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Details of Optimization Problem Formulation 

Calibration of our EMG-driven model was achieved by performing a nonlinear constrained 

optimization. Initial guesses, bounds, and cost function terms used in the optimization (Table 2) were 

specified such that the final solution would remain anatomically realistic and close to the initial model. 

In addition to minimizing errors in walking and passive joint moment curves, the cost function included 

penalty terms that acted as “soft constraints” to limit deviations of model parameter values and curves 

away from the initial model. Inequality “hard constraints” were also included in the problem formulation 

to keep normalized muscle lengths and velocities within known realistic ranges and to prevent muscle 

moment arms from switching signs. For each type of parameter or curve with a specified reference value 

and associated allowable deviation (see Table A1), a single cost function penalty term was formulated 

by calculating deviations of the model parameters or curves from the reference value, normalizing all 

deviations by the allowable deviation (which could be exceeded), and calculating the mean squared 
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value. For example, for shape changes in muscle-tendon length curves, there were 35 muscles per leg x 

2 legs x 101 time points per gait cycle x 50 gait cycles = 530,250 shape deviation values calculated 

relative to reference curves from the initial model. The corresponding penalty term in the cost function 

was calculated by dividing each deviation value by 0.25, squaring each normalized deviation, taking the 

sum, and finally dividing by 530,250. 

 
Table A1: Initial guesses, bounds, reference values, and allowable deviations for constant model parameters (top half) and time-
varying model curves (bottom half). For quantities with a specified Allowable Deviation, cost function penalty terms were calculated by 
finding the deviation of the model parameter or curve from the specified reference value, normalizing by the allowable deviation, and 
calculating the mean squared value. For quantities without a specified Allowable Deviation, bounds were enforced using nonlinear inequality 
constraints. Surrogate geometry curves refer to muscle-tendon lengths and moment arms but not velocities. Allowable deviation values were 
chosen iteratively to ensure that parameter values did not change far from the reference values. Different allowable deviations were used for 
the hip, knee, and ankle surrogate geometry shape changes. 

 
Model Parameter (top) or Curve (bottom) 

Initial   
Guess 

Lower  
Bound 

Upper  
Bound 

Reference         
Value 

Allowable 
Deviation 

Normalized EMG scale factor 0.25 0.05 1 1 0.5 
Electromechanical delay (ms) 50 0 100 — — 
Activation time constant (ms) 15 5 35 15 15 
Nonlinearity constant 0 0 0.35 0 0.25 
Optimal muscle fiber length scale factor 1 0.75 1.25 1 0.15 [4] 
Tendon slack length scale factor 1 0.75 1.25 1 0.15 [4] 
Normalized EMG scale factor variations — — — 0 1 
Electromechanical delay variations (ms) — — — 0 100 [4] 
Normalized muscle length — 0.3 1.3 — — 
Maximum normalized muscle length — 0.8 — — — 
Minimum normalized muscle length — — 1.0 — — 
Normalized muscle velocity — -1 1 — — 
Surrogate geometry mean value changes — — — 0 0.5 [5] 
Surrogate geometry shape changes — — — 0 0.25 or 0.125 [5] 
Normalized muscle length variations — — — 0 1 [5] 
Muscle moment arm variations (cm) — — — 0 2 [5] 
Inverse dynamic joint moment errors — — — 0 1 
Passive joint moment errors — — — 0 1 

 
 Additional explanation is helpful for understanding how and why some of the design variables and 

their initial values and bounds were selected. Normalized processed EMG signals were multiplied by an 

additional scale factor to account for the fact that the maximum processed EMG value for each muscle 

was unlikely to be the true maximum. This decision is supported by experimental data demonstrating 

that the maximal M-wave is significantly larger than volitional EMG measured during walking or 

maximum voluntary contraction [1–3]. The upper bound for electromechanical delay was based on 
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values reported in the literature [4]. The initial guess of 0 for activation nonlinearity constants represents 

a linear relationship between neural activation and muscle activation. For surrogate geometry mean 

value changes (i.e., changes in mean value of a muscle-tendon length or moment arm curve), deviation 

was calculated as the difference in mean values between adjusted and reference curves divided by the 

maximum absolute value of the reference curve. For surrogate geometry shape changes (i.e., change in 

shape of a muscle-tendon length or moment arm curve), deviation at each time point was calculated as 

the difference between demeaned adjusted and reference curves divided by the range of the reference 

curve. For moment arm shape changes, hip moment arm deviations were normalized by 0.25 while knee 

and ankle moment arm deviations were normalized by 0.125 based on uncertainties reported in literature 

[5]. All parameter values were the same for both legs with the exception of electromechanical delays 

and EMG scale factors, which were specific to each muscle in each leg since the subject was 

hemiparetic. 

 Muscles that function within a physiological group or share a common EMG signal were given 

special treatment in the optimization cost function. For these muscles, additional “soft constraints” were 

included in the cost function to ensure that curves or parameter values from related muscles remained 

similar. For normalized EMG scale factor variations and electromechanical delay variations, deviation 

was calculated as the standard deviation of the scale factors or delays for all muscles in the group. For 

normalized muscle length variations and moment arm variations, deviation at each time point was 

calculated as the standard deviation of the lengths or moments arms for all muscles in the group. 

 Determination of appropriate initial values for optimal muscle fiber lengths and tendon slack lengths 

required additional steps. Initial values taken from the literature [6] produced excessively high or low 

normalized muscle lengths for some muscles. Excessively high normalized muscle lengths produce 

unrealistically high passive joint moments, while excessively low normalized muscle lengths cause 
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muscles to produce little force even when fully activated. To address this issue, we performed a 

preliminary optimization to determine initial values of optimal muscle fiber lengths and tendon slack 

lengths that placed every muscle within a physiological operating range over the gait cycle [7]. The 

optimization cost function minimized changes in initial parameter values taken from the literature while 

also minimizing errors in model-predicted passive joint moments relative to experimental curves 

reported in the literature [8]. Exponential terms were also included in the cost function to limit 

normalized muscle lengths during walking to between 0.3 and 1.3 [7]. The pre-optimized optimal 

muscle fiber length and tendon slack length values were used in the larger EMG-driven calibration 

process. 

 Three categories of model parameter values were unaltered during the calibration process. For the 

activation model, the deactivation time constant for each muscle was specified to be four times the 

muscle’s activation time constant. For the Hill-type muscle model, peak isometric force were calculated 

using regression equations reported in literature [9], with a muscle specific tension of 61 N/cm2 [6]. 

Pennation angles were taken from the initial model [6].  Since muscle excitations were scaled during the 

EMG-driven model calibration process, adjustment of peak isometric force and pennation angle values 

would have been redundant since all three quantities scale the muscle force in the Hill-type model 

equations. 

 

Details of Outlier Identification Methods 

Given the curves output by OpenSim analyses, we performed a series of tests to identify and remove 

outlier trials and select trials for use in calibration and testing. First, for trials of the same speed, any gait 

cycle where a muscle’s peak EMG value was greater than three times its median peak value was 

removed from the data set. Next, for each walking speed, any trial with a joint moment, angle, angular 
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velocity, or moment arm curve more than five standard deviations away from its mean curve at any 

point in the gait cycle was removed from the data set. Once outlier trials were identified and removed, 

calibration and testing trials were selected from the remaining trials. For each gait speed, 20 of the 

remaining trials were selected for subsequent analysis - ten for calibration and ten for testing. 

 

Tables of Muscle-tendon Length and Moment Arm Changes 

The tables below provide quantitative information on how muscle-tendon lengths and moment arms 

were changed for the EMG-drive model calibration process with geometric adjustments when data from 

all five walking speeds were used for calibration (Table A2) and when data from only the three slowest 

walking speeds were used for calibration (Table A3). 

 
Table A2: Mean absolute changes in muscle-tendon lengths and moment arms for calibration walking trials from a 
model calibration performed using data from all walking speeds. Percent changes were calculated using each curve’s 
maximum absolute value. 

   ℓMT
  Hip FE Hip AA Knee FE Ankle PDF Ankle IE 

Muscle cm %  cm  %  cm  %  cm  %  cm  %  cm  %  

Adductor brevis 2.29 15.32 0.06 1.50 0.06 0.77 -- -- -- -- -- -- 

Adductor longus 0.34 1.38 0.86 14.33 1.91 24.19 -- -- -- -- -- -- 

Adductor magnus distal 1.79 7.14 0.48 9.25 0.05 0.89 -- -- -- -- -- -- 

Adductor magnus ischial 1.68 4.54 0.05 0.71 0.11 2.25 -- -- -- -- -- -- 

Adductor magnus middle 1.09 6.79 0.77 27.96 0.14 2.04 -- -- -- -- -- -- 

Adductor magnus proximal 1.17 9.36 0.19 6.84 0.07 1.15 -- -- -- -- -- -- 

Gluteus maximus superior 1.35 5.80 0.29 5.08 0.69 22.27 -- -- -- -- -- -- 

Gluteus maximus middle 0.88 3.28 0.67 9.51 0.56 24.23 -- -- -- -- -- -- 

Gluteus maximus inferior 0.87 3.02 0.83 9.25 0.88 17.71 -- -- -- -- -- -- 

Gluteus medius anterior 0.42 3.15 0.99 30.76 1.66 35.65 -- -- -- -- -- -- 

Gluteus medius middle 0.65 4.44 0.69 17.72 0.46 10.65 -- -- -- -- -- -- 

Gluteus medius posterior 0.83 6.28 0.73 19.66 0.87 21.81 -- -- -- -- -- -- 

Gluteus minimus anterior 1.38 15.62 0.34 16.76 0.24 5.39 -- -- -- -- -- -- 

Gluteus minimus middle 1.77 20.16 1.06 42.91 0.21 4.75 -- -- -- -- -- -- 

Gluteus minimus posterior 0.59 6.15 0.67 23.82 0.11 2.68 -- -- -- -- -- -- 

Iliacus 2.19 9.73 0.31 6.94 0.75 75.35 -- -- -- -- -- -- 

Psoas 1.88 7.90 0.38 11.32 0.25 19.30 -- -- -- -- -- -- 

Semimembranosus 0.64 1.52 0.43 6.72 0.47 20.58 0.41 8.32 -- -- -- -- 
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Semitendinosus 3.22 6.84 1.14 15.08 1.06 29.37 0.41 6.94 -- -- -- -- 

Biceps femoris long head 0.62 1.45 0.18 2.53 1.71 54.45 0.55 13.54 -- -- -- -- 

Biceps femoris short head 1.02 4.47 -- -- -- -- 0.20 4.91 -- -- -- -- 

Rectus femoris 0.85 2.00 0.93 16.59 1.68 71.71 0.77 16.44 -- -- -- -- 

Vastus medialis 0.11 0.51 -- -- -- -- 0.27 6.38 -- -- -- -- 

Vastus lateralis 0.98 4.13 -- -- -- -- 0.34 8.00 -- -- -- -- 

Vastus intermedius 0.87 3.92 -- -- -- -- 0.36 8.43 -- -- -- -- 

Lateral gastrocnemius 0.22 0.44 -- -- -- -- 0.34 13.43 0.43 9.74 0.23 26.59 

Medial gastrocnemius 0.26 0.51 -- -- -- -- 0.28 9.23 0.43 9.95 0.60 87.01 

Tibialis anterior 0.25 0.76 -- -- -- -- -- -- 0.05 0.99 0.51 41.96 

Tibialis posterior 0.02 0.05 -- -- -- -- -- -- 0.22 24.20 0.12 6.60 

Peroneus tertius 0.41 1.90 -- -- -- -- -- -- 0.48 67.94 0.28 9.38 

Peroneus longus 0.10 0.25 -- -- -- -- -- -- 0.16 16.56 0.13 4.81 

Peroneus tertius 0.19 1.01 -- -- -- -- -- -- 0.19 6.11 0.67 27.73 

Soleus 0.15 0.41 -- -- -- -- -- -- 1.68 40.06 0.17 21.38 

Extensor digitorum longus 0.04 0.09 -- -- -- -- -- -- 0.07 1.77 0.05 3.19 

Flexor digitorum longus 0.02 0.04 -- -- -- -- -- -- 0.01 0.92 0.12 7.65 

Mean Absolute Change 0.89 4.58 0.57 14.06 0.66 21.29 0.39 9.56 0.37 17.82 0.29 23.63 

Max Absolute Change 3.22 20.16 1.14 42.91 1.91 75.35 0.77 16.44 1.68 67.94 0.67 87.01 

 
Table A3: Mean absolute changes in muscle-tendon lengths and moment arms for calibration walking trials from a 
model calibration performed using data from only the three slowest speeds. Percent changes were calculated with 
respect to each curve’s maximum absolute value. 

   ℓMT
 Hip FE Hip AA Knee FE Ankle PDF Ankle IE 

Muscle cm %  cm  %  cm  %  cm  %  cm  %  cm  %  

Adductor brevis 2.48 16.69 0.04 1.05 0.07 1.01 -- -- -- -- -- -- 

Adductor longus 1.12 4.60 0.14 2.32 0.19 2.43 -- -- -- -- -- -- 

Adductor magnus distal 1.20 4.88 0.35 6.88 0.19 3.34 -- -- -- -- -- -- 

Adductor magnus ischial 0.64 1.76 0.17 2.51 0.09 1.86 -- -- -- -- -- -- 

Adductor magnus middle 1.42 8.88 0.41 17.10 0.05 0.80 -- -- -- -- -- -- 

Adductor magnus proximal 0.59 4.73 1.70 60.79 1.07 17.56 -- -- -- -- -- -- 

Gluteus maximus superior 1.10 4.79 0.13 2.20 0.51 17.36 -- -- -- -- -- -- 

Gluteus maximus middle 0.82 3.13 0.40 5.67 0.44 21.33 -- -- -- -- -- -- 

Gluteus maximus inferior 0.53 1.90 0.40 4.45 0.55 11.34 -- -- -- -- -- -- 

Gluteus medius anterior 1.56 11.79 1.02 32.04 0.89 18.97 -- -- -- -- -- -- 

Gluteus medius middle 0.26 1.79 0.52 13.77 0.48 11.30 -- -- -- -- -- -- 

Gluteus medius posterior 0.19 1.43 0.49 13.58 1.21 30.87 -- -- -- -- -- -- 

Gluteus minimus anterior 0.72 8.18 0.46 23.39 0.20 4.45 -- -- -- -- -- -- 

Gluteus minimus middle 0.58 6.55 0.56 23.71 0.13 2.85 -- -- -- -- -- -- 

Gluteus minimus posterior 0.56 5.80 0.60 21.91 0.11 2.55 -- -- -- -- -- -- 

Iliacus 1.49 6.71 0.26 5.85 0.60 79.19 -- -- -- -- -- -- 

Psoas 1.42 5.98 0.09 2.85 0.28 25.29 -- -- -- -- -- -- 

Semimembranosus 0.80 1.93 0.41 6.38 0.33 14.94 0.50 10.10 -- -- -- -- 
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Semitendinosus 3.80 8.21 0.56 7.38 0.83 23.58 0.32 5.41 -- -- -- -- 

Biceps femoris long head 0.37 0.88 0.26 3.63 0.80 25.93 0.67 16.63 -- -- -- -- 

Biceps femoris short head 0.91 4.02 -- -- -- -- 0.12 3.08 -- -- -- -- 

Rectus femoris 0.81 1.93 0.89 16.06 0.98 42.92 0.68 14.49 -- -- -- -- 

Vastus medialis 0.69 3.31 -- -- -- -- 0.20 4.71 -- -- -- -- 

Vastus lateralis 1.58 6.72 -- -- -- -- 0.25 5.90 -- -- -- -- 

Vastus intermedius 1.20 5.44 -- -- -- -- 0.31 7.11 -- -- -- -- 

Lateral gastrocnemius 0.24 0.48 -- -- -- -- 0.31 12.20 0.76 17.58 0.61 69.60 

Medial gastrocnemius 0.30 0.59 -- -- -- -- 0.91 30.36 0.61 14.37 0.81 116.71 

Tibialis anterior 0.19 0.57 -- -- -- -- -- -- 0.05 1.17 0.37 29.89 

Tibialis posterior 0.02 0.04 -- -- -- -- -- -- 0.20 21.45 0.11 6.18 

Peroneus tertius 0.20 0.94 -- -- -- -- -- -- 0.36 51.01 0.19 6.48 

Peroneus longus 0.08 0.19 -- -- -- -- -- -- 0.09 9.04 0.08 2.92 

Peroneus tertius 0.22 1.13 -- -- -- -- -- -- 0.15 4.86 0.75 30.95 

Soleus 0.12 0.34 -- -- -- -- -- -- 1.50 36.24 0.13 17.21 

Extensor digitorum longus 0.01 0.02 -- -- -- -- -- -- 0.07 1.82 0.09 6.05 

Flexor digitorum longus 0.02 0.05 -- -- -- -- -- -- 0.06 8.01 0.04 2.32 

Mean Absolute Change 0.81 3.90 0.47 13.03 0.48 17.14 0.43 11.00 0.39 16.55 0.32 28.83 

Max Absolute Change 3.80 16.69 1.70 60.79 1.21 79.19 0.91 30.36 1.50 51.01 0.81 116.71 

 
Estimation of Inverse Dynamic Joint Moment Errors 
via Monte Carlo Analyses 

To assess the sensitivity of our inverse dynamics calculations to noise in marker data and ground 

reaction load data as well as errors joint centers and orientations, we performed four Monte Carlo 

analyses that varied each of these parameters according to methods outlines in a previous study [10]. For 

the following simulations, the right leg and upper body segments were removed from the model to 

reduce computation time and also to mimic methods from a similar previous Montel Carlo study [10].  

Before performing any simulations, we chose a representative gait trial of the subject walking at 0.8 m/s 

as the baseline for the analysis. The fastest speed of 0.8 m/s was chosen as a worst-case scenario, since 

the sensitivity of our inverse dynamics models was found to be greater at faster speeds. Using data from 

this trial, we used synthetic marker trajectories so that the model could match marker locations exactly 

during inverse kinematics. These trajectories were calculated by running the model through a previously 
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determined gait motion and outputting the marker locations from the model. With these new marker 

trajectories and the trial’s ground reaction data, we calculated synthetic joint kinematics and moments 

that provided the point of comparison for the Monte Carlo analyses. 

 We performed a sequence of four Monte Carlo analyses using the synthetic walking data. The first 

Monte Carlo analysis added randomized noise signals to marker data, where a sinusoidal equation of the 

form  Asin(ω t +ϕ ) , where  A  is the noise amplitude, ω  is the frequency, and ϕ  is the a phase shift for the 

noise [11]. Maximum values for each of these noise parameters are listed in Table A4. For each Monte 

Carlo iteration, a random value between 0 and the maximum value of each noise parameter was chosen 

using a uniform distribution and was added to the original signal. A different noise signal was added to 

each dimension of each marker trajectory. For the second Monte Carlo analysis, noise was added to the 

ground reactions and centers of pressure using the same model as used for marker noise. Maximum 

values for noise amplitude are provided in Table A4 as well. The third Monte Carlo analysis varied joint 

positions and orientations. Following methods detailed in a previous similar Monte Carlo study [10], 27 

joint parameters were varied: 6 hip parameters, 9 knee parameters, and 12 ankle/subtalar parameters.  

For each Monte Carlo analysis, a new OpenSim model was created with random offsets applied to each 

joint parameter. These offsets were randomly determined using a uniform distribution and were allowed 

to vary between +/- the maximum value shown in Table A4. The fourth Monte Carlo analysis 

represented a worst case scenario and varied all marker data, ground reaction data, and joint parameters 

simultaneously. For each iteration of a Monte Carlo analysis, inverse dynamic moments were calculated 

with the new data/models and stored for comparison with the moments from the synthetic data. Each 

Monte Carlo simulation was run for 2000 iterations to achieve convergence. Joint moment curves from 

Monte Carlo analysis were compared with the synthetic curves, and MAE values were calculated to 

estimate the amount of error in inverse dynamic joint moments due to errors in experimental data and 
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model parameter values. Finally, these MAE errors were compared to those obtained for testing trials 

performed at the same speed when data from 0.8 m/s was, and was not, used in the calibration process. 

 
Table A4: Maximum allowable changes in each of the parameter types varied in the four Monte Carlo analyses. For the marker 
[10-13], ground reaction (GR), and center of pressure (CoP), the max values represent the biggest possible amplitude of a sinusoidal 
curve that is applied to the data. For the joint centers and orientations, the max value represents a maximum possible offset to a joint 
definition parameter in the model. 

 Max Parameter Change 

 
Pelvis 

Markers 
Thigh 

Markers 
Shank 

Markers 
Foot 

Markers GR Load CoP Joint 
Center 

Joint 
Orientation 

 cm cm cm cm % cm cm deg 

Analysis 1 0.5 1 0.5 0.25 -- -- -- -- 

Analysis 2 -- -- -- -- 1 0.5 -- -- 

Analysis 3 -- -- -- -- -- -- 0.5 5 

Analysis 4 0.5 1 0.5 0.25 1 0.5 0.5 5 

 
 From our Monte Carlo analyses, we found that the errors in inverse dynamic joint moments arriving 

for noise in experimental marker motion and ground reaction data and errors in joint positions and 

orientations were smaller than the errors in joint moment predictions produced by our NGA and WGA 

EMG-driven modeling methods (Table A5). When marker noise was introduced, the greatest joint 

moment errors were found at the hip while more distal joints had progressively smaller errors. On the 

other hand, joint moment errors resulting from joint position and orientation errors or ground reaction 

noise were more evenly distributed, with the largest errors occurring at the hip and knee for ground 

reaction force errors and at the knee and subtalar joint for the joint parameter errors. The analysis that 

varied all sources of error together produced the greatest inverse dynamic joint moment errors for all 

joints. The fact the MAE results from the NGA and WGA methods were generally 2 to 5 times larger 

than the MAE results from the worst-case Monte Carlo analysis indicate that our EMG-driven modeling 

methods were fitting actual data rather than noise, and furthermore, that the WGA method produces 

more accurate joint moment results than does the NGA method. 
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Table A5: Summary of mean (standard deviation in parentheses) joint moment MAE results from the four Monte 
Carlo analyses performed for a representative walking trial at 0.8 m/s. Comparison is provided with joint moment 
MAE results for the NGA and WGA methods performed on testing trials for models calibrated using (Calibration) and not 
using (Prediction) data from 0.8 m/s. For each Monte Carlo iteration, MAE errors were first calculated over the entire gait 
cycle for each joint moment. Then a mean and standard deviation were calculated for each joint moment using the 2000 
individual MAE errors. 

  Hip FE Hip AA Knee FE Ankle FE Ankle IE 

  N-m N-m N-m N-m N-m 

Monte Carlo Marker positions 1.04 (0.37) 0.91 (0.31) 0.73 (0.24) 0.24 (0.08) 0.34 (0.11) 

 Ground reactions 1.58 (0.81) 0.76 (0.35) 1.55 (0.79) 1.42 (0.70) 0.96 (0.43) 

 Joint parameters 1.11 (0.52) 1.50 (0.90) 1.55 (1.00) 1.11 (0.73) 2.15 (1.41) 

 All quantities 2.37 (0.81) 1.99 (0.78) 2.37 (1.01) 1.82 (0.81) 2.42 (1.37) 

Calibration NGA 7.45 8.81 4.76 7.24 5.50 

 WGA 5.04 4.79 4.22 5.99 4.22 

 NGA/Monte Carlo 3.14 4.43 2.01 3.97 2.27 

 WGA/Monte Carlo 2.13 2.41 1.78 3.28 1.75 

Prediction NGA 7.42 9.40 6.75 6.63 5.19 

 WGA 7.34 5.84 5.65 6.54 4.08 

 NGA/Monte Carlo 3.13 4.72 2.84 3.63 2.15 

 WGA/Monte Carlo 3.10 2.93 2.38 3.58 1.69 

 
 The fact that our Monte Carlo analyses found inverse dynamic joint moment MAEs that were 

smaller than our EMG-driven model joint moment MAEs is significant because it indicates that our 

model predictions were outside of the noise level of estimated errors in our inverse dynamic joint 

moment calculations. While a small amount of the improvement in our WGA results may have been due 

to fitting noise, most of the improvement cannot be attributed to fitting noise. The primary limitation of 

our Monte Carlo analyses was the use of walking data from only a single relatively slow speed (compare 

0.8 m/s to a typical healthy walking speed of 1.4 m/s). Consequently, our calculated MAEs were smaller 

than those found in past studies. If data from faster walking speeds were used, we would expect to find 

larger MAEs for inverse dynamic joint moments. 
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