEIGHT_EXC_P2 biases for positive weights:

 $1 = NPA_WEIGHT_EXC_P$

 $2 = NPA_WEIGHT_EXC_P + NPA_WEIGHT_EXC_P1$

 $3 = NPA_WEIGHT_EXC_P + NPA_WEIGHT_EXC_P2$

 $4 = NPA_WEIGHT_EXC_P + NPA_WEIGHT_EXC_P1 + NPA_WEIGHT_EXC_P2$

 $-1 = NPA_WEIGHT_INH_N$

 $-2 = NPA_WEIGHT_INH_N + NPA_WEIGHT_INH_N1$

$$-3 = NPA_WEIGHT_INH_N + NPA_WEIGHT_INH_N2$$

 $-4 = NPA_WEIGHT_INH_N + NPA_WEIGHT_INH_N1 + NPA_WEIGHT_INH_N2$

16

REFERENCES

- Brette, R. and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description
 of neuronal activity. *J. Neurophysiol.* 94, 3637–3642. doi:10.1152/jn.00686.2005
- 19 Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Sumislawska, D., Indiveri, G., et al. (2015). A Re-
- 20 configurable On-line Learning Spiking Neuromorphic Processor comprising 256 neurons and 128K
- 21 synapses. Frontiers in neuroscience 9