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A) Numerical integration of the time-dependent
Fokker-Planck equation

A1) Numerical approach

We begin with three equations of the main text: Eq. (33),

∂

∂t
p(Vm, t) =

qp(Vm− 1
2
, t)− qp(Vm+ 1

2
, t)

∆V
+ δmmr

1

∆V
qp(VNV + 1

2
, t− Tref), (A-1)

describes the membrane voltage discretization of the Fokker-Planck Eq. (24) and
includes the reinjection condition, Eq. (30), for each grid cell [Vm− 1

2
, Vm+ 1

2
] with

center Vm (m = 1, . . . , NV ) and cell spacing ∆V . Secondly, Eq. (34),

qp(Vm+ 1
2
, t) = vm+ 1

2

p(Vm, t)− p(Vm+1, t) exp(−vm+ 1
2
∆V/D)

1− exp(−vm+ 1
2
∆V/D)

, (A-2)

represents the Scharfetter-Gummel flux approximation with drift and diffusion
coefficients, vm+ 1

2
and D, respectively. Lastly, Eq. (35),

(I− ∆t

∆V
Gn)pn+1 = pn + gn+1−nref , (A-3)

is the linear system after time discretization that is solved for pn+1
m = p(Vm, tn+1) in

each timestep tn → tn+1, where gn+1−nref
m = δmmr

∆t
∆V r(tn+1−nref

) contains the flux
reinjection. The coefficients of the system matrix Gn are obtained as follows.

A2) Boundary conditions

The absorbing boundary condition, p(Vs, t) = 0 (cf. Eq. (31)), at cell border
VNV + 1

2
= Vs, is discretized through linear interpolation between the last cell NV and a

ghost cell that is introduced with center VNV +1 = Vs + ∆V/2, yielding for the ghost
value

p(VNV +1, t) = −p(VNV , t). (A-4)

The reflecting boundary cond. of Eq. (32), qp(Vlb, t) = 0, at cell border V 1
2

= Vlb is

discretized by inserting a second ghost cell with center V0 = Vlb−∆V/2 and by setting
the flux in that cell, i.e., Eq. (A-2) for m = 0, to zero, which gives for the ghost value

p(V0, t) = p(V1, t) exp(−v 1
2
∆V/D). (A-5)

Furthermore, the spike rate, r(t) = qp(Vs, t), in this representation is given by
evaluating the Scharfetter-Gummel flux, Eq. (A-2), at VNV + 1

2
, using the ghost value

from the discretized absorbing boundary, Eq. (A-4), which yields

r(t) = qp(VNV + 1
2
, t) = vNV + 1

2

1 + exp(−vNV + 1
2
∆V/D)

1− exp(−vNV + 1
2
∆V/D)

p(VNV , t), (A-6)

A3) Semi-implicit time discretization

Inserting the Scharfetter-Gummel flux representation, Eq. (A-2), into Eq. (A-1), using
Eq. (A-6) (at t− Tref) and approximating the time derivative with first order
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backward differences, results in

pn+1
m − pnm

∆t
=

vm− 1
2

∆V

(
pn+1
m−1 − pn+1

m exp(−vm− 1
2
∆V/D)

1− exp(−vm− 1
2
∆V/D)

)

−
vm+ 1

2

∆V

(
pn+1
m − pn+1

m+1 exp(−vm+ 1
2
∆V/D)

1− exp(−vm+ 1
2
∆V/D)

)

+ δmmr

1

∆V
r(tn+1−nref

),

(A-7)

where the drift and diffusion coefficients, vm± 1
2

and D, respectively, are evaluated at
tn here and in the following, which corresponds more precisely to a semi-implicit time
discretization.

Collecting terms for inner grid cells, m = 2, . . . , NV − 1, gives the following
elements of the tridiagonal matrix Gn from Eq. (A-3):

Gn
m,m =

vm+ 1
2

exp(−vm+ 1
2
∆V/D)− 1

+
vm− 1

2
exp(−vm− 1

2
∆V/D)

exp(−vm− 1
2
∆V/D)− 1

, (A-8)

Gn
m,m−1 =

vm− 1
2

1− exp(−vm− 1
2
∆V/D)

, (A-9)

Gn
m,m+1 =

vm+ 1
2

exp(−vm+ 1
2
∆V/D)

1− exp(−vm+ 1
2
∆V/D)

. (A-10)

The remaining nonzero elements, i.e., those in the first and last row of Gn, are
obtained by using the ghost cell values from the discretized boundary conditions.
Inserting Eq. (A-5) into Eq. (A-7) with m = 1 yields for the reflecting boundary,

Gn
1,1 =

v 3
2

exp(−v 3
2
∆V/D)− 1

, (A-11)

Gn
1,2 =

v 3
2

exp(−v 3
2
∆V/D)

1− exp(−v 3
2
∆V/D)

. (A-12)

Note that these coefficients for the first row of Gn are alternatively also obtained by
setting the term qp(V 1

2
, t) to zero in Eq. (A-1) for m = 1 which allows to skip the

introduction of the auxiliary ghost cell for the reflecting boundary.
For the absorbing boundary we insert Eq. (A-4) into Eq. (A-7) with m = NV ,

resulting in

Gn
NV ,NV −1 =

vNV − 1
2

1− exp(−vNV − 1
2
∆V/D)

(A-13)

Gn
NV ,NV = vNV − 1

2

exp(−vNV − 1
2
∆V/D)

exp(−vNV − 1
2
∆V/D)− 1

(A-14)

+ vNV + 1
2

exp(−vNV + 1
2
∆V/D) + 1

exp(−vNV + 1
2
∆V/D)− 1

,

which completes the specification of the tridiagonal matrix Gn and thus the system,
Eq. (A-3), that is, of Eq. (35).
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B) Derivation of the model spec2 based on the
Fokker-Planck operator

B1) Base model

We start with the Fokker-Planck mean-field model in spectral representation,
Eqs. (55), (56) and (39),

α̇ =
(
Λ + Cµµ̇+ Cσ2 σ̇2

)
α+ cµµ̇+ cσ2 σ̇2 (B-1)

r(t) = r∞ + f ·α (B-2)

˙〈w〉 =
a
(
〈V 〉∞ − Ew

)
− 〈w〉

τw
+ b r, (B-3)

for the (infinitely many) projection coefficients (α1, α2, . . . ), the population-averaged
spike rate r and adaptation current 〈w〉, respectively. They depend on the quantities
Λ, Cx, cx (for x ∈ {µ, σ2}), r∞, f and 〈V 〉∞, which all are evaluated at the total
input moments

µ(t) =

=µsyn(t)︷ ︸︸ ︷
µext(t) +KJrd(t)−

〈w〉(t)
C

, (B-4)

σ2(t) = σ2
ext(t) +KJ2 rd(t) = σ2

syn(t) (B-5)

omitting subscripts tot here and in the following (cf. Eqs. (21),(26),(27)). Additionally,

Eq. (B-1), contains the (first order) time derivative of the total input moments, µ̇, σ̇2.
For increased generality here we do not restrict the form of the delay distribution

pd (i.e., the delayed spike rate is given by rd = r ∗ pd, cf. Eq. (20)) but show specific
examples that include exponentially distributed, identical and no delays further below.

Deriving Eqs. (B-1) once and (B-2) twice w.r.t. time gives

α̈ =
(
∂µΛµ̇+ ∂σ2Λσ̇2 +

[
∂µCµµ̇+ ∂σ2Cµσ̇2

]
µ̇+ Cµµ̈

+
[
∂µCσ2 µ̇+ ∂σ2Cσ2 σ̇2

]
σ̇2 + Cσ2 σ̈2

)
α

+
(
Λ + Cµµ̇+ Cσ2 σ̇2

)
α̇+ ∂µcµ(µ̇)2 + cµµ̈+ ∂σ2cµσ̇2µ̇

+ ∂µcσ2 µ̇σ̇2 + ∂σ2cσ2(σ̇2)2 + cσ2 σ̈2,

(B-6)

ṙ = ∂µr∞µ̇+ ∂σ2r∞σ̇2 +
(
∂µf µ̇+ ∂σ2f σ̇2

)
·α+ f · α̇, (B-7)

r̈ =
(
∂µµr∞µ̇+ ∂σ2µr∞σ̇2

)
µ̇+ ∂µr∞µ̈

+
(
∂µσ2r∞µ̇+ ∂σ2σ2r∞σ̇2

)
σ̇2 + ∂σ2r∞σ̈2

+
( [
∂µµf µ̇+ ∂σ2µf σ̇2

]
µ̇+ ∂µf µ̈ (B-8)

+
[
∂µσ2f µ̇+ ∂σ2σ2f σ̇2

]
σ̇2 + ∂σ2f σ̈2

)
·α

+ 2
(
∂µf µ̇+ ∂σ2f σ̇2

)
· α̇+ f · α̈.
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B2) Slowness and modal approximations

Assuming slowly changing total input moments, i.e., small input variations µ̇ and σ̇2

allows to consider projections coefficients of that order: αn = O(µ̇) and αn = O(σ̇2).
We can therefore neglect all higher order terms and in particular those which are
proportional to the following factors: µ̇σ̇2, (µ̇)2, (σ̇2)2, µ̇α, σ̇2α, µ̈α, σ̈2α, µ̇α̇, σ̇2α̇.

With this approximation Eqs. (B-1),(B-6)–(B-8) become

α̇ = Λα+ cµµ̇+ cσ2 σ̇2, (B-9)

α̈ = Λ2α+ Λ cµµ̇+ Λ cσ2 σ̇2︸ ︷︷ ︸
=Λα̇

+cµµ̈+ cσ2 σ̈2, (B-10)

ṙ = ∂µr∞µ̇+ ∂σ2r∞σ̇2 + f ·Λα+ f · cµµ̇+ f · cσ2 σ̇2︸ ︷︷ ︸
=f ·α̇

, (B-11)

r̈ = ∂µr∞µ̈+ ∂σ2r∞σ̈2 (B-12)

+ f ·Λ2α+ f · cµµ̈+ f · cσ2 σ̈2 + f ·Λ cµµ̇+ f ·Λ cσ2 σ̇2︸ ︷︷ ︸
=f ·α̈

.

We now consider only the first two dominant eigenvalues λ1 and λ2 (cf.
Eqs. (58),(67)) and neglect all (faster) eigenmodes corresponding to eigenvalues with
larger absolute real part (“modal approximation”). Therefore, we take into account
only the first two components of the (originally infinite-dimensional) variables
α = (α1, α2)T and quantities Λ = diag(λ1, λ2), f = (f1, f2)T , cµ = (cµ1 , c

µ
2 )T ,

cσ2 = (cσ
2

1 , cσ
2

2 )T . Note that here and in the following the bold symbols denote the
two-dimensional vectors and (diagonal) matrix, respectively.

Due to the modal approximation Eqs. (B-11),(B-12) form a linear, two-dimensional
algebraic system with unknowns f1α1 and f2α2. Solving this problem and inserting
the solution into Eq. (B-2) using f ·α = f1α1 + f2α2 yields

r∞ − r =−
(

1

λ1
+

1

λ2

)[
ṙ − ∂µr∞µ̇− ∂σ2r∞σ̇2 − f · cµµ̇− f · cσ2 σ̇2

]
+

1

λ1λ2

[
r̈ − ∂µr∞µ̈− ∂σ2r∞σ̈2 − f · cµµ̈− f · cσ2 σ̈2

− f ·Λ cµµ̇− f ·Λcσ2 σ̇2
]
.

(B-13)

This Equation represents the complete spike rate dynamics under the modal and
slowness approximations. It involves the first two time derivatives of the total input
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moments,

µ̇ = µ̇ext(t) +KJṙd(t)−
˙〈w〉
C

(B-14)

= µ̇ext(t) +KJṙd(t)−
a (〈V 〉∞ − Ew)− 〈w〉

τwC
− br

C
,

µ̈ = µ̈ext(t) +KJr̈d(t)−
¨〈w〉
C
, (B-15)

= µ̈ext(t) +KJr̈d(t)−
a

τwC

(
∂µ 〈V 〉∞ µ̇+ ∂σ2 〈V 〉∞ σ̇2

)
+

˙〈w〉
τwC

− bṙ

C
,

= µ̈ext(t) +KJr̈d(t)−
a

τwC

(
∂µ 〈V 〉∞ µ̇+ ∂σ2 〈V 〉∞ σ̇2

)
(B-16)

+
a (〈V 〉∞ − Ew)− 〈w〉

τ2
wC

+
br

τwC
− bṙ

C
,

σ̇2 = σ̇2
ext(t) +KJ2ṙd(t), (B-17)

σ̈2 = σ̈2
ext(t) +KJ2r̈d(t). (B-18)

B3) Compactification

Expanding the terms of Eqs. (B-14)–(B-18) in Eq. (B-13) yields

r∞ − r =− T ṙ +Dr̈

−D (∂µr∞ + f · cµ)

(
µ̈ext +

a (〈V 〉∞ − Ew)− 〈w〉
τ2
wC

+KJr̈d +
br

τwC
− bṙ

C

)
−D

(
∂σ2r∞ + f · cσ2

)(
σ̈2

ext +KJ2r̈d
)

+

(
µ̇ext +KJṙd −

a (〈V 〉∞ − Ew)− 〈w〉
τwC

− br

C

)
+
(
σ̇2

ext +KJ2ṙd
)

·
[
T
(
∂µr∞ + f · cµ

)
+D

(
∂µr∞ + f · cµ

) a

τwC
∂µ 〈V 〉∞

−Df ·Λ cµ

]
·
[
T
(
∂σ2r∞ + f · cσ2

)
+D

(
∂µr∞ + f · cµ

) a

τwC
∂σ2 〈V 〉∞

−Df ·Λ cσ2

]
,

(B-19)

where we have introduced the trace T and determinant D of the inverse eigenvalue
matrix Λ−1,

T = 1/λ1 + 1/λ2, (B-20)

D = 1/λ1 · 1/λ2, (B-21)
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for simplicity. With the definitions of the additional (lumped) quantities,

Fµ = f ·Λ cµ, (B-22)

Fσ2 = f ·Λ cσ2 , (B-23)

M = ∂µr∞ + f · cµ, (B-24)

S = ∂σ2r∞ + f · cσ2 , (B-25)

R = DMKJ +DSKJ2, (B-26)

Hµ = TM +DM
a

τwC
∂µ 〈V 〉∞ −DFµ, (B-27)

Hσ2 = TS +DM
a

τwC
∂σ2 〈V 〉∞ −DFσ2 , (B-28)

that are composed of the individual quantities (and of neuron and coupling
parameters), Eq. (B-19) can be rewritten as

r∞ − r = r

(
−DM b

τwC
− b

C
Hµ

)
+ ṙ

(
−T +DM

b

C

)
+ ṙd

(
KJHµ +KJ2Hσ2

)
+ r̈D

− r̈dR

− DM

(
µ̈ext +

a (〈V 〉∞ − Ew)− 〈w〉
τ2
wC

)
+

(
µ̇ext −

a (〈V 〉∞ − Ew)− 〈w〉
τwC

)
Hµ

+ σ̇2
extHσ2 −DSσ̈2

ext.

(B-29)

Note that the first six lumped quantities, Eqs. (B-20)–(B-25), depend on the
parameters of recurrent coupling and adaptation current (only) via the total input
moments, cf. Eq. (B-4),(B-5), while the last three, Eqs. (B-26)–(B-28), contain them
(K, J , a, τw) explicitly. Those lumped quantities, i.e., R, Hµ, Hσ2 , can, for example,
be evaluated during runtime for the respective total input moments by using
precalculations of the other lumped quantities (T , D, Fµ, Fσ2 , M , S) and of the
additional individual quantities ∂µ 〈V 〉∞ and ∂σ2 〈V 〉∞, that all are independent of
adaptation and synaptic parameters.

B4) Second order ordinary differential equation

Eq. (B-29) leads to the final model (cf. Eq. (62)): a real-valued second order equation
for the spike rate r(t),

β2r̈ + β1ṙ + β0r = r∞ − r − βc, (B-30)

with coefficients β2, β1, β0 and βc, that depend on the total input moments
µ(t, rd, 〈w〉) and σ2(t, rd, 〈w〉) (cf. Eqs. (B-4),(B-5)). Their concrete form is
determined by the delay distribution pd. Particularly, we distinguish three cases: (i)
coupling without delay, pd(τ) = δ(τ), (ii) exponentially distributed delays,
pd(τ) = exp(−τ/τd)/τd (for τ ≥ 0), and (iii) identical delays, pd(τ) = δ(τ − d) with
d > 0.
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Case i) – coupling without delays For instantaneous synaptic interaction we
have r = rd. Thus, the coefficients of Eq. (B-30) are obtained by direct comparison
with Eq. (B-29) which gives

β2 =D −R, (B-31)

β1 = − T +DM
b

C
+KJHµ +KJ2Hσ2 , (B-32)

β0 = −DM b

τwC
− b

C
Hµ, (B-33)

βc = −
(
µ̈ext +

a (〈V 〉∞ − Ew)− 〈w〉
τ2
wC

)
DM − σ̈2

extDS, (B-34)

+

(
µ̇ext −

a (〈V 〉∞ − Ew)− 〈w〉
τwC

)
Hµ + σ̇2

extHσ2 .

Note that βc depends explicitly on the population-averged adaptation current 〈w〉 as
well as on the first and second order time derivatives of the external moments µext and
σ2

ext.

Case ii) – exponentially distributed delays Here we obtain the delayed rate rd
by solving ṙd = (r − rd)/τd. Inserting this expression together with its time derivative
into Eq. (B-29) results in the coefficients

β2 = D, (B-35)

β1 = − T +DM
b

C
− R

τd
, (B-36)

β0 =−DM b

τwC
− b

C
Hµ +

1

τd

(
KJHµ +KJ2Hσ2

)
+
R

τ2
d

, (B-37)

βc = rd

(
− 1

τd

(
KJHµ + KJ2Hσ2

)
− R

τ2
d

)
, (B-38)

−
(
µ̈ext +

a (〈V 〉∞ − Ew)− 〈w〉
τ2
wC

)
DM − σ̈2

extDS

+

(
µ̇ext −

a (〈V 〉∞ − Ew)− 〈w〉
τwC

)
Hµ + σ̇2

extHσ2 ,

that correspond to those in Eqs. (63)–(66). Here βc depends explicitly on the delayed
spike rate rd (in addition to 〈w〉 as well as the first and second order time derivatives
of µext and σ2

ext as in the case without delays).

Case iii) – identical delays The delayed spike rate in this situation is given by
rd(t) = r(t− d). Inserting the first and second order time derivative of this identity
into Eq. (B-29) yields
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β2 = D, (B-39)

β1 = − T +DM
b

C
, (B-40)

β0 =−DM b

τwC
− b

C
Hµ, (B-41)

βc =− r̈(t− d)R + ṙ(t− d)
(
KJHµ +KJ2Hσ2

)
(B-42)

−
(
µ̈ext +

a (〈V 〉∞ − Ew)− 〈w〉
τ2
wC

)
DM − σ̈2

extDS

+

(
µ̇ext −

a (〈V 〉∞ − Ew)− 〈w〉
τwC

)
Hµ + σ̇2

extHσ2 ,

Here βc depends explicitly on r̈(t− d) and ṙ(t− d) (in addition to 〈w〉 as well as the
first and second order time derivatives of µext and σ2

ext as in the case without delays).

B5) Remarks

• Equation (B-30) is an ordinary differential spike rate model for the cases (i) and
(ii), i.e., without or exponentially distributed delays, while for identical delays
(case iii) delayed variables occur explicitly in βc and due to rd(t) = r(t− d) also
in any model quantity via the total input moments.

• For exponentially distributed delays with an identical shift d, i.e.,
pd(τ) = exp[−(τ − d)/τd]/τd with τ ≥ d, the delayed spike rate rd satisfies
ṙd(t) = [r(t− d)− rd(t)]/τd. In this situation the coefficients (β2, β1 and β0) are
identical to those of case iii) except for βc which is modified and depends on
rd(t), r(t− d), ṙ(t− d) (and the parameter τd), i.e., here Eq. (B-30) also
represents a delay differential model.

• Any delay distribution pd from the exponential family can be incorporated
similarly as for the specific instance of an exponentially distribution (cf. case ii)
to yield (non-delayed) coefficients of Eq. (B-30) by using the equivalent
representation of the delayed spike rate rd as an ODE (system).

• The scenario of an uncoupled population is obtained from any of the three cases
by setting the number of presynaptic neurons K to zero (implying R = 0).

• As an alternative to derive and simulate the explicit model, Eq. (B-30), one can
directly integrate Eq. (B-13) numerically by replacing the first two time
derivatives of the total moments µ and σ2 by finite (backward) differences in
each timestep. This approach avoids lengthy expressions and might be especially
useful when considering multiple interacting populations irrespective of the delay
distribution.
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C) Numerical solver for the nonlinear
Fokker-Planck eigenvalue problem

C1) Problem statement

The (main) objective is to find the eigenvalues λn of the Fokker-Planck operator L
which are the solutions of the complex-valued Eq. (69),

λ 7→ qφ(Vlb;λ)
!
= 0. (C-1)

Each evaluation of qφ(Vlb;λ) involves a backward integration of Eq. (68),

− d

dV

(
qφ
φ

)
=

(
0 λ
2
σ2 −2 g(V )+µ

σ2

)
︸ ︷︷ ︸

=A

(
qφ
φ

)
, (C-2)

which is initialized according to the absorbing boundary condition (cf. Eq. (44)),

φ(Vs) = 0 (C-3)

and the arbitrary choice qφ(Vs) ∈ C \ {0} (due to the linearity of the problem), and
which furthermore has to take into account the (generalized) reinjection condition,
Eq. (60),

qφ(V −r ) = qφ(V +
r )− qφ(Vs)e

−λTref . (C-4)

Note that the latter corresponds for Tref = 0 to the reinjection condition that does not
include the refractory period, i.e., Eq. (47).

C2) Parameter-dependent solution

The eigenvalues λn, the associated eigenfunctions φn(V ) of L and ψn(V ) of L∗ are
required for a rectangle of input parameter values (µ, σ). Using the property the
eigenvalues are real-valued for sufficiently small mean input µ and that they
furthermore continuously depend on both (input) parameters, mean µ and standard
deviation σ, we establish the following solution algorithm:

1. Discretize the input parameter rectangle, {(µk, σ`)}, k = 1, . . . ,Mµ,
` = 1, . . . ,Mσ with small spacings ∆µ, ∆σ.

2. For µ1 = µmin evaluate q(Vlb;λ) with high resolution on a real negative interval
[λmin, 0) with sufficiently small λmin � 0 such that at least Nλ eigenvalues are
found. The zero-crossings of q(Vlb;λ) yield the eigenvalues λ1(µ1, σ`),
λ2(µ1, σ`), . . . , λNλ(µ1, σ`), cf. the respectively attached axes in Fig. 7A.

3. Use the computed eigenvalues λn(µ1, σ`) as initial approximations λ̃n for the
target eigenvalues at the next larger mean input, λn(µ2, σ`) and iteratively solve
Eq. (C-1) with Powell’s hybrid method. Note this can yield a complex eigenvalue
for a real initialization (close to the real-to-complex transition).

4. Repeat the last step by taking the eigenvalues at µk−1 as initial approximation
for µk where k = 3, . . . ,Mµ.

Since this procedure is independent of the sequential σ` (and n) order it can be
computed in parallel for ` = 1, . . . ,Mσ (and n = 1, . . . , Nλ).

The nonlinear solver, Powell’s hybrid method, approximates the Jacobian of the
equivalent two-dimensional real nonlinear system of the complex function q(Vlb;λ)
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with finite difference step size ∆λ and stops iterating when the relative convergence
tolerance ε is reached implying a solution has been found. Since this root finding
method (that we apply to solve Eq. (C-1)) converges locally, the input parameter
rectangle has to be discretized sufficiently fine, i.e, ∆µ and ∆σ have to be small.
Otherwise artefacts as jumps between the eigenvalue curves could occur, especially
when λn(µ) is steep (cf. Fig. 7A) and another eigenvalue is close by (in λ space).

We use for the solver parameters the values of Table C-1, which are suitable for the
network model of this study as parametrized by Table 1 of the main text.

Table C-1: Parameter values of the spectral solver.
Name Symbol Value

Spacing of input rectangle, mean input ∆µ 0.005 mV/ms1

Spacing of input rectangle, standard dev. ∆σ 0.1 mV/
√

ms
Membrane voltage discretization width ∆V 0.01 mV
Smallest mean input (real spectrum) µmin -1.5 mV/ms
Number of eigenvalues Nλ 10
Finite difference step size (MINPACK: EPS) ∆λ 1e-10 kHz
Relative convergence tolerance (MINPACK: XTOL) ε 1e-8
Finite difference step size (quantities), mean input δµ 0.001 mV/ms
Finite difference step size (quantities), standard dev. δσ 0.001 mV/

√
ms

1Fine spacing required (in comparison to the value of ∆µ used for the quantity
precalculation of the cascade based models) due to the continuous tracking of the
eigenvalues. Note that after the calculation we downsample the spectrum to the same
mean input resolution for comparability.

C3) Exponential integration

A major factor for efficiency and accuracy of the algorithm above is the particular
numerical way in which the backward integration of the differential equation
system (C-2) is performed since this corresponds to one evaluation of the nonlinear
function λ 7→ q(Vlb;λ). An efficient and accurate discretization scheme is to perform
exponential integration steps, i.e.,

(qm−1, φm−1)T = exp
[
A
(
Vm− 1

2

)
∆V

]
(qm, φm)T (C-5)

with qm = qφ(Vm) and φm = φ(Vm) on an equidistant membrane voltage grid
Vm = Vlb +m∆V (m = 0, . . . , NV and VNV = Vs). This scheme involves the matrix
exponential function, exp(A∆V ) =

∑∞
j=0(A∆V )j/j!, that is inexpensively evaluated

as an (equivalent) linear combination of A∆V and the identity matrix [72]. This
second order convergent numerical integration scheme that exploits the linearity of the
system, Eq. (C-2), is obtained by truncating the Magnus expansion of the exact

solution after one term and approximating the occuring integral
∫ Vm
Vm−1

A(V )dV using

the mid point rule [71]. Note that the matrices A(V ) and A(Ṽ ) do not commute for
V 6= Ṽ in general which implies that the solution of Eq. (C-2) does not have a simple
exponential representation but is rather described by an (infinite) Magnus series. For
the perfect integrate-and-fire model, though, the scheme, Eq. (C-5), gives the exact
solution of Eq. (C-2) as the coefficient matrix A is constant due to g(V ) = 0 in this
case.
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The integration of Eq. (C-2) is initialized at Vs with φNV = 0 to satisfy the
absorbing boundary, Eq. (C-3)), and with the arbitrary choice qNV = 1 (possible due
to the linearity of both Eq. (C-2) and the boundary conds). The exponential scheme,
Eq. (C-5), is then used to (backward) calculate (qm, φm), m = NV − 1, . . . ,mr, where
the reset voltage is assumed to be contained in the grid, i.e., Vmr = Vr. At the reset
voltage Vr the (generalized) reinjection cond., Eq. (C-4), is applied by

qmr ← qmr − qNV exp(−λTref). (C-6)

Continuing the backward integration using the scheme of Eq. (C-5) again for

m = mr − 1, . . . , 0 finally gives the values q0 and φ0 at Vlb. Therefore, q0(λ)
!
= 0

corresponds to the root finding problem, Eq. (C-1), after (exponential) membrane
voltage discretization, and a value of q0 = 0 indicates that λ is an eigenvalue with
respective eigenfunction φ(V ) in discrete representation (φm,m = 0, . . . , NV ).

C4) Adjoint operator

To calculate the eigenfunctions of the adjoint operator L∗ (cf. Eq. (49)–(52)) we
assume that an eigenvalue λn is given (obtained for example using the procedure
described in the previous two sections). Eq. (49), i.e., L∗[ψn] = λnψn, can be
rewritten as a linear second order system for (ψn, dψn)T ,

d

dV

(
ψn
dψn

)
=

(
0 1

2λn
σ2 −2 g(V )+µ

σ2

)
︸ ︷︷ ︸

=B

(
ψn
dψn

)
(C-7)

with dψn = ∂V ψn and (nonlinear) coefficient matrix B. This system is exponentially
integrated forwards from the lower bound Vlb to the spike voltage Vs. Specifically we
define ψmn = ψn(Vm) and dψmn = ∂V ψn(Vm) on the same grid as in the previous
section. The integration is initialized according to the boundary cond. at Vlb (cf.
Eq. (51)), i.e., dψ0

n = 0 together with the arbitrary choice ψ0
n = 1 due to the linearity

of the problem. Then we calculate the values ψmn , dψmn (m = 1, . . . , NV ) using the
exponential integration scheme

(ψm+1
n , dψm+1

n )T = exp
[
B
(
Vm+ 1

2

)
∆V

]
(ψmn , dψ

m
n )T . (C-8)

The (generalized) boundary cond., Eq. (61), ψNVn = ψmrn exp(−λnTref) is necessarily
fullfilled because λn was assumed to be an eigenvalue. This implies that ψmn is the
corresponding (everywhere continuously differentiable, cf. main text) eigenfunction
ψn(V ) in discrete form. Note that the generalized boundary condition above
corresponds for Tref = 0 to the respective condition that does not include the
refractory period, i.e., Eq. (50).

C5) Quantities

The quantities that are required by the spike rate models spec1 (Eq. (59)), and spec2

(Eq. (62)), i.e., λ1, λ2, r∞, ∂xr∞, 〈V 〉∞, ∂x〈V 〉∞, fn, cxn, for x = µ, σ2 and n = 1, 2,
are calculated for each mean µk and standard deviation σ` of the input rectangle as
follows.

Applying the exponential integration scheme Eqs. (C-5),(C-6) for the eigenvalue

λ0 = 0 gives the (unnormalized) eigenfunction φ̂0 which is proportional to the

stationary distribution p∞. After normalizing φ̂0 to yield a probability density, i.e.,

φ0 = φ̂0/
∫ Vs

Vlb
φ̂0(V )dV , the stationary quantities, mean membrane voltage
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〈V 〉∞ =
∫ Vs

Vlb
V φ0(V )dV and spike rate r∞ = qφ0

(Vs), are calculated. Practically, the

latter is given by the (scaled) flux initialization of the exponential backward

integration, r∞ = qNV /
∫ Vs

Vlb
φ̂0(V )dV , which is – for a refractory period Tref > 0 –

denoted with r̃∞ giving after scaling the steady-state spike rate
r∞ = r̃∞/(1 + r̃∞Tref). The optional spike shape extension can be incorporated in this
case using Eq. (93) with p∞ = φ0/(1 + r̃∞Tref).

To obtain the first two dominant eigenvalues λ1 and λ2 we use the procedure of
Sects. C2), C3) and calculate a number Nλ of (nonstationary) eigenvalues λn(µk, σ`),
n = 1, . . . , Nλ for the given input parameter rectangle. These eigenvalues are sorted,
for each input parameter pair (µk, σ`) separately, such that λ1 and λ2 are the first and
second dominant eigenvalue, respectively, according to Eqs. (58),(67), cf. Fig. 7A,C.
Note that the other eigenvalues, n = 3, . . . , Nλ, are not used for the models spec1 and
spec2. However, they are required within the numerical solution method to account for
the points in input parameter space (µ, σ), where the eigenvalue class switches (due to
Vlb 6= Vr, see main text). For example in Fig. 7A (right column, i.e., with large noise
intensity σ) a diffusive mode is dominant for small mean input µ while for increased
mean the dominant eigenvalue (pair) is from the regular type. The numerical
procedure described above starts with the dominant Nλ (real) eigenvalues at the
smallest mean input and then continuously tracks each of these eigenvalues for
increasing mean input µ. Therefore, when computing only, e.g., Nλ = 2 eigenvalues for
the previous example both would be of the diffusive kind and the dominant regular
modes for larger µ cannot be found.

The nonstationary quantities are based on the (already calculated) dominant
eigenvalues λ1 and λ2. First the corresponding (unnormalized) eigenfunctions φ̃1 and
φ̃2 of L are obtained using the exponential integration scheme, Eqs. (C-5),(C-6) with
λ = λ1, λ2, as well as those of L∗ (ψ1 and ψ2) that are computed via Eq. (C-8). The
eigenfunctions of L are then scaled according to φn = φ̃n/〈ψn, φ̃n〉 which yields
(bi)orthonormal eigenfunctions, i.e., 〈ψn, φm〉 = δnm, and this fixes the remaining

degree of freedom for products between quantities of L and L∗, e.g., cσ
2

n fn. Note that
in the spec2 model, Eqs. (62)–(66), nonstationary quantities occur exclusively in such
products, specifically, f · cx = cx1f1 + cx2f2 and f ·Λ cx = cx1f1λ1 + cx2f2λ2 (for
x = µ, σ2), and they do not enter at all the spec1 model, Eq. (59), except for the first
dominant eigenvalue λ1.

The nonstationary quantities of L are obtained by f1 = qφ1
(Vs) and f2 = qφ2

(Vs),
and particularly (similar to r∞ above) by “reading off” the respective (normalized)
initialization values fn = qNV /〈ψn, φ̃n〉.

The other quantities (nonstationary of L∗ and the remaining stationary ones)
involve partial derivatives w.r.t. µ and σ2. They are calculated using a central finite
difference approximation that is second order accurate (in the respective step size δµ
or δσ), ∂µθ ≈ [θµ+δµ,σ − θµ−δµ,σ]/(2δµ) and ∂σθ ≈ (θµ,σ+δσ − θµ,σ−δσ)/(2δσ) for
θ = r∞, 〈V 〉, ψn(V ). For implementation convenience we calculate σ-derivatives of the
quantities and transform them, using the chain rule, to the originally required ones,
∂σ2θ = ∂σθ/(2σ). For the (final) quantities cxn = 〈∂xψn, φ0〉 the stationary
eigenfunction φ0 is multiplied with the finite difference version of ∂xψn. The latter
requires for each x = µ, σ2 two (forward) integrations via Eq. (C-8) (e.g.,
ψn(V ;µ+ δµ, σ) and ψn(V ;µ− δµ, σ)).

C6) Modifications

The solutions of Eq. (C-2) or (C-7) can be multiplied with an arbitrary complex scalar
value to yield another solution because the operators L and L∗ and the corresponding
boundary conds. are linear in φ, q or ψ, ∂V ψ respectively. Therefore the initializations
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qNV or ψ0 of the exponential integration schemes, Eqs. (C-5) or (C-8), can be chosen
arbitrarily and the (bi)normalization is applied a posteriori. In our numerical
implementation we specifically initialize with qNV = 1 only at µmin and for all other
µk > µmin we start the integration with qNV (µk) = qNV (µk−1) where qNV (µk−1) is
taken after normalization. This modification allows to specify tolerance and finite
difference parameters, ε and ∆λ, respectively, that are appropriate for the whole input
rectangle despite the fact that the magnitude of the function which is evaluated in
each step of the root finding algorithm, i.e., q(Vlb;λ), depends strongly on (µ, σ, λ)
(e.g., see the scales of the attached axes in Fig. 7A).

The numerical solver described above does not take into account the fact that
eigenvalues λn at the transition from real to complex values have multiplicity two.
Therefore, at these input parameter points (µ∗, σ∗) we calculate all nonstationary
quantities by nearest-neighbor interpolation to resolve corresponding artefacts. Note
that an even more pronounced smoothing of the quantities around these points would
likely be beneficial to the model performance of the model spec2.
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