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Figure S1, related to Figures 1 and 2: Duality of the spatial and Fourier spectral domain characterizations of a

triangular lattice & its geometric interpretation. (A) A triangular lattice consists of three sinusoidal plane waves

related by 60� rotations. Here each line represents the crest of a wave (with period T0). (B) Fourier transform of the

triangular lattice: three positive and negative frequency vector pairs (positive = three colored dots; negative = dashed

circles) that correspond to the frequency and directionality of the three plane waves in (A). (C) The triangular lattice

of (A), together with a linear slice at angle q (black line). (D) A linear slice through the full lattice equals the sum

of a linear slice (at the same angle) through each plane wave. The individual slices result in periodic profiles with

frequencies fi, with i 2 {1,2,3}, respectively. (E) Through the equivalence between (A) and (B), the frequency fi can

be derived by projecting the corresponding spectral peak (the corresponding colored dot) of ith sinusoidal wave onto a

line at the same angle, q , though the figure in (B). (F) Because the Fourier transform is a linear operation, the combined

projection in Fourier space of the sum of the 3 waves is the same as the sum of the three individual wave projections

in Fourier space. (G) The locations in Fourier space of the three spectral peaks ( fi) depend on the period of the 2D

lattice underlying the 1D response (l1D) and the slice angle (q ). (H) The analytical solution for slice parameters. Note

that the equations in (G) correspond to an overdetermined system (three equations for the two unknowns, q and l );

thus, the solutions in (H) are based on only the first two spectral peak frequencies. To find the best-fit linear slice, we

consider all mappings of the significant spectral peaks in the data to the variables f1, f2 (see Experimental Procedures).
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Figure S2, related to Figures 2 and 5, and Experimental Procedure: Procedure for generating random control data

& features of the PSD for random control data. (A) An ideal linear slice (black) through a 2D lattice. Fields

correspond to local maxima above a certain threshold (25% of the maximum firing rate); the start and endpoints of

each field are defined to be the local minima on either side of the corresponding maximum. The gi denote the gap

lengths (distances between adjacent fields). (B) For the gap-randomized control, we choose a new center at random

for each field, subject only to the condition that the new fields do not overlap. The background signal (black) is

repartitioned according to the new field locations. The new gaps (Ji) will generally be highly uncorrelated with the

original gaps (gi). (C) Gap-shuffled controls are generated by shuffling the order of the gaps and the order of the firing

fields. The gaps as a set are unchanged. (D-E) Same as Figures 2A-2C. (F) Gap-randomized controls for the perfect

slices in column E (black, left) followed by their PSDs (gray, right). The three-peakiness score (p3) is shown above

each PSD. (G) Same as (F), for the gap-shuffled controls.
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Figure S3, related to Experimental Procedure: Analytical and numerical approaches for fitting a linear slice. (A) The Fourier

analytical method (Figure S1) is a simple and fast way of finding the best-fit linear slice of an individual cell. The fit-quality

using the analytical method can be limited by finite size effects (C-G) and neural noise (H-L). Additional numerical optimization

via a simple gradient descent rule (blue arrow in (B)) can improve the quality of fit. For multi-cell simultaneous slice fits, the

dimensionality of the model can be reduced by requiring a consistent or common selection of significant PSD peaks across cells

(S-W). The motivating assumption is that simultaneously recorded cells from the same module will share similar slice structures

(green arrow). (B) A schematic for how the numerical method can improve the fit quality (r). Q is the set of slice parameters.

Finite size effect on Fourier analytical method. (C) The same set of linear slices as in Figure 2 but of half the length and with a

non-zero spatial phase. Resulting 1D responses (D) and PSD (E), with significant PSD peaks indicated by red symbols. The peaks

are less separated than in Figure 2C. (F) Analytical slice prediction from PSD (green), with 1D response (black) for comaprison;

(G) Same as (F), but with further numerical optimization (see Experimental Procedures), which better matches the 1D response.

The effect of neural variability on Fourier analytical method. (H-L) Same sequence of plots as in (C-G), to study the effects of

noisy responses on analytical and numerical slice fits. (H) Same set of linear slices as in Figure 2 but with non-zero spatial phase.

(I) Noisy versions of 1D responses (black) resulting from a slice, by generating an inhomogeneous Poisson spike train (red dots)

from the underlying slice rates. Numerical optimization improves the prediction in terms of fit-quality (L) as well as estimated

slice parameters (M-R). (M-R) N = 1000 noisy 1D responses are obtained from linear 2D lattice slices with uniformly sampled

slice angles (0�  qtrue  30�) and spatial phases ([0,w0] ~ftrue  [1,1]), as in (H-I). (M) Histogram of errors in estimating slice

angle with the analytical method alone (blue) and after adding the numerical optimization step (red). (N) Which slice angles result

in larger estimation errors? Black: larger errors (> 2.5�), gray: smaller errors. Larger estimation errors occur for slices close to 0

and 30 degrees. (O-R) Normalized histograms of errors in slice angle (O), scale factor (P), spatial phase (Q), and quality of fit (R)

through the analytical method alone and supplemented by numerical optimization, based on all samples that did not induce very

large estimation errors on slice angle (gray bars in (N)). Numerical optimization by construction improves fit quality, but it also

lowers the estimation error on all slice parameters (O: P= 2⇥ 10�15, P: P= 6⇥ 10�7, Q: P= 5⇥ 10�13, two-sample F-test, R:

P= 2⇥10�20, two-sample t-test). Dimensionality reduction in fitting comodular cells through common selection of spectral

peaks. (S) Parallel linear slices with different spatial phase. (T) Noisy 1D responses from these parallel linear slices, generated

as in (H-I), and corresponding PSDs (U). Most high spectral peaks (red symbols) are common in both PSDs and are aligned, but

the PSD from the first slice (top) has a high peak that is missing from the second (blue dashed vertical bar, labeled “no cluster”).

This difference is due to the noisy responses. We impose consistency across comodular cells by identifying a common set of three

highest spectral peak neighborhoods across cells from the PSD product of all comodular cells; for each cell, when then pick the

highest PSD peak in the three neighborhoods (see Experimental Procedures). This produces roughly but not strictly parallel linear

slices for all comodular cells (V: analytical prediction, W: with further numerical optimization).
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Figure S4, related to Figure 3: Features of the gap distribution for linear slices of different angles and lengths &

for parallel linear slices. (A-C) Slices at different angles: different gaps are represented with different frequencies as

the slice angle varies, but all the gaps at all angles belong to the same small set. (A) Slices at different angles through

a 2D triangular lattice with a period of 20 cm. The slices are 4 times longer than those in Figure 2A. (B) 1D responses

resulting from the linear slices in (A). Colored horizontal lines: gaps between significant fields, color-coded by length

(blue: 20 cm, green: 20
p

3 cm, red: 20
p

7 cm, and gray: the rest. As before, significant fields are those whose

maximum height exceeds 25% of the overall maximum. (C) Histogram of the gaps from (B), with the same color

code. Up to small deviations, the gap histograms exhibit the same set of peaks across slice angles, but the height of

each peak in the histogram varies with slice angle (with some peaks disappearing completely for certain slice angles).

In addition, even for a fixed slice angle, the relative heights of the peaks in the gap distribution can vary with the length

of the sampled 1D response, if it is sufficiently short. (It is easy to check directly that different subsamples of the

full responses in (B) can yield distinct subcollections of gaps). (D) Parallel slices through a 2D triangular lattice with

different spatial phases, as in Figure 2D. Inset: magnified view of the starting points (spatial phases) of the parallel

linear slices. (E) 1D responses resulting from the linear slices in (D). (F) Histogram of the gaps from 1D responses in

(E). As in (C), the gaps cluster around the same locations, despite having different spatial phases.
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Figure S5, related to Figures 4, 5, and 6: Analysis of 1D real linear track data. This analysis involves all putative

grid cells in the dataset from (Brun et al., 2008) (see Experimental Procedures for selection criteria). (A) Histogram

of fit-quality of (the analytically predicted) linear lattice slice to the recorded 1D response. (B-C) Same as in Figures

5B-C: comparison of data slice fits with slice fits to gap-randomized and gap-shuffled controls . p-values noted in each

figure, one-sample t-test. (D) Aggregate gap distribution (black) pooled across all cells in the dataset, after the gaps in

each cell’s response are normalized by the inferred 1D lattice period from the slice fit. (E) The inferred best-fit slice

parameters for all cells, obtained individually per cell (no imposed consistency). Cells plotted in a common color:

putative or inferred co-modular cells, classified as such if they are simultaneously recorded in the same animal and if

their inferred periods are within 10% of each other. Note that there are two overlapping circles in dark blue at slice

angle ⇡ 30�.
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Figure S6, related to Figure 7 and Experimental Procedure: Multiplicity of linear slices and ambiguity of the

predicted 1D relative phase. (A) Three parallel linear slices through a 2D lattice, with slice angles between 0� and

30� and spatial phases within a rhomboidal unit cell, generate a unique 1D response. The same response, however, can

be generated by reflecting the linear slices over the line of 30� and/or by rotating the linear slices through multiples

of 60� around the origin (black/blue/purple: a triple of parallel linear slices populated up to 12 identical pairs). The

spatial phases resulting from these operations can be entirely different (red arrows, right), leading to an ambiguity in

inferring the 2D spatial phase from the 1D response. (B) The 12 red circles from each column represent a clearer

depiction of the equivalent relative phases from (A), separately for each cell pair. (C) The same as (B), but with

all equivalent relative phases depicted within the same rhomboid unit cell. (D) The same as in Figure 7A except

that the best relative phase estimates for pairs in each comodular K�tuple in the dataset are not generated pairwise

but by selecting a single consistent solution out of the 12-fold degenerate domains for all (K choose 2) cell pairs at

once. Predictability of relative phase magnitude. (E) Measured 2D relative phase magnitudes (abscissa) versus

the magnitude of predicted values from slice analysis (ordinate). (F) Measured 2D relative phase magnitudes versus

rescaled correlation coefficients between cell pairs’ 1D responses. (G) Same as in Figure 7C, but based on data in

(A-B). The magnitude of relative phase can be equally predicted by the slice analysis and correlation measure between

cell pairs.
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Figure S7, related to Figure 6: Grid expansion from 2D to 1D real environments. (A) A comparison of

the information inferred about the underlying grid period of an ideal slice, via two different methods: the full

slice-hypothesis based method presented in this paper (abscissa), and a method based on 1D correlation (ordinates).

The black circles correspond to 100 slices with randomly chosen slice angles and spatial phase, (ltruth = 60cm,

and slice length = 6m. (B) Black line: Linear fit and extrapolation of the relationship between a cell’s observed

dorsoventral (DV) location and 2D grid period, based on Figure 2h in (Hafting et al., 2005). Circles: cells from

(Brun et al., 2008), placed on the black line according to their observed DV locations (abscissa; data from Figure 1

in (Brun et al., 2008), coordinates obtained by orthogonal projection onto a DV axis). The ordinates obtained from

the placement of these points correspond to the inferred 2D periods of these cells. (C) Blue circles: inferred 2D grid

periods for the 1D responses from (Brun et al., 2008), using the slice-fit method of the paper (blue circles). Black:

linear fit. (D) Red circles: Scale factor (red circles) obtained by taking the ratio of data in (C) to that in (B), for each

cell.

12



0903_t3c3

0903_t2c4

0.5m

A

B

0 2 4 6
0

10

20

30

La
p 

nu
m

be
r 0903_t3c3 0903_t2c4

0 2 4 6

C D

0 2 4 6A
ct

ua
l f

ir
in

g
ra

te
 (H

z)

0

5

10

0 2 4 6
0

0.5

1

P
re

di
ct

ed
fir

in
g 

ra
te

Position (m)

0

10

20

30

0 2 4 6

Position (m)

0

0.5

1

0 2 4 6

S
ca

le
 fa

ct
or

fr
om

 2
D

 to
 1

D

0

1

2

3

4

5
E

sl
ic

e 
or

ie
nt

at
io

n

Module 1
Module 2

0

5

10

15

Figure S8, related to Figure 6: Functional independence of grid modules. (A-B) Two grid cells recorded

simultaneously from different tetrodes in 2D open field. Left: Spike discharge map. Middle: Smoothed rate map.

Right: Best-fit template lattice (red circles) to the autocorrelogram (top) and to the rate map (bottom). When the grid

period is large and firing fields are mostly cropped, we searched for the best-fit template lattice directly in the rate

map, which is the case for the bottom cell. Blue circle: End point of the first primary lattice vector (length and angle

of the vector are shown on the top). Green circle: End point of the second lattice vector (length and angle are shown

at the right). (C-D) Top: spike rasters of the same cells. Middle: Smoothed trial-average firing rate. Bottom: Rate

prediction from a linear slice. (E) Both scale factor (top) and slice angle (bottom) do not change coherently during a

complete environmental transition from 2D to 1D, when a cell pair is from different modules.
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Supplemental Experimental Procedures

Binning and rate maps.

Cell-sorted spikes from foraging mice were assigned to 1 cm ⇥ 1 cm spatial bins (2D open field) or 1 cm spatial

bins (1D linear track). Positions were derived from samples taken at 30 Hz. The number of spikes assigned to a bin

was divided by the rat’s total dwell time in that bin, to remove the effects of inhomogeneous spatial exploration on

estimating the probability of spiking at each location. This defined the rate map. Smoothed rate maps were generated

by convolving the binned rate maps with a 2D or 1D Gaussian kernel, respectively (s = 4 bins).

Cell selection.

We analyzed units from (Domnisoru et al., 2013), which were recorded in both 2D open fields and on virtual 1D

linear tracks. Our starting sample consisted of 126 units (137 recorded, with 126 of these passing an interspike interval

criterion that no more than 0.25% of spikes in each unit were emitted with interspike intervals (ISIs) shorter than 1 ms

(Domnisoru et al., 2013)).

We applied the intersection of three criteria on spatial tuning to select units individually, then excluded duplicate units

by a separate criterion based on similarity of tuning. These methods are described below. The result was 25 grid units

(6 singles, 3 pairs, 2 quadruples, and 1 quintuple) from the starting sample of 126.

Our selection procedure follows: We first computed three scores that reflect spatial response properties individually

for each unit: 1) A standard gridness score (Langston et al., 2010) on the 2D spatial tuning, to determine whether

the unit has sufficiently grid cell-like tuning. 2) A score on the overall stability of the response in 1D (see Trial

selection, below) computed on the most-stable 30-trial block out of the variable number of trials recorded for each

unit, to remove units that do not display a stable spatial response in 1D because we could not average trials to obtain

a 1D spatial tuning curve. 3) The entropy of the 1D spatial tuning curves (with the spatial tuning curve obtained

from averaging the most-stable 30 trials for each cell). High entropy units have high background firing, little spatial

modulation, large drifts, or generally high noise in their responses. This entropy score also helps to catch units with

14



variable or drifting trial-to-trial responses that are not caught by the stability measure in (2) above.

Units with 2D gridness < 0.34 (Domnisoru et al., 2013), 1D stability < 0.1, and 1D entropy > 8.7 were rejected,

reducing the sample size from 126 to 26 units (Individually, 69 units fail the 2D gridness score, 39 fail the stability

score and 64 fail the entropy score). Units had two kinds of stability problems in 1D: one was a slow, systematic drift

of firing field locations across trials; the other was strongly fluctuating spike counts and other less-systematic effects

from trial to trial. Both led to less-sharp 1D tuning curves with lower signal-to-noise ratio. The stability and entropy

thresholds quoted here were set to eliminate excess drift and variability based on empirical observation of the 1D track

spike rasters.

Finally, to avoid overcounting one cell as two units, we eliminated one unit out of each simultaneously recorded pair if

they exhibited both very similar spatial tuning and a large amount of mutual spike contamination (Cell pairs with very

similar tuning but small or no spike contamination are legitimate independent samples and should both be included –

grid cells within a population are expected to have a spectrum of relative phases, including a relative phase of zero).

For a cell pair with relative phase magnitude smaller than 10% of the maximal possible relative phase separation, and

a contamination score (defined below) greater than 0.1, we kept only one cell of the pair (the one with the higher

gridness). This process identified a single pair of units from the set of 26 (suggesting one double-counted cell), and

led to the final dataset of 25 units.

Entropy.

Entropy is given by the standard definition:

Entropy =�Â
i

P(xi) logP(xi)

where P(xi) is the firing rate in the ith spatial bin along the linear track, normalized by the area of the full firing rate

curve (firing rate per bin, summed over all bins).

Comodularity.

Cells were defined as comodular if they were recorded simultaneously from the same animal and if the spatial
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periods of their recorded 2D responses differed by less than 10% (relative to the larger of the two estimated periods)

and the 2D grid orientations differed by less than 10 degrees.

Spike cross-contamination for cell pairs.

Following (Hill et al., 2011), we fit the pair of clusters Ci and Cj comprised of the waveforms of all spikes from two

simultaneously recorded units i, j by a sum of (two) Gaussians. With this fit, we derive a contamination score as the

average probability that a spike from Ci would come from Cj’s distribution:

contamination(C1,C2) :=
1

N1
Â

v2C1

P(C =C2 |V = v)

Additional cells from real 1D tracks.

We additionally studied the 1d real-track responses of cells from (Brun et al., 2008). As stated in the main

manuscript, for left-to right traversals we used only the left (first) half of the track, and for right-to-left traversals,

we used the right (first) half of the track. When we refer to track length L in the analysis below, we refer to these first

half-tracks. The responses of a cell on the two different direction traversals were treated as two independent spatial

responses. We possess no ground-truth data on which responses in (Brun et al., 2008) come from grid cells. Thus, we

must identify responses as coming from putative grid cells based on characteristics of the spatial response. We do so

as follows:

The selection criteria for identifying putative grid cells from (Brun et al., 2008) are adapted from Domnisoru et al.

2013, with adjustments to simplify the criteria slightly and take into account the very different track length. The

modified criteria are as follows: A 1D response cannot be a putative grid cell response if (a) the number of transitions

Ntrans between an in-field and and out-of-field period for a track of length L is smaller than L/(5hwi), where hwi is

the mean firing field width for that 1D response. (In-field and out-of-field periods are defined below.) (b) The widest

field of the response has width greater than 5hwi. (c) Same as in (Domnisoru et al., 2013), which is that 30% or fewer

of the bins are assigned to either in-field or out-of-field periods. (d) the mean firing rate in-field divided by the mean

firing rate out-of-field is smaller than 2.
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The definitions of in-field and out-of-field periods are very similar to (Domnisoru et al., 2013), but the numerical

thresholds are changed and some of the steps are simplified: out-of-field periods are defined as intervals of � 8cm

for which the firing rate was lower than the 20th percentile of the bootstrapped shuffle distribution for that bin (i.e.,

1�Pvalue  0.2). Firing fields are intervals of duration � 12cm with firing rate higher than the 80th percentile of the

bootstrapped shuffle distribution for that bin (i.e., 1�Pvalue � 0.8). There is no change in criteria for defining firing

fields if they occurred at the ends of the track. Bins with intermediate firing rates remained unassigned. Steps omitted

from (Domnisoru et al., 2013) criteria for simplicity: we did not extend candidate firing fields by an adjacent bin on

each side if their firing rates exceeded the 70th percentile of the bootstrapped shuffle distribution for that bin; we did

not examine and discard fields based on whether they received spike contributions from only  20% of all trials.

If the response of a cell in either traversal direction survived the selection process above, the cell was classified as a

putative grid cell. We were left with 51 putative grid cells with 65 passing spatial responses, out of the full dataset

of 97 total cells with 194 spatial responses. We applied slice fits to all 65 passing responses, provided they had � 3

fields on the length-L half-track (this condition is necessary for generating meaningful slice fits: two 1D fields are

mathematically not enough of a constraint to specify a slice or infer the underlying grid cell period, by any method).

This leaves 40 putative grid cells and 53 responses; the excluded cells here tend to be from the most ventral end of the

dorsolateral MEC.

Trial selection.

Different cells were recorded for different numbers of trials, and some cells showed substantial drift in their spatial

tuning across trials. To equalize the number of trials used per cell and obtain the most stable block of trials for each

cell so that we could obtain reasonable trial-averaged rates, we adopted the following trial-selection procedure for

Figures 1-8: Given a total of N > 30 trials, we computed a stability score, defined as the average of the pairwise

Pearson’s correlation coefficient across all pairs of single-trial rate responses (obtained by smoothing the single-trial

spiking responses, as described in Binning and rate maps above) within the consecutive 30-trial block [i, i+ 29]. We

repeated this process for different starting positions i in steps of 1 trial, starting from i = 1 up to i = N � 29. From
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this analysis, we selected the 30-trial block with the largest stability score; for comodular cells, we selected a common

30-trial block with the largest stability score averaged across cells.

Fourier spectral analysis for inferring 2D lattice slice parameters from a 1D response: theory.

Consider a 2D firing rate r(x), x = (x1,x2), consisting of identical 2D bumps centered at the vertices of a triangular

lattice with period l . For example, with Gaussian bumps of unit height and variance s2, r is given by the formula

r(x) = Â
v2G

e�kx�vk2/2s2
,

where G = {ml (1,0)+ nl (1/2,
p

3/2)} for all integers m and n. The details of the bump shapes are inessential for

the following derivation, as long as they are sufficiently narrow relative to the lattice spacing l .

In this case, the power spectrum of r will be dominated by equal contributions from three frequencies {b1,b2,b3},

where b1 =
1
l (0,2/

p
3),b2 =

1
l (1,�1/

p
3),b3 =

1
l (1,1/

p
3) (Figure S1). Therefore the response can be approximated

as the sum of three 2D sine waves along these directions:

r(x)⇡
3

Â
i=1

r cos
�
2p bi x

T � (1)

where the superscript T on a vector refers to the vector transpose, xy

T is the dot product between vectors x,y, and r

is the relevant Fourier coefficient. For simplicity, we scale r(x) to make r = 1 in what follows.

Now consider the line x`(t) parametrized by t in the 2D coordinate space above, with origin at c = l (f1,f2) and angle

q relative to the x-axis. It is given by

x`(t) = (cos(q),sin(q)) t + c (2)

⌘ u(q) t + c (3)

where we have defined the vector u(q) = (cos(q),sin(q)).

The modulation of firing rate r along this line is given by restricting r(x) to the coordinates x`(t). Thus, along the line,

18



the rate varies as:

r(x`(t)) =
3

Â
i=1

cos
�
2p bi x`(t)T � (4)

=
3

Â
i=1

cos
�
2p bi u(q)T t +2p bi c

T � (5)

=
3

Â
i=1

cos(2p fi(l ,q)t +2pdi(c)) (6)

where fi(l ,q)⌘ bi(l )u(q)T and di(c)⌘ bi(l )c

T are all scalar quantities (we have made the dependence of the bi’s

on l explicit here because l is a slice parameter we would like to infer from the following analysis, as is q ).

From Equation 6, it is clear that the Fourier transform of r(x`(t)) will have spectral peaks at the frequencies f1(l ,q),

f2(l ,q), f3(l ,q) and phases 2pd1(c),2pd2(c),2pd3(c) (Figures S1C-F).

Given the Fourier transform of r(x`(t)) (more specifically, given the six scalars { fi|i = 1,2,3} and {di|i = 1,2,3}),

our goal is to extract four quantities: the period and angle parameters (l ,q) of the slice as well as the vector origin of

the slice, recast as a phase with respect to a unit vector of the lattice, given by the vector f ⌘ c/l .

For any equilateral triangular lattice (characterized by the three vectors b1,b2,b3 specified above) it is easy to see

that b1 +b2 �b3 = 0. As a result, f1 + f2 � f3 = (b1 +b2 �b3)u(q)T = 0 (Figure S1G). Thus, only two of the fi’s

provide independent information and a pair of fi’s is sufficient to analytically obtain l ,q . The corresponding two di’s

are sufficient to analytically determine the slice origin vector c. This procedure will produce a reasonable solution if a

recorded rate is indeed a slice.

Note that the scale factor (a) referred to in the main manuscript is defined as l (the inferred period of the lattice that

underlies the 1D response), divided by the measured period of the cell’s response in 2D (l2D). Thus, a = l/l2D. The

inferred 2D phase from the 1D slice analysis in the main manuscript is f = c/l ; we write it in terms of the oblique

projection onto the two primary lattice vectors (Yoon et al., 2013).

Direct inference of 2D relative phase from a pair of 1D responses.

The relative 2D phase between two linear slices is simply the difference in the estimates of the 2D phases of each
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of the two slices (Df ⌘ f 1 �f 2, where f 1,f 2 are the 2D phases of each linear slice).

However, it is also possible to directly infer the relative 2D phase from the two 1D responses, using the cross-correlation

theorem:

F [(g?h)(t)] = G( f )H( f ) (7)

where ? denotes the correlation and G,H are the Fourier transforms of g,h, respectively. The Fourier transform of the

cross-correlation of the two signals g,h (the left hand side of Equation 7) will have phase 2pdi(cg�ch) (as in Equation

6) ascribed to the conjugated H( f ), which can be directly recast as a 2D relative phase, Df = (cg � ch)/l .

Fourier spectral analysis for inferring 2D lattice slice parameters from a 1D response: practice.

For each cell recorded in 1D (or each random control response), we first compute the PSD of its response, identify

the two highest peaks in its PSD, and label the peak locations (i.e. the spatial frequencies at which the peaks occur)

as q1 and q2 with q1 < q2. Given (q1,q2), there is a choice in whether (q1,q2) should be identified with ( f1, f2), or

( f1, f3), or ( f2, f3) in the analytical definitions above. We consider the three possible solutions, in addition to the two

solutions corresponding to the special cases of a 0 or 30 degree slice (for which there are only two spectral peaks, see

Figure 2). From this set of 5 discrete slice solutions, we pick the one with the best correlation with the recorded 1D

response of the cell. The 2D period, obtained from 2D recordings for each cell, was set to the average of lengths of

two primary lattice vectors.

Note that different assignments of the two highest peaks to the fi’s (three of the five candidate solutions described

above) can correspond to different local minima in the solution space; sometimes, these different local minima can

provide roughly similar (in terms of correlation coefficient) slice fits to the measured 1D response. We explore this

issue further in Figure 6 of the main manuscript.

We numerically refined the analytical solution by searching locally for values of the four slice parameters (q ,a,f )

that optimized the fit between the recorded 1D rate response and rate values predicted by the slice. The fit is quantified

by Pearson’s correlation coefficient (r). The slice parameters were initiated to the analytical solution (q ⇤,a⇤,~f ⇤)
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then locally relaxed via a standard gradient ascent algorithm under the following constraints: max(0�,q ⇤ �3�) q 

min(30�,q ⇤+3�), a⇤ �0.5  a  a⇤+0.5, and [0,0] ~f  [1,1].

Generating matched random control data.

Consider a cell with spatial tuning curve r(x), measured over the range x 2 [0,xmax]. We generate two kinds of

matched controls for this cell: gap-randomized and gap-shuffled. For both types of control, we first process the data

as follows.

For each spatial tuning curve, identify the locations of all peaks and troughs. Significant peaks are those whose heights

exceed 25% of the maximal firing rate in the tuning curve. Label the locations of these peaks {pi} (with i = 1, · · · ,Q

and p1 < · · · < pQ). We seek to identify firing fields, which may include more than one significant peak if the peaks

are very closely spaced. Label a set of consecutive significant peaks as belonging to the same field if they are closer to

each other than half the estimated field width for the cell (field width w is defined as the distance from the origin to the

first trough in the autocorrelogram of r(x)). In other words, K consecutive peaks indexed i, i+1, · · · , i+K �1 belong

to a single field if p j+1 � p j  w/2 for each j = i, · · · , i+K �2. (For a well-isolated peak separated by > w/2 from

the rest, K = 1.) We now define a field interval as the spatial interval encompassing these K peaks, with the interval

boundaries given by the closest troughs immediately flanking to the left and to the right the set of K peaks. Starting

from the first significant peak in the spatial response, we identify field intervals as described above, and denote the

ath field interval as [xa
s ,x

a
e ], where xa

s ,x
a
e are the start and end coordinates marked by the two troughs surrounding

the field. The intervals [xa
e ,x

a+1
s ] between field intervals (and also the interval [0,x1

s ]), if non-empty, are designated

non-field intervals.

Suppose the cumulative length of all L field intervals put together covers M bins, while the cumulative length of the

full track covers N = xmax/Dx bins, where Dx is the width of each spatial bin (Dx = 1cm; xmax and Dx have dimensions

of centimeters, while L,M, and N are dimensionless). Then the cumulative length of non-field intervals covers N �M

bins.
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To generate gap-randomized controls, we take the following steps: first generate a set of N �M + L empty slots.

Randomly and without replacement, assign each of the indices {1, · · · ,L} to one empty slot. The slot with the index a

now represents (contains) the firing rate segment r([xa
s ,x

a
e ]) (which may, and typically does, consist of multiple spatial

bins). In the remaining N�M empty slots, insert the N�M spatial bins of non-field responses (we preserved the order

of the non-field bins; this detail is unimportant because non-field responses are of low amplitude and randomizing

or not randomizing bin ordering does not lead to quantitatively big effects). The result of this procedure is to exactly

preserve the structure of each field, while randomizing the ordering of the fields and also randomizing the gaps (picking

new between-field spacings at random, without preserving previous gaps) between fields.

This defines one gap-randomized sample for a given cell. This procedure was used in Figure 5A (reddish-gray), to

generate 100 random samples based on the cell in Figure 5A (top). For Figures 5B-5C (reddish-gray), we generated

100 random samples for each cell in our virtual track dataset; this pooled dataset was our full random sample.

To generate gap-shuffled controls, we first note the center-of-mass location of each field (designate the center-of-mass

of the ath field by xa
c ; the spatial bin index of this location in the original response is xc/Dx), then compute the L�1

gaps ga ⌘ xa+1
c � xa

c between adjacent pairs of the L identified fields (the ath gap length in bins is ga/Dx). Next, we

randomly permute the indices {1, · · · ,L} to get a permuted vector of the indices, {c1, · · · ,cL} (thus a random ordering

of fields), and also randomly permute the indices {1, · · · ,L�1} to get another permuted vector {d1, · · · ,dL�1} (thus a

random reordering of gaps). We draw at random (uniformly distributed in the interval [0,N �ÂL�1
a=1 ga/Dx]) a location

to begin the c1th field. We assign the gap gd1 next by inserting the corresponding number of empty spatial bins after

the first field. At the end of this gap, we place the c2th field, then gap gd2 , and so on, until all fields and gaps have

been assigned. The empty gap bins are now filled in with non-field data, as in the gap-randomized controls above.

The result of this procedure is to exactly preserve the structure of each field, and to preserve the set of all gaps from

the data in each random control sample; however, a given field is typically adjacent to different gaps than it was in the

original data and across different random samples.

As described above, in Figure 5A (bluish-gray) we generated 100 random samples based on the cell in Figure 5A
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(top). For Figures 5B-5C (bluish-gray), we generated 100 random samples for each cell in our virtual track dataset.
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