Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/3/7/e1701620/DC1

Supplementary Materials for

Disabling Cas9 by an anti-CRISPR DNA mimic

Jiyung Shin, Fuguo Jiang, Jun-Jie Liu, Nicolas L. Bray, Benjamin J. Rauch, Seung Hyun Baik, Eva Nogales, Joseph Bondy-Denomy, Jacob E. Corn, Jennifer A. Doudna

> Published 12 July 2017, *Sci. Adv.* **3**, e1701620 (2017) DOI: 10.1126/sciadv.1701620

The PDF file includes:

- fig. S1. Gel filtration of Cas9 complexes with AcrIIA4.
- fig. S2. Exposed region analysis of SpyCas9 at AcrIIA4-free and AcrIIA4-bound states.
- fig. S3. Cryo-EM of Cas9 ribonucleoprotein particles.
- fig. S4. Classification and refinement workflow.
- fig. S5. Atomic modeling.
- fig. S6. Model comparison between AcrIIA4-bound and DNA-bound SpyCas9-sgRNA complexes.
- fig. S7. Biological replicate data for BLI data shown in Fig. 3C.
- fig. S8. EMSA of increasing concentrations of Cas9 binding to sgRNA in the absence or presence of AcrIIA4.
- fig. S9. EMSA of Cas9-sgRNA binding to a target DNA with and without AcrIIA4.
- fig. S10. Representative flow cytometry data used to create Fig. 4A.
- fig. S11. Western blot of AcrIIA4-3XFLAG expression.
- fig. S12. Representative flow cytometry data used to create the graph shown in Fig. 4B.
- fig. S13. Representative flow cytometry data used to create the graph shown in Fig. 4C.
- fig. S14. Quantification of on- and off-target editing at HBB, as measured by TIDE analysis.
- table S1. Data collection and model refinement statistics.
- table S2. Oligonucleotides used in this study.

fig. S1. Gel filtration of Cas9 complexes with AcrIIA4. The size-exclusion chromatograph of Cas9 only (black), Cas9 with AcrIIA4 (brown), Cas9-sgRNA complex and Cas9-sgRNA-AcrIIA4 complex were aligned together based on the retention volume from the Supderdex200 column (GE Healthcare). The peaks were marked with dashed lines. (**B**). SDS-PAGE analysis of the fractions corresponding to major peaks in the panel (**A**).

fig. S2. Exposed region analysis of SpyCas9 at AcrIIA4-free and AcrIIA4-bound

states. Limited proteolysis of AcrIIA4-free and AcrIIA4-bound Cas9 by trypsin (**A**) and elastase (**B**) for 30 min. Undigested protein served as the zero time point.

fig. S3. Cryo-EM of Cas9 ribonucleoprotein particles. (**a**) Example of a drift-corrected cryo-EM micrograph of SpyCas9-gRNA-AcrIIA4.Some representative particles are circled in yellow. (**b**) Reference-free 2D class averages showing Cas9 clam-like particles. (**c**) Cryo-EM structure of the SpyCas9-gRNA-AcrIIA4 used for model building shown colored by local resolution (the HNH domain is blurred out due to flexibility). Resolution ranges from 3.5 Å to 5.5 Å. The right panel shows the Fourier shell correlation (FSC) curve calculated using two independent half maps, indicating an overall resolution of 3.9Å (based on the 0.143 FSC criterion) (**d**) Cryo-EM structure of the SpyCas9-gRNA-AcrIIA4 obtained by sub-classification and showing a visible HNH domain (see EM_S2 figure for details), colored by local resolution ranges from 4 Å to 6 Å. Right panel, FSC curve indicating an overall resolution 4.5Å.

fig. S4. Classification and refinement workflow. A small stack of ~40,000 particles was subjected to 2D reference-free alignment. The resulting 2D class-averages were then used as templates for automatic particle picking. A total dataset of ~840,000 particles were ultimately picked for 3D classification into 7 classes, with our previous cryo-EM

Cas9 structure (EMD-3276) low-pass filtered to 60 Å used as a reference. The class with the most particles (~34%) was subsequently refined to 3.9Å resolution (reconstruction 1). To further improve the density of the HNH domain, which appears highly flexible, particles were subjected to further 3D classification using 3 classes. One of the subclasses, containing a strong HNH density was further refined and produced a structure at 4.5Å (reconstruction 2). 3D refinement by combining first and second subclasses produced a structure at 3.9 Å that was used for atomic modeling of the AcrIIA4.

fig. S5. Atomic modeling. (a) Color coded atomic model of SpyCas9-sRNA-AcrIIA4 shown within the cryo-EM density of reconstruction 1 (3.9 Å resolution) (a) and reconstruction 2 (4.5 Å resolution) (b). The color scheme is the same as Figure 2. The map in (b) has better defined density for the HNH domain corresponding to the green ribbon. (c) Representative regions of the EM density map of SpyCas9-sRNA-AcrIIA4 (reconstruction 1), into which the atomic model was built. The subunit and sequence are marked under the corresponding regions.

fig. S6. Model comparison between AcrIIA4-bound and DNA- bound SpyCas9sgRNA complexes. (A) Atomic model of Spycas9-sgRNA-AcrIIA4. Domains were color as the same scheme in Fig2. The sgRNA is shown as surface representation and Cas9-AcrIIA4 is shown in ribbon diagram. (B) The model for AcrIIA4 and sgRNA were subtracted from the holo-model and shown independently. The seed-region and non-seed region are highlighted in the model. (C) The surface representation of Cas9 complexed with AcrIIA4. (D) The published atomic model for Cas9-sgRNA (PDB 4ZT0, colored by deep blue) was aligned with Cas9-sgRNA-AcrIIA4 model. (E) The published atomic model for dsDNA bound Cas9-sgRNA (PDB 5F9R, colored cyan for Cas9, orange for sgRNA, purple for target DNA strand and beige for nontarget strand) was aligned with Cas9-sgRNA-AcrIIA4 atomic model. Pink dash-lined circle represents the position of PAM-recognition cleft. (F) The published atomic model for Cas9-sgRNA-AcrIIA4 atomic model. For clarity, only both DNA strand are shown with Cas9-sgRNA from 5F9R omitted. AcrIIA4 completely blocks PAM recognition cleft.

fig. S7. Biological replicate data for BLI data shown in Fig. 3C. (Top) Pre-incubation of dCas9-sgRNA with AcrIIA4 inhibits DNA binding. (Bottom) Addition of AcrIIA4 after allowing dCas9-sgRNA to bind DNA.

fig. S8. EMSA of increasing concentrations of Cas9 binding to sgRNA in the absence or presence of AcrIIA4. AcrIIA4 does not block sgRNA binding.

fig. S9. EMSA of Cas9-sgRNA binding to a target DNA with and without AcrIIA4. The AcrIIA4 inhibitor prevents Cas9-sgRNA binding to target DNA.

fig. S10. Representative flow cytometry data used to create Fig. 4A.

fig. S11. Western blot of AcrIIA4-3XFLAG expression. The expression level of AcrIIA4-3XFLAG was determined by Western blot 6,12,and 24 hours after plasmid nucleofection. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a loading control.

fig. S12. Representative flow cytometry data used to create the graph shown in Fig.4B.

fig. S13. Representative flow cytometry data used to create the graph shown in Fig. 4C.

fig. S14. Quantification of on- and off-target editing at HBB, as measured by TIDE analysis.

Data collection and model refinement statistics of SpyCas9-sgRNA-AcrIIA4			
Data Collection			
EM	Titan Krios 300kV, K2 Gatan Summit		
Pixel size (Å)	1.04		
Defocus range (µm)	–1.5 to –3.0		
Reconstruction (Relion)	Relion2.0		
Accuracy of rotations (°)	2.485		
Accuracy of transitions (pixel)	1.310		
Final resolution (Å)	3.9		
Refinement (Phenix)			
Map CC (whole unit cell)	0.895		
Map CC (around atoms)	0.829		
R.m.s. deviations			
Bond lengths (Å)	0.01		
Bond angles (°)	1		
Ramachandran plot			
% favoured	91.91		
%allowed	8.09		
% outliers	0.00		
Molprobity			
Clashscore	2.5		

table S1. Data collection and model refinement statistics.

Туре	Name	Sequence
Oligos used for	Alt-R	/AltR1/rGrA rCrCrC rCrCrU rCrCrA rCrCrC rCrGrC
testing	crRNA	rCrUrC rGrUrU rUrUrA rGrArG rCrUrA rUrGrC
inhibition of		rU/AltR2/
SpyCas9	Alt-R	IDT 1072532
activity with	tracrRNA	
radiolaveled	target DNA	GGT ATG AGG TTT ATT CTT TCC TGA GGC
target DNA	(complemen	GGG GTG GGG GGG AAT TGC TTT CTG TTT
	tary strand)	TGT TAA
	target DNA	TTA ACA AAA CAG AAA GCA ATT CCC CCC
	(non-	CAC CCC GCC TCA GGA AAG AAT AAA CCT
	complement	CAT ACC
	ary strand)	
Oligos used in	target	/5Biosg/agcagaaatctctgctGACGCATAAAGATGAG
BLI assay	_	ACGCTGGagtacaaacgtcagct
	target_rc	agetgacgtttgtactCCAGCGTCTCATCTTTATGCGT
	C	Cagcagagatttctgct
	target-PAM	/5Biosg/agcagaaatctctgctGACGCATAAAGATGAG
	U	ACGCTCGagtacaaacgtcagct
	target-	agetgacgtttgtactCCAGCGTCTCATCTTTATGCGT
	PAM_rc	Cagcagagatttctgct
	FwdVar	ggatcctaatacgactcactataGACGCATAAAGATGAGA
	oligo	CGCgttttagagctagaaatagc
	C	
Assembly of	FwdVar-	ggatcctaatacgactcactatagCTTGCCCCA
T7 polymerase	HBB	CAGGGCAGTAAgttttagagctagaa
substrates for		
sgRNA	FwdVar-	ggatcctaatacgactcactatagGACCCCCTCCACCCCGC
synthesis by in	VEGFAs2	CTCgttttagagctagaa
vitro		
transcription		
(UPPERCASE	T7RevLong	AAAAAGCACCGACTCGGTGCCACTTTTCA
= guide)	U U	AGTTGATAACGGACTAGCCTTATTTTAACTTG
		CTA TTTCTAGCTCTAAAAC
	T7FwdAmp	GGATCCTAATACGACTCACTATAG
	1	
	T7RevAmp	AAAAAGCACCGACTCGG
Primers for	RB_AcrIIA	AACATTAACGACCTCATACG
cloning 3X-	4 Fwd 1	
FLAG AcrIIA4	RB_AcrIIA	GTTCAGTTCACTTTTCAACG
	4 RV1	
	RB_AcrIIA	CGAGCTCGGATCCGCCACCATGAAC

table S2. Oligonucleotides used in this study.

	4 Fwd3	
	RB_AcrIIA	ATATCTGCAGAATTCTTATCACTTGTCGTCGT
	4 RV3	CGTCCTTGTAGTCGATGTCGTGGTCCTTGTA
	3XFLAG	GTCACCGTCGTGGTCCTTGTAGTCGTTCAG
		TTCACTTTT
Primers for	HBB on-	TCACTTAGACCTCACCCTGTG
T7E1 and	target F1	
TIDE analysis	HBB on-	TATGGGACGCTTGATGTTTTCT
	target R1	
	HBB off-	TGGATAGGAAAGGTGAAGT
	target F1	
	HBB off-	ATATTTGAGAGCCACCGC
	target R1	
Primers for	HBB	GCTCTTCCGATCTactgtgttcactagcaacctcaa
Next	stubbed on-	
Generation	target F	
Amplicon	HBB	GCTCTTCCGATCTtgggaaaatagaccaataggcagag
Sequencing	stubbed on-	
(First PCR)	target R	
	HBB	GCTCTTCCGATCTtaccetttcccgttctccac
	stubbed off-	
	target F	
	HBB off-	GCTCTTCCGATCTggtacggcctaagaaattatagttta
	target with	
	stub R	
	VEGFAs2	GCTCTTCCGATCTcgacaggggcaaagtgagtgacc
	stubbed on-	
	target F1	
	VEGFAs2	GCTCTTCCGATCTcctccgaagcgagaacagccc
	stubbed on-	
	target R1	
	VEGFAs2	GCTCTTCCGATCTgtccaggaacccctagcccaaac
	stubbed off-	
	target F2	
	VEGFAs2	GCTCTTCCGATCTgctctttcattcgttccatctctcg
	stubbed off-	
	target R2	
	VEGFAs2	GCTCTTCCGATCTcaagatgtgcacttgggctagc
	stubbed off-	
	target F15	
	VEGFAs2	GCTCTTCCGATCTcgcagcctattgtctcctgg
	stubbed off-	
	target R15	
	VEGFAs2	GCTCTTCCGATCTgggctctggggtgactccaag
	stubbed off-	
	target F22	

	VEGFAs2	GCTCTTCCGATCTgactttcccaagcccatcctccc			
	stubbed off-				
	target R22				
Primers for	Forward	AATGATACGG	CGACCACCGAG	ATCTACAC[i5]	
Next	primers	ACACTCTTTCC	CTACACGACGC	TCTTCCGATC	
Generation	-	* T			
Amplicon	Reverse	CAAGCAGAAG	ACGGCATACGA	GAT[i7]GTGAC	
Sequencing	primers	TGGAGTTCAGA	ACGTGTGCTCTT	TCCGA	
(Second PCR)					
	Indexes	i7 Index	i7_rc index	i5 Index	
	used	ATAGGTCC	GGACCTAT	ACAGGCAT	
		CAGTGCTT	AAGCACTG	ACAGGCAT	
		ACCATAGG	CCTATGGT	ACAGGCAT	
		CAACTTGG	CCAAGTTG	ACAGGCAT	
		GACGAACT	AGTTCGTC	ACAGGCAT	
		TCGATGAC	GTCATCGA	ACAGGCAT	
		CAAGTCGT	ACGACTTG	ACAGGCAT	
		AGTTCGCA	TGCGAACT	ACAGGCAT	
		CTGTATGC	GCATACAG	ACAGGCAT	
		TCTAGGAG	CTCCTAGA	ACAGGCAT	
		TGCTTGCT	AGCAAGCA	ACAGGCAT	
		ACGAACGA	TCGTTCGT	ACAGGCAT	
		TTCGCCAT	ATGGCGAA	AATGGTCG	
		GAGCAATC	GATTGCTC	AATGGTCG	
		AACACTGG	CCAGTGTT	AATGGTCG	
		CCATGAAC	GTTCATGG	AATGGTCG	
		ATAGTCGG	CCGACTAT	AATGGTCG	
		GATTGTCC	GGACAATC	AATGGTCG	
		TCCACGTT	AACGTGGA	AATGGTCG	
		CAACTCCA	TGGAGTTG	AATGGTCG	
		TGGTGAAG	CTTCACCA	AATGGTCG	
		TGAGCTGT	ACAGCTCA	AATGGTCG	
		AACCAGAG	CTCTGGTT	AATGGTCG	
		AAGTCCTC	GAGGACTT	AATGGTCG	
		GTTCTTCG	CGAAGAAC	TTGCTTGG	
		ACAGTGAC	GTCACTGT	TTGCTTGG	
		CGCAATGT	ACATTGCG	TTGCTTGG	
		AACCGTGT	ACACGGTT	TTGCTTGG	
		CCGTTATG	CATAACGG	TTGCTTGG	
		CCACAACA	TGTTGTGG	TTGCTTGG	
		GGTACGAA	TTCGTACC	TTGCTTGG	
		TACTGCTC	GAGCAGTA	TTGCTTGG	
		ACCTCTTC	GAAGAGGT	TTGCTTGG	
		TGGATGGT	ACCATCCA	TTGCTTGG	
		CTTCACTG	CAGTGAAG	TTGCTTGG	

TACTAGCG	CGCTAGTA	TTGCTTGG
CTAGCAGT	ACTGCTAG	AGCCTATC
GAGAGTAC	GTACTCTC	AGCCTATC
AGGTGTTG	CAACACCT	AGCCTATC
TTACCGAC	GTCGGTAA	AGCCTATC
ACCGACAA	TTGTCGGT	AGCCTATC
CAACGAGT	ACTCGTTG	AGCCTATC
AGTATGCC	GGCATACT	AGCCTATC
TCACCTAG	CTAGGTGA	AGCCTATC
ATCGGAGA	TCTCCGAT	AGCCTATC
CTGTACCA	TGGTACAG	AGCCTATC
ACAACAGC	GCTGTTGT	AGCCTATC
GACTTGTG	CACAAGTC	AGCCTATC
ATAGGTCC	GGACCTAT	GGTCGTAT
CAGTGCTT	AAGCACTG	GGTCGTAT
ACCATAGG	CCTATGGT	GGTCGTAT
CAACTTGG	CCAAGTTG	GGTCGTAT
GACGAACT	AGTTCGTC	GGTCGTAT
TCGATGAC	GTCATCGA	GGTCGTAT
CAAGTCGT	ACGACTTG	GGTCGTAT
AGTTCGCA	TGCGAACT	GGTCGTAT
CTGTATGC	GCATACAG	GGTCGTAT
TCTAGGAG	CTCCTAGA	GGTCGTAT
TGCTTGCT	AGCAAGCA	GGTCGTAT
ACGAACGA	TCGTTCGT	GGTCGTAT
TTCGCCAT	ATGGCGAA	CTCCTGAA
GAGCAATC	GATTGCTC	CTCCTGAA
AACACTGG	CCAGTGTT	CTCCTGAA
CCATGAAC	GTTCATGG	CTCCTGAA
ATAGTCGG	CCGACTAT	CTCCTGAA
GATTGTCC	GGACAATC	CTCCTGAA
TCCACGTT	AACGTGGA	CTCCTGAA
CAACTCCA	TGGAGTTG	CTCCTGAA
TGGTGAAG	CTTCACCA	CTCCTGAA
TGAGCTGT	ACAGCTCA	CTCCTGAA
AACCAGAG	CTCTGGTT	CTCCTGAA
AAGTCCTC	GAGGACTT	CTCCTGAA
GTTCTTCG	CGAAGAAC	TGTTCCGT
ACAGTGAC	GTCACTGT	TGTTCCGT
CGCAATGT	ACATTGCG	TGTTCCGT
AACCGTGT	ACACGGTT	TGTTCCGT
CCGTTATG	CATAACGG	TGTTCCGT
CCACAACA	TGTTGTGG	TGTTCCGT
GGTACGAA	TTCGTACC	TGTTCCGT
TACTGCTC	GAGCAGTA	TGTTCCGT

ACCTCTTC	GAAGAGGT	TGTTCCGT	
TGGATGGT	ACCATCCA	TGTTCCGT	
CTTCACTG	CAGTGAAG	TGTTCCGT	
TACTAGCG	CGCTAGTA	TGTTCCGT	
CTAGCAGT	ACTGCTAG	CCACATTG	
GAGAGTAC	GTACTCTC	CCACATTG	
AGGTGTTG	CAACACCT	CCACATTG	
TTACCGAC	GTCGGTAA	CCACATTG	
ACCGACAA	TTGTCGGT	CCACATTG	
CAACGAGT	ACTCGTTG	CCACATTG	
AGTATGCC	GGCATACT	CCACATTG	
TCACCTAG	CTAGGTGA	CCACATTG	
ATCGGAGA	TCTCCGAT	CCACATTG	
CTGTACCA	TGGTACAG	CCACATTG	
ACAACAGC	GCTGTTGT	CCACATTG	
GACTTGTG	CACAAGTC	CCACATTG	