Science Advances

MAAAS

advances.sciencemag.org/cgi/content/full/3/7/e1700006/DC1

Supplementary Materials for

Multiplexed gene control reveals rapid mRNA turnover

Antoine Baudrimont, Sylvia Voegeli, Eduardo Calero Viloria, Fabian Stritt, Marine Lenon, Takeo Wada, Vincent Jaquet, Attila Becskei

> Published 12 July 2017, *Sci. Adv.* **3**, e1700006 (2017) DOI: 10.1126/sciadv.1700006

The PDF file includes:

- fig. S1. The cell ploidy and the choice of reference mRNAs have no impact on measured half-lives.
- fig. S2. Pop-out of the chromosomally integrated plasmid is dispensable for halflife estimation of mature mRNA.
- fig. S3. The doubling time of the MGC strains (red dots) is similar to that of the parent diploid strain (black line).
- fig. S4. Insertional promoter strategy.
- fig. S5. Phenanthroline increases the number of P bodies.
- fig. S6. mRNA half-life has a major impact on response time of a protein in a negative feedback loop.
- fig. S7. Degradation rates and not synthesis rates affect the response time.
- fig. S8. Parameter estimation of the two-state model to fit the USA1 RNA copy number distributions.
- fig. S9. Impact of 5'UTR length on the decay profiles of mRNAs with varying 5'UTR lengths.
- fig. S10. Design of the plasmids with the substitutional promoters and the strategy for chromosomal integration.
- fig. S11. Reverse transcription strategy.
- table S1. Plasmid list.
- table S2. Strain list.
- table S3. Cloned 5'UTR lengths of genes.
- table S4. qPCR primers detecting marked mRNAs and their amplification efficiencies.
- table S5. qPCR primers detecting endogenous mRNAs with their efficiencies.

- table S6. Cross-reaction of primers to detect the marked mRNA with the endogenous mRNAs.
- table S7. Mean, Fano factor, and CV of the RNA molecule copy number distributions.

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/3/7/e1700006/DC1)

- data file S1 (Microsoft Excel format). *C*_t values for one of the replicate experiments of pooled strains in the MGC experiment.
- data file S2 (Microsoft Excel format). Time courses in the replicate measurements.
- data file S3 (Microsoft Excel format). mRNA (relative) levels and decay rates.
- data file S4 (Microsoft Excel format). Time courses for *YJR139C* and *YDR032C* mRNAs.

fig. S1. The cell ploidy and the choice of reference mRNAs have no impact on measured half-lives. (A) Half-lives of mRNAs in haploid and diploid cells measured by MGC. The gray dashed line indicates the expected equality of the two half-lives and the dotted line a two-fold deviation from the equality. (B) The Ct values of *TFC1* and *UBC6* during the time course display low variability ($CV_{TFC1} = 0.4$ % and $CV_{UBC6} = 0.8$ %). (C) mRNAs decay time courses with *TFC1* and *UBC6* used as gene of reference. The following half-lives were fitted: *YBRO25C* (*OLA1*): 11.5, *YBR036C* (*CSG2*): 2.6 min, YML029W (*USA1*): 1.7 and YML043C (*RRN11*): 0.7 min. (D) mRNA decay time courses with the respective endogenous mRNA levels used as reference. The following half-lives were fitted: *YBR036C* (*CSG2*): 2.5 min, *YML029W* (*USA1*): 1.5 and *YML043C* (*RRN11*): 0.8 min.

fig. S2. Pop-out of the chromosomally integrated plasmid is dispensable for half-life estimation of mature mRNA. The half-lives of mRNAs (\pm standard error of the fitting) were determined as described in Bonde *et al.* (A) After homologous recombination, the plasmid is integrated into the chromosome and the promoter of the gene is replaced. The plasmid can be popped out by transplacement, so that only the replaced promoter (P_{GAL1}) remains in the chromosome. Negative selection on FOA plates permits identification of strains with popped-out plasmid (blue text). (B) Time course of mRNA decay of *SUS1* with (blue) and without (red) popped-out plasmid. (C) Time course of mRNA decay of *NMD2* with (blue) and without (red) popped-out of the plasmid.

fig. S3. The doubling time of the MGC strains (red dots) is similar to that of the parent diploid strain (black line). The doubling times were measured in synthetic complete (SC) medium (2% raffinose, 0.005% glucose).

fig. S4. Insertional promoter strategy.

fig. S5. Phenanthroline increases the number of P bodies. Top. Representative images of *DCP2-GFP* cells before and after addition of phenanthroline to the media); scale bar: 2 μ m. Bottom. Changes in the percentage of *Dpc2p* positive cells after addition of phenanthroline (red) or doxycycline to the media (blue).

fig. S6. mRNA half-life has a major impact on response time of a protein in a negative feedback loop. (A) The response time of the protein as a function of mRNA half-life $(t_{1/2}=1 \text{ and } 10 \text{ min in the middle and bottom panels, respectively})$ when the protein halflife is 40 min (dashed blue line) or 8 hours (plain blue line). Parameter values are the same as described for the feedback loop without Hill function. (B) The response time of negative feedback loops as a function of mRNA half-life ($t_{1/2}=1$ and 10 min in the top and bottom panels, respectively) when the protein half-life is 40 min (dashed blue line) or 8 hours (plain blue line). The mRNA and protein concentrations are normalized to their steady state level. The response time is defined as the time necessary to reach half of the steady-state level (grey arrow). For the model of the negative feedback loop, the following parameters were used: mRNA is transcribed at $k_m = 10$ nM.min⁻¹ (top) and 1 nM.min⁻¹ (bottom), and degraded at $d_m = 0.69 \text{ min}^{-1}$ (top) and 0.069 min⁻¹ (bottom) to reflect halflives of 1 and 10 min, respectively. mRNA is translated into protein at $k_p = 100$ nM.min⁻¹, which is degraded at rate $d_p = 0.017 \text{ min}^{-1}$ (blue dashed line) or $d_p = 0.0014 \text{ min}^{-1}$ (blue plain line). The response of the promoter to the repressor protein is described by a Hilltype function with K = 10 nM, n = 2.

fig. S7. Degradation rates and not synthesis rates affect the response time. Both these rates determine the steady-state mRNA level (mRNA_{max}). (A) The time needed to reach half of mRNA_{max} (response time) solely depends on the decay rate, d, of the mRNA. In other words, the shorter the mRNA half-life is, the faster the mRNA reaches its steady state level. (B) In contrast the synthesis rate, p, does not influence the response time of gene expression upon induction.

fig. S8. Parameter estimation of the two state-model to fit the USA1 RNA copy **number distributions.** The size of symbol (diamond) is inversely proportional to the SSE (sum of squared residuals) and thus, reflects the goodness of the fit in the two-dimensional parameter space. The ten best fits are denoted by gray color. The Fano factor of the distribution is closely related to the goodness of the fit. The Fano factor is the ratio of the variance to the mean, and the Poisson distribution has a Fano factor equal to 1. The value of the decay rate constant is taken from the MGC experiment. The contour plot shows the Fano factor as a function of the k_{on} and saturation, $k_{ON}/(k_{ON} + k_{OFF})$. k_{Tr} was calculated to match the mean of the measured mRNA copy number. The random parameter values were obtained as follows. First, the logarithms of k_{ON} and k_{Tr} were randomly generated from a uniform distribution, between 0.001 and 10 min⁻¹, and between 0.83 $\langle mRNA \rangle k_{dec}$ and 1200, respectively. $\langle mRNA \rangle$ is the mean value of the measured distribution. Last, k_{OFF} was randomly generated so that the predicted Fano factor was in the 2.25 fold range around the Fano factor of the experimental distribution. (A) USA1 (endogenous promoter). The Fano factor of the experimental distribution is 1.3 (see table S7), which indicates it is similar to a Poisson distribution. (B) USA1 (substitutional promoter).

fig. S9. Impact of 5'UTR length on the decay profiles of mRNAs with varying 5'UTR lengths (right). The fitted half-lives (\pm standard error of the fitting) are indicated at the top of the panels. The length of 5'UTR of *YML061C* is 63 bp in the Nagalakshmi data set and 140 \pm 7 bp in the Pelechano data set. The constructs with the two different cloned 5'UTR lengths (100 and 147 bp) yielded almost identical steady-state level and decay rates.

fig. S10. Design of the plasmids with the substitutional promoters and the strategy for chromosomal integration.

fig. S11. Reverse transcription strategy.

table S1. Plasmid list. tetO2 refers to the version 2 of the *tet* operator.

Common name	Systematic name	Plasmid number	Plasmid description
tTA	-	pMG013	pRS305-BstZI-P _{CLN3} -XbaI-tTA-BamHI
rTetR.SUM1	-	pSV_238	pRS303-SalI-Pret2.rTetR.SUM1.Tact1-NotI
rTetR.SSN6	-	pSV_237	pRS303-SalI-P _{ret2} .rTetR.SSN6.Tact1-NotI
OLA1	YBR025C	pSV_228	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-BglII- 5'UTR_YBR025C_4silmut_RS_BamHI-EcoRI-Ter-NotI
ETR1	YBR026C	pSV_229	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-BglII- 5'UTR_YBR026C_4silmut_RS_BamHI-EcoRI-Ter-NotI
HMT1	YBR034C	pSV_232	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-BglII- 5'UTR_YBR034C_4silmut_RS_BamHI-EcoRI-Ter-NotI
CSG2	YBR036C	pSV_233	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-BglII- 5'UTR_YBR036C_4silmut_RS_BamHI-SphI-Ter-NotI
ZTA1	YBR046C	pSV_235	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} - BamHI-5'UTR_YBR046C_4silmut_RS_MfeI-SphI-Ter-NotI
REG2	YBR050C	pSV_236	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YBR050C_4silmut_RS_BamHI-EcoRI-Ter-NotI
RFS1	YBR052C	pCP001	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YBR052C 4silmut RS BamHI-EcoRI-Ter-NotI
NRG2	YBR066C	pCP002	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YBR066C 4silmut RS BamHI-EcoRI-Ter-NotI
MIS1	YBR084W	pCP003	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YBR084W 4silmut RS BamHI-SphI-Ter-NotI
PGK1	YCR012W	pEC006	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -SphI- 5'UTR YCR012W 4silmut RS MfeI-EcoRI-Ter-NotI
GLT1	YDL171C	pSV_225	pRS306K-pnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} - BamHI-5'UTR GLT1 4silmut RS SpeI-ClaI-Ter-NotI
GLT1	YDL171C	pSV_248	pRS306-BamHI-UP-GLT1-TFs-[tetO2]2- TATA GLT1 4silmut NMD2intron RS SpeI-NotI
SUC2	YIL162W	pSV_224	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR SUC2 4silmut RS BamHI-EcoRI-Ter-NotI
GAL2	YLR081W	pSV_222	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR GAL2 4silmut RS ClaI-EcoRI-Ter-NotI
USA1	YML029W	pSM001	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YML029W 4silmut RS ClaI-EcoRI-Ter-NotI
USA1	YML029W	pSV_243	pRS306-SpeI-UP-YML029W-TFs-[tetO2]2- TATA YML029W 4silmut NMD2intron RS BgllI-NotI
USA1	YML029W	pSV_247	pRS306-SpeI-UP-YML029W-TFs-[tetO2]2- TATA YML029W 4silmut RS BgllI-NotI
NDC1	YML031W	pSV_203	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YML031W 4silmut RS BamHI-EcoRI-Ter-NotI
RAD52	YML032C	pSV_213	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YML032C 4silmut RS BamHI-EcoRI-Ter-NotI
RRN11	YML043C	pSM002	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YML043C 4silmut RS MfeI-EcoRI-Ter-NotI
PRP39	YML046W	pSM003	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YML046W 4silmut RS MfeI-EcoRI-Ter-NotI
GSF2	YML048W	pSV_209	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-BglII- 5'UTR YML048W 4silmut RS BamHI-EcoRI-Ter-NotI
AIM32	YML050W	pSV_266	pRS306KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-BglII- 5'UTR YML050W 4silmut RS BamHI-EcoRI-Ter
GAL80	YML051W	pSV_267	pRS306KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1- BamHI-5'UTR_YML051W_4silmut_RS_SpeI-SphI-Ter-NotI

Common name	Systematic name	Plasmid number	Plasmid description
СҮВ2	YML054C	pEC007	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YML054C 4silmut RS MfeI-EcoRI-Ter-NotI
NTE1	YML059C	pSV_268	pRS306KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-
OGG1	YML060W	pSV_205	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-BgIII-
			5'UTR_YML060W_4silmut_RS_BamHI-EcoRI-Ter-NotI
PIF1	YML061C	pEC009	pRS306-KpnI-Fig1-XhoI-TgaI/-AvrII-[tetO2]4inP _{gal1} -BgIII- 5'UTR_YML061C_4silmut_RS_PmeI-EcoRI-Ter-NotI
MFT1	YML062C	pSV_210	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YML062C_4silmut_RS_BamHI-EcoRI-Ter-NotI
ORC1	YML065W	pSM004	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YML065W_4silmut_RS_MfeI-EcoRI-Ter-NotI
ERV41	YML067C	pSV_219	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR YML067C 4silmut RS BamHI-EcoRI-Ter-NotI
DAK1	YML070W	pSV_207	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_VML070W_4silmut_RS_BamHI-EcoBI-Ter-NotI
COG8	YML071C	pEC005	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BgIII- 5/LTP_XML071C_4cilmut_PS_Mfal_EcoPI_Tar_NotI
WAR1	YML076C	pSV_218	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -
DUS1	YML080W	pSM005	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BgIII-
TDA9	YML081W	pSV_307	5'UTR_YML080W_4silmut_RS_MfeI-EcoRI-Ter-Notl pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII-
ALO1	YML086C	pSV_217	5'UTR_YML081W_4silmut_RS_BamHI-SphI-Ter-Notl pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -
A 1M23	VMI 087C	nSV 260	BamHI-5'UTR_YML086C_4silmut_RS_SpeI-SphI-Ter-NotI
AIMJJ		p3v_209	5'UTR_YML087C_4silmut_RS_SpeI(WT)-EcoRI-Ter-NotI
UFO1	YML088W	pSV_208	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YML088W_4silmut_RS_BamHI-EcoRI-Ter-NotI
RPM2	YML091C	pSV_270	pRS306KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1- EcoRI-5'UTR YML091C 4silmut RS SpeI-SphI-Ter-NotI
UTP14	YML093W	pSV_206	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YML093W_4silmut_RS_BamHI-SphI-Ter-NotI
YML096W	YML096W	pSV_271	pRS306KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-BglII- 5'UTR YML096W 4silmut RS BamHI-EcoRI-Ter-NotI
VPS9	YML097C	pSV_215	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'IJTR_VMI 097C_4 silmut_RS_BamHI-EcoBLTer-NotI
ARG81	YML099C	pSV_214	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BgIII- 5'UTR_YML099C_4silmut_RS_BamHI-EcoRI-Ter-NotI
TSL1	YML100W	pSV_272	pRS306KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1-BglII- 5'UTR_YML100W_4silmut_RS_BamHI-EcoBI-Ter-NotI
CAC2	YML102W	pEC008	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BgIII- 5'UTR_YMI_102W_4silmut_RS_MfeI-EcoRI-Ter-NotI
NUP188	YML103C	pSV_273	pRS306KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1- BamHI-5'UTR YML103C 4silmut RS SpeI-SphI-Ter-NotI
PML39	YML107C	pSV_274	pRS306KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inPgal1- BamHI-5'UTR YML107C 4silmut RS SpeI-SphI-Ter-NotI
TAF8	YML114C	pEC003	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR(100bp) YML114C 4silmut RS BseRI-SphI-Ter-
			NotI
TAF8	YML114C	pEC004	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR(181bp)_YML114C_4silmut_RS_BseRI-SphI-Ter- NotI
VANI	YML115C	pSV_211	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YML115C_4silmut_RS_BamHI-EcoRI-Ter-NotI

Common name	Systematic name	Plasmid number	Plasmid description
ATR1	YML116W	pSM006	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YML116W_4silmut_RS_MfeI-EcoRI-Ter-NotI
PHO84	YML123C	pSV_212	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YML123C_4silmut_RS_BamHI-EcoRI-Ter-NotI
RSC9	YML127W	pSV_204	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YML127W_4silmut_RS_BamHI-EcoRI-Ter-NotI
ERO1	YML130C	pSM007	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_YML130C_4silmut_RS_MfeI-EcoRI-Ter-NotI
ADH2	YMR303C	pSV_226	pRS306-KpnI-Fig1-XhoI-Tgal7-AvrII-[tetO2]4inP _{gal1} -BglII- 5'UTR_ADH2_4silmut_RS_BamHI-EcoRI-Ter-NotI
			3/3

2	1	^
1	1	1
\sim	′	•

Strain number		Common name	Systematic name	Ploidy	Silent mutations	Promoter	Marker
YMX0		4x tTA		Н	BY4741	-	-LEU
YM	X00	4x	tTA	D	BY4743	-	-LEU
YMX3	YMX4	OLA1	YBR025C	D	+	Substitutional	-LEU -URA
YMX5	YMX6	ETR1	YBR026C	D	+	Substitutional	-LEU -URA
YMX151	YMX152	HMT1	YBR034C	D	+	Substitutional	-LEU -URA
YMX9	YMX10	CSG2	YBR036C	D	+	Substitutional	-LEU -URA
YMX153	YMX154	ZTA1	YBR046C	D	+	Substitutional	-LEU -URA
YMX13	YMX14	REG2	YBR050C	D	+	Substitutional	-LEU -URA
YMX155	YMX156	RFS1	YBR052C	D	+	Substitutional	-LEU -URA
YMX17	YMX18	NRG2	YBR066C	D	+	Substitutional	-LEU -URA
YMX157	YMX158	MIS1	YBR084W	D	+	Substitutional	-LEU -URA
YMX159	YMX160	PGK1	YCR012W	D	+	Substitutional	-LEU -URA
YMX161	YMX162	GLT1	YDL171C	D	+	Substitutional	-LEU -URA
YMX163	YMX164	SUC2	YIL162W	D	+	Substitutional	-LEU -URA
YMX27	YMX28	GAL2	YLR081W	D	+	Substitutional	-LEU -URA
YMX29	YMX30	USA1	YML029W	D	+	Substitutional	-LEU -URA
YMX31	YMX32	NDC1	YML031W	D	+	Substitutional	-LEU -URA
YMX33	YMX34	RAD52	YML032C	D	+	Substitutional	-LEU -URA
YMX35	YMX36	RRN11	YML043C	D	+	Substitutional	-LEU -URA
YMX165	YMX166	PRP39	YML046W	D	+	Substitutional	-LEU -URA
YMX39	YMX40	GSF2	YML048W	D	+	Substitutional	-LEU -URA
YMX41	YMX42	CYB2	YML054C	D	+	Substitutional	-LEU -URA
YMX43	YMX44	OGG1	YML060W	D	+	Substitutional	-LEU -URA
YMX173	YMX174	PIF1	YML061C	D	+	Substitutional	-LEU -URA
YMX175	YMX176	MFT1	YML062C	D	+	Substitutional	-LEU -URA
YMX49	YMX50	ORC1	YML065W	D	+	Substitutional	-LEU -URA
YMX51	YMX52	ERV41	YML067C	D	+	Substitutional	-LEU -URA
YMX53	YMX54	DAK1	YML070W	D	+	Substitutional	-LEU -URA
YMX55	YMX56	COG8	YML071C	D	+	Substitutional	-LEU -URA
YMX57	YMX58	WAR1	YML076C	D	+	Substitutional	-LEU -URA
YMX59	YMX60	DUS1	YML080W	D	+	Substitutional	-LEU -URA
YMX61	YMX62	TDA9	YML081W	D	+	Substitutional	-LEU -URA
YMX63	YMX64	ALO1	YML086C	D	+	Substitutional	-LEU -URA
YMX177	YMX178	UFO1	YML088W	D	+	Substitutional	-LEU -URA
YMX67	YMX68	UTP14	YML093W	D	+	Substitutional	-LEU -URA
YMX69	YMX70	VPS9	YML097C	D	+	Substitutional	-LEU -URA
YMX71	YMX72	ARG81	YML099C	D	+	Substitutional	-LEU -URA
YMX73	YMX74	CAC2	YML102W	D	+	Substitutional	-LEU -URA
YMX75	YMX76	VAN1	YML115C	D	+	Substitutional	-LEU -URA
YMX77	YMX78	ATR1	YML116W	D	+	Substitutional	-LEU -URA

Strain number		Common name	Systematic name	Ploidy	Silent	Promoter	Marker
YMX79	YMX80	PHO84	YML123C	D	+	Substitutional	-LEU –URA
YMX81	YMX82	RSC9	YML127W	D	+	Substitutional	-LEU -URA
YMX179	YMX180	ERO1	YML130C	D	+	Substitutional	-LEU -URA
YMX181	YMX182	ADH2	YMR303C	D	+	Substitutional	-LEU -URA
YMX87	YMX88	GAL1	YBR020W	D	+	Substitutional	-LEU -URA
YMX89	YMX90	USA1	YML029W	Н	+	Substitutional	-LEU -URA
YMX91	YMX92	ORC1	YML065W	Н	-	Substitutional	-LEU -URA
YMX93	YMX94	DAK1	YML070W	Н	+	Substitutional	-LEU -URA
YMX97	YMX98	ORC1	YML065W	Н	+	Substitutional	-LEU -URA
YMX107	YMX108	USA1	YML029W	Н	+	Substitutional	-LEU -URA
YMX109	YMX110	USA1	YML029W	Н	-	Substitutional	-LEU -URA
YMX111	YMX112	RRN11	YML043C	Н	+	Substitutional	-LEU -URA
YMX113	YMX114	RRN11	YML043C	Н	-	Substitutional	-LEU -URA
YMX115	YMX116	COG8	YML071C	Н	+	Substitutional	-LEU -URA
YMX117	YMX118	COG8	YML071C	Н	-	Substitutional	-LEU -URA
YMX119	YMX120	DAK1	YML070W	Н	-	Substitutional	-LEU -URA
YMX121	YMX122	GAL80	YML051W	D	+	Substitutional	-LEU -URA
YMX123	YMX124	AIM33	YML087C	D	+	Substitutional	-LEU, -HIS
YMX125	YMX126	YML096W	YML096W	D	+	Substitutional	-LEU, -HIS
YMX127	YMX128	TSL1	YML100W	D	+	Substitutional	-LEU -URA
YMX129	YMX130	NUP188	YML103C	D	+	Substitutional	-LEU -URA
YMX131	YMX132	PML39	YML107C	D	+	Substitutional	-LEU -URA
YMX101	YMX102	USA1	YML029W	Н	+	Insertional	-LEU, -HIS
YMX103	YMX104	USA1	YML029W	Н	+, no intron	Insertional	-LEU, -HIS
YMX105	YMX106	GLT1	YDL171C	Н	+	Insertional	-LEU, -HIS
YMX133	YMX134	AIM32	YML050W	D	+	Substitutional	-LEU -URA
YMX135	YMX136	NTE1	YML059C	D	+	Substitutional	-LEU -URA
YMX137	YMX138	RPM2	YML091C	D	+	Substitutional	-LEU -URA

2/2

table S3. Cloned 5'UTR lengths of genes.

Common	5'-UTR (bp)
name	
OLA1	132
ETR1	100
HMT1	100
CSG2	100
ZTA1	100
REG2	187
RFS1	100
NRG2	142
MIS1	103
PGK1	100
GLT1	110
SUC2	100
GAL2	100
USA1	100
NDC1	100
RAD52	100
RRN11	164
PRP39	100
GSF2	100
AIM32	100
GAL80	100
CYB2	100
NTE1	100
OGG1	100
PIF1	100
MFT1	100
ORC1	100
ERV41	100
DAK1	100
COG8	109
WAR1	100
DUS1	126
TDA9	143
ALO1	159
AIM33	100
UFO1	100
RPM2	264
UTP14	100
	Common name OLA1 ETR1 HMT1 CSG2 ZTA1 REG2 RFS1 NRG2 MIS1 PGK1 GLT1 SUC2 GAL2 USA1 SUC2 GAL2 USA1 NDC1 RAD52 RRN11 PRP39 GSF2 AIM32 GAL80 CYB2 NTE1 OGG1 PIF1 MFT1 ORC1 ERV41 OGG1 PIF1 MFT1 ORC1 ERV41 COG8 WAR1 DAK1 CCG8 WAR1 DAK1 CCG8 WAR1 DAK1 CCG8 WAR1 DAS1 AIM33 UFO1 AIM33

Systematic name	Common name	5'-UTR (bp)
YML096W	YML096W	100
YML097C	VPS9	100
YML099C	ARG81	100
YML100W	TSL1	100
YML102W	CAC2	100
YML103C	NUP188	100
YML107C	PLM39	100
YML115C	VANI	100
YML116W	ATR1	101
YML123C	PHO84	100
YML127W	RSC9	100
YML130C	ERO1	106
YMR303C	ADH2	100

n /	n
LΙ	L
- '	_

table S4. qPCR primers detecting marked mRNAs and their amplification efficiencies.

Systematic name	Common name	Forward primer (5' to 3')	Reverse primer (5' to 3')	Eff. (%)
YBR025C	OLA1	TCCAGGAAACAATTTAAAA GCCGG	GTGATGGCTTGGAAA AAGGTAGAC	1
YBR026C	ETR1	CCAAACATTTTAAGTCGCTC ATCTATTC	TTTTCACTGACAAAAC CTTGGTACA	1.09
YBR034C	HMT1	GCTAAGTGAGAGTGAGCAA CA	CGAACAGTATCTTGAA GCATCTCT	0.96
YBR036C	CSG2	ACGTGATTCAAACTAAGTG CTTATCT	GTCGCCGTTAGTTTCA GGC	1
YBR046C	ZTA1	TGATGAAATTGGAGGTTAT GACGTAATC	TGATTAGTAACTCTTC CTCCGAAATCG	0.95
YBR050C	REG2	GAAAGTGTGTGAGAATGAC TTTGAGTA	TTTACTACTCTCCTCC TCTTCTGGA	1.12
YBR052C	RFS1	CCACATTGGCTGAGAACGA AAAA	TGGCACTTGGAAAATC TCAGCC	0.87
YBR066C	NRG2	TTTCAGGCATAAGAGTTATC TGGGAGG	AGAAAGTGCGAGTTT CCCATCA	0.92
YBR084W	MIS1	TCGCCTACAGTACACGCTTC TC	TGGCTTTTTTCTCGAAT AGATTGAGCA	1.06
YCR012W	PGK1	CATAAGGGTCGATTTCAAC GTCC	GCAAAGCAGCAACAA TTCTTTGG	1
YDL171C	GLT1	GAATTAGAAAAGAAAGCAT GCCAGTG	TATAGTGCCTCCTTCG TAAGCTTC	0.98
YIL162W	SUC2	TGACTAATGATACAAGCGA TAGACCTT	CCATTTGGGTCATTCA TCCAGC	0.97
YLR081W	GAL2	CTGGCGAGGATGTCATCTCT TC	TTAGAATACTTTTGAG ATTGTGCGC	0.99
YML029W	USA1	ATGGTCAAGCGAAATAGAC CTAATC	TATATTGAAGTAGTCG CCCAACCG	0.92
YML031W	NDC1	CGTACCATACCATATTCAGT GATGTG	AACCTCGTAACTAAAT GGTTGAATCG	1.21
YML032C	RAD52	TTCGGTAACCATTCGGAAG ATATTCA	ATACTCAGGTCCTAAT TTCTTGTCCA	0.98
YML043C	RRN11	GCTCAAAGAAGAAAATTGA AATACCAATAC	TCTGTGGTAGTAGATT TCTTGGAAATTC	1.05
YML046W	PRP39	CTGATGCGCTACGTGGATT G	CCAGTCTAAACCACG ATATGCTTG	1.12
YML048W	GSF2	TTCAAGTCTCTAACGAAGA CACCA	CCGTCTTGGAAGGGA AAATCTTC	0.78
YML050W	AIM32	CTTCCATCATAGTTTTAAGC ACATTAGC	GCGTTTATTTCTTGGC AATAACAGTTTG	0.84
YML051W	GAL80	GTATGGCGGGGGTAATGTGT CTT	ATTAGGGTGGGTTTCG TCGG	1.08
YML054C	CYB2	TACGGTTCAACGGTACCTA AATCC	AGTCCATGACTGTGTG CGTTTT	1.22
YML059C	NTE1	TTGCATGCGTTCAATGAATT GCA	AAGGCTATTCTTGGTG TTTTGGC	1.04
YML060W	OGG1	CTAGCTAACGTCCTTCAGGC TG	TGCTGTACTGGTTTAA CTTTTCATCC	0.89
YML061C	PIF1	ACCTAGGAGACCTTTTATCT GTAGT	CGATAGTTTGGCGTGC GATA	0.95

Systematic name	Common name	Forward primer (5' to 3')	Reverse primer (5' to 3')	Eff. (%)
YML062C	MFT1	CACTACAGCGAGGTTGACA CT	CCTGTCAGCTTGGTTA CTTTTCC	0.98
YML065W	ORC1	AACGTTGAAGGATTTACAG GGTTG	TCCATCGATTATGTTA CCTTGTTCATC	1.07
YML067C	ERV41	GTACAAAAAAAAGTCGACC AAGGGT	ACCAAACTCGGTCCAT GCTATAAA	0.93
YML070W	DAK1	TCTCAAAGGCTTCGCGCTA G	CGGAATCGGTCTTTCT GAAGAGA	1.1
YML071C	COG8	CAAAAGCGCTTGAGCCTTG	TCAAGGCTCAAGCGCT TTTG	1.09
YML076C	WAR1	GACTGAACCTGCCCTGAGT AG	TGACGTCCAGTTAGTT TTTGCATC	1.16
YML080W	DUS1	GACTGAACCTGCCCTGAGT AG	GTCAAAAAGCTGACG TCCAGTTAG	1.16
YML081W	TDA9	ATCCTCCATTACCTCTGTTG ATAGA	TGGGGATCGGTAGTA CTTGTATT	1.13
YML086C	ALO1	GGGCCGGAATATACTCAGC TAAA	AACTCGACAACCTCAT CAATTGAAC	0.89
YML087C	AIM33	CCGTTTTATCCTTTCTGCAC AGG	CCACGATTCTACCATT TTGCGTT	1
YML088W	UFO1	CCCGAAATCCTGATAAATA TATTCTCACAC	TAGAAAGTTCTTGCAA CGTGAACAA	0.97
YML091C	RPM2	CCGCTCAGAAAAAGACAGC AAC	CAAACCTTGGTTTTGC CTTAGATACT	0.97
YML093W	UTP14	TTTTGGACGCATTACAGCTT GC	CTTTTGTCATTGTCGC TGGAGTT	1.1
YML096W	YML096 W	TGATGAATTGATTGAGTTTC CAGAAGG	TGTTGAAAATCGACG ATTCATTGGT	1.04
YML097C	VPS9	TTCAGCCAGTTAGAGCAAG CA	CCGCTGCCCTATTAGG ATCATC	0.89
YML099C	ARG81	AAAGACGTTCACAGGCTGC T	GGATGCCGAAGATCA CACTTAAC	0.97
YML100W	TSL1	AATTCGAGCTAGATACGTC ACTCC	CATAGCCTGGATGTTC ACGAGA	1.1
YML102W	CAC2	TCCAAAAGAATAGCGCAAA TGACA	ATCCTAACCTTGTTAT CACCACCA	0.96
YML103C	NUP188	CCTTCACTCATGTAGCAAAC TTCAT	AATTGCTTGGCATCCA CAGC	0.97
YML107C	PLM39	TTCGCTGGATAAAAACACG AAACT	CCATTTGGTAATAAGT CGCTCTCC	1
YML114C	TAF8	AGTTAAACTCCTTAAACATC TGCATTTCAA	AGTGTTAAATTGTGCA GGTTCCGA	0.99
YML115C	VAN1	CAACGGTCTTAGTCTGCCCA TT	CTGAGCGTTTGTCCTT GATGTTG	0.92
YML116W	ATR1	ATGAGAACGAAACTGAGCT ACCTG	GCTGTTGCTGTTAAAG ATTCTCCG	1.3
YML123C	PHO84	GTCTTCATAAGGAGCATCT AACCGA	AGCAAAATCATTCAA ATGGTTGTGG	0.88
YML127W	RSC9	AGGCTCCGGCGACTAGCT	ATTAGACTGTAATCGA GACACTTTAATAGGGT T	1.06
YML130C	ERO1	CTGCTACATCTAATAATAGC TACATCGC	GTCGACCTTACAAAA GTGAGTGTC	1.06
YMR303C	ADH2	CAACGGCAAATTAGAACAC AAGGA	CAGACACCAGAGTAC TTGACGT	1.21

table S5. o	PCR	primers	detecting	endogenous	mRNAs	with	their	efficiencie	s.
		F							

Systematic name	Common name	Forward primer (5' to 3')	Reverse primer (5' to 3')	Eff. (%)
YBR123C	TFC1	GCGGTATTGACAGCAG GTTCAAA	CCATCCAGTTAGTTCATTCG CCTTA	1.08
YER100W	UBC6	ACCATCAGAAGAAGA CATTAGCAAGA	TCATCACCTGTATTTGCCGC AT	0.93
YBR018C	GAL7	CTAGCCATTCCCATAG ACGTTACAA	TTGACCTAACCAAGGTCTTT TAGCTC	1.01
YBR020W	GAL1	ACCTGAGTTCAATTCT AGCGCAAA	GCGATCTAGCAACAAAATC CGGTTTA	1.00
YBR025C	OLA1	TCCAGGTAATAACTTG AAAGCCGG	GTGATGGCTTGGAAAAAGG TAGAC	0.96
YBR026C	ETR1	CCAAGCACTTCAAATC GCTCATCTATTC	TTTTCACTGACAAAACCTTG GTACA	0.85
YBR034C	HMT1	GCTAAGTGAAAGCGA ACAGCA	CGAACAGTATCTTGAAGCA TCTCT	0.87
YBR036C	CSG2	ACGTGATTCAAACAAA ATGTTTGTCT	GTCGCCGTTAGTTTCAGGC	0.98
YBR046C	ZTA1	TGATGAAATTGGTGGA TACGATGTAATC	TGATGAAATTGGAGGTTAT GACGTAATC	0.92
YBR050C	REG2	GAAAGTGTGTGAGAAT GACTTTGAGTA	TTTACTACTTTCTTCTTCCT CTGGA	0.77
YBR052C	RFS1	TTGCCACATTAGCAGA AAATGAAAAAAA	CCACATTGGCTGAGAACGA AAAA	0.86
YBR066C	NRG2	AGATAGGAAATGTGA ATTTCCCATCAAT	TTTCAGGCATAAGAGTTAT CTGGGAGG	0.92
YBR084W	MIS1	TCGCCAACTGTGCATG CTTCTC	TGGCTTTTTTCTCGAATAGAT TGAGCA	1.06
YCR012W	PGK1	CATCAGAGTTGACTTC AACGTCC	GCAAAGCAGCAACAATTCT TTGG	0.86
YDL171C	GLT1	GAATTAGAAAAGAAA GCATGCCAGTG	AATTGTCCCACCTTCGTAA GCTTC	1.04
YIL162W	SUC2	TGACAAACGAAACTA GCGATAGACCTT	CCATTTGGGTCATTCATCCA GC	1.02
YLR081W	GAL2	TGACAAACGAAACTA GCGATAGACCTT	CCATTTGGGTCATTCATCCA GC	0.82
YML029W	USA1	ATGGTCAAGCGAGATT GATCTTATC	TATATTGAAGTAGTCGCCC AACCG	0.97
YML031W	NDC1	CGTACCATACCATCTT TAGCGACGTG	AACCTCGTAACTAAATGGT TGAATCG	0.96
YML032C	RAD52	TTCGGTAACCATTCCG AGGACATACA	ATACTCAGGTCCTAATTTCT TGTCCA	0.82
YML043C	RRN11	GCTCAAAGAAGAAAG TTAAAGTATCAATAC	TCTGTGGTAGTAGATTTCTT GGAAATTC	1.04
YML046W	PRP39	CTGATGCCCTTCGAGG TTTG	CCAGTCTAAACCACGATAT GCTTG	1.16
YML048W	GSF2	TTCAGGTGTCAAATGA AGACACCA	CCGTCTTGGAAGGGAAAAT CTTC	0.79
YML050W	AIM32	CTTCCATCATAGCTTC AAACATATTAGC	GCGTTTATTTCTTGGCAATA ACAGTTTG	0.83
YML051W	GAL80	CCATAAGAGTCGGATT CGTCGG	ATTAGGGTGGGTTTCGTCG G	1.14
YML054C	CYB2	CTGGTGAAGACGTGAT CTCTTCA	TTAGAATACTTTTGAGATTG TGCGC	1.11
YML059C	NTE1	TTGCATGCGTTCAATG AATTGCA	AAGACTGTTTTTCGTGTTTT GGC	1.10

Systematic name	Common name	Forward primer (5' to 3')	Reverse primer (5' to 3')	Eff.
YML060W	OGG1	CTAGCAAATGTGCTAC AGGCTG	TGCTGTACTGGTTTAACTTT TCATCC	0.99
YML061C	PIF1	TACGGTTCTACCGTTC CAAAATCC	CGATAGTTTGGCGTGCGAT A	1.11
YML062C	MFT1	CACTACAGTGAAGTAG ATACT	CCTGTCAGCTTGGTTACTTT TCC	0.96
YML065W	ORC1	AACGTTGAAGGATTTA CAGGGTTG	GATGAGCAGGGAAATATAA TCGATGGA	0.95
YML067C	ERV41	GTACAAGAAGAAATC CACCAAGGGT	ACCAAACTCGGTCCATGCT ATAAA	0.90
YML070W	DAK1	TCTCAAAGGGTTTGCC CTTG	CGGAATCGGTCTTTCTGAA GAGA	0.96
YML071C	COG8	CAAAAACGGTTAAGTC TTG	GGAACAGCCCTAGATGAAA AATAAC	0.99
YML076C	WAR1	AATGATAATTCAAAGA CCGACC	TGGCCTTATCTATGCATGG GAC	0.99
YML080W	DUS1	ACCAAGAAGGCCATTT ATCTGTAGT	CGATAGTTTGGCGTGCGAT A	1.08
YML081W	TDA9	ATCCTCCACTATCTAT GCTGATAGA	TGGGGATCGGTAGTACTTG TATT	1
YML086C	ALO1	GGGCCGGAATTTATTC TGCAAAA	AACTCGACAACCTCATCAA TTGAAC	0.92
YML087C	AIM33	TCCGTTTTATCCATTTT GTACTGGATTG	CCACGATTCTACCATTTTGC GTT	1
YML088W	UFO1	CCCGAAATCCTGATAA ACATCTTTTCTCAC	TAGAAAGTTCTTGCAACGT GAACAA	0.81
YML091C	RPM2	CCGCTCAAAAGAAAA CTGCAAC	CAAACCTTGGTTTTGCCTTA GATACT	0.90
YML093W	UTP14	TTTTGGATGCTTTGCA ACTTGC	CTTTTGTCATTGTCGCTGGA GTT	0.98
YML096W	YML096 W	TGATGAGTTAATCGAA TTTCCAGAAGG	TGTTGAAAATCGACGATTC ATTGGT	0.95
YML097C	VPS9	TTCAGCCAATTGGAAC AGGCA	CCGCTGCCCTATTAGGATC ATC	1.02
YML099C	ARG81	AAAGACGTTTACTGGG TGTT	GGATGCCGAAGATCACACT TAAC	0.92
YML100W	TSL1	LI AATTCGAGCTTGACAC CATAGCCTGGATGTTCA CTCTCTC AGA		1.05
YML102W	CAC2	ATCCTCCACTATCTAT GCTGATAGA	CTAT TGGGGATCGGTAGTACTTG A TATT	
YML103C	NUP188	88 CCTTCACTCATGTTGC AATTGCTTGGCATCCACAC TAATTTTATGAAC C		1
YML107C	PLM39	TTCGCTGGACAAGAAT ACCAAAC	CCATTTGGTAATAAGTCGC TCTCC	1.34
YML114C	TAF8	TCCCGTAGTTGAAATT CTAAAGAAAACA	AGTGTTAAATTGTGCAGGT TCCGA	0.98
YML115C	VAN1	CAATGGACTAAGCCTG CCCATT	CTGAGCGTTTGTCCTTGATG TTG	0.817
YML116W	ATR1	ATGAGAACGAAACTG AGCTACCTG	AGTGTTAAATTGTGCAGGT TCCGA	1.25
YML123C	PHO84	GTCTTCATAAAGAACA CCTTACCGA	AGCAAAATCATTCAAATGG TTGTGG	0.86
YML127W	RSC9	CACCCGCCACAAGCTC ATTAGACTGTAATCGAGA		1.06
YML130C	ERO1	CTGCAACTTCAAACAA TAGCTACATCGC	GTCGACCTTACAAAAGTGA GTGTC	1.06
YMR303C	ADH2	CAACGGCAAGTTGGA GCATAAGGA	CAGACACCAGAGTACTTGA CGT	1.09

table S6. Cross-reaction of primers to detect the marked mRNA with the endogenous

mRNAs. Differences between the Ct values (Δ Ct) obtained with primers matching the marked and endogenous mRNAs. Δ Ct is shown for the examined mRNAs at the standard annealing temperature of the qPCR, 60°C. If Δ Ct(60°C) < 5, the Δ Ct was also measured at 68°C. The template for the qPCR is cDNA reverse transcribed from endogenous (wt) mRNAs.

Systematic name	Common name	ΔCt (60°C)	ΔCt (68°C)	Systematic name	Common name	ΔCt (60°C)	ΔCt (68°C)
YBR025C	OLA1	10.71		YML065W	ORC1	7.87	
YBR026C	ETR1	3.08	13.26	YML067C	ERV41	9.08	
YBR034C	HMT1	13.80		YML070W	DAK1	14.79	
YBR036C	CSG2	5.69		YML071C	COG8	14.75	
YBR046C	ZTA1	8.61		YML076C	WAR1	5.75	
YBR050C	REG2	9.89		YML080W	DUS1	12.63	
YBR052C	RFS1	3.28	11.30	YML086C	ALO1	13.39	
YBR066C	NRG2	8.83		YML087C	AIM33	22.45	
YBR084W	MIS1	5.29		YML088W	UFO1	8.69	
YCR012W	PGK1	7.29		YML091C	RPM2	13.80	
YDL171C	GLT1	0.62	7.57	YML093W	UTP14	15.39	
YIL162W	SUC2	2.29	8.41	YML096W	YML096W	10.24	
YLR081W	GAL2	4.24		YML097C	VPS9	14.19	
YML029W	USA1	20.57		YML099C	ARG81	15.65	
YML031W	NDC1	5.54		YML100W	TSL1	11.79	
YML032C	RAD52	11.71		YML102W	CAC2	7.87	
YML043C	RRN11	11.36		YML103C	NUP188	27.28	
YML046W	PRP39	8.85		YML107C	PML39	14.31	
YML048W	GSF2	8.12		YML114C	TAF8	7.33	
YML050W	AIM32	9.05		YML115C	VAN1	5.42	
YML051W	GAL80	8.69		YML116W	ATR1	12.34	
YML054C	CYB2	8.47		YML123C	PHO84	8.73	
YML059C	NTE1	5.26		YML127W	RSC9	23.96	
YML060W	OGG1	15.59		YML130C	ERO1	0.46	6.75
YML061C	PIF1	8.43		YMR303C	ADH2	12.01	
YML062C	MFT1	18.53					

table S7. Mean, Fano factor, and CV of the RNA molecule copy number distributions.

Gene	Endogenous Promoter			Substitutional promoter			
common name	Mean	Fano factor	CV	Mean	Fano factor	CV	
USA1	3.35	1.31	0.62	33.08	8.23	0.50	
COG8	3.27	1.40	0.65	35.84	10.89	0.55	
UTP14	4.73	1.77	0.61	36.25	9.87	0.52	
PIF1	3.19	2.80	0.94	35.86	23.12	0.80	
DAK1	8.69	2.44	0.53	89.05	30.49	0.59	