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Web Appendix A: Posterior Computation

This is a supplement to the article “Bayesian genome- and epigenome-
wide association studies with gene level dependence,” providing details on
posterior computation for the methylation screening application described
therein.

First, we estimate and fix a dictionary of normal kernels truncated be-
tween 0 and 1, which will be used as mixture components for the density
at each CpG site. These are estimated as described in Section 5 of Lock
and Dunson (2015). In particular, the number of kernels is determined by
out-of-sample cross validation of the log posterior density. For the present
application this yields K = 8 kernels that appropriately span the data range
from 0 to 1.

Let Π
(0)
gm = (π

(0)
gm1, . . . , π

(0)
gmK) be the kernel probability weights that define

the generative distribution for gene g and site m for group 0, and let Π
(1)
gm

be the kernel probability weights for group 1. Under the null model H0gm,

the mixing weights are the same for both groups: Π
(0)
gm = Π

(1)
gm. The kernel

weights are assumed to be generated from a Dirichlet(λ) distribution, where λ
is a hyper-parameter that is inferred during the kernel estimation stage and
fixed. Under H1gm, Π

(0)
gm and Π

(1)
gm are considered independent realizations

from Dirichlet(λ).
Under this framework, posterior draws from the gene-level prior model de-

scribed in Section 3 of the main article are incorporated into Gibbs sampling
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for the kernel testing parameters. The full sampling algorithm is described
below.

1. Draw the kernel that generated each observation T
(i)
gmn ∈ 1, . . . , K for

genes g = 1, . . . , G, markersm = 1, . . . ,Mg, classes i = 0, 1 and samples
n = 1, . . . , Ni. The conditional probability that the given value is
realized from component k is

P (T (i)
mn = k | X(i)

m ,Π(i)
m ) ∝ π

(i)
gmkf(X(i)

gmn|µk, σk, [0, 1]),

where f(·) defines the density of a truncated normal distribution.

2. Designate null markers H0,gm for g = 1, . . . , G, m = 1, . . . ,Mg. The
conditional posterior probability is

P (H0,gm | X, Y, pg) =
pgβ(λ)β(~nm + λ)

pgβ(λ)β(~nm + λ) + (1− pg)β(~n
(0)
m + λ)β(~n

(1)
m + λ)

,

where ~n
(0)
gm = (n

(0)
gm1, . . . , n

(0)
gmK) is the number of subjects in group 0

that belong to each kernel k in marker g,m, ~n
(1)
gm is defined similarly

for group 1, and ~ngm = ~n
(0)
gm + ~n

(1)
gm.

3. Draw weights {Π(0)
gm,Π

(1)
gm}Mm=1. UnderH0,gm, Π

(0)
gm = Π

(1)
gm ∼ Dirichlet(λ+

~ngm). Otherwise, Π
(0)
gm ∼ Dirichlet(λ + ~n

(0)
mg) and Π

(1)
gm ∼ Dirichlet(λ +

~n
(1)
mg).

4. Allocate gene-level Dirichlet indices Cg for g = 1, . . . , G:

P (Cg = h | θ·, H0,g·) ∝ πhθ
Sg

h (1− θh)Mg−Sg

where Sg is the number of null markers in gene g, Sg =
∑Mg

m=1 1(H0,gm).

5. Update the weights πh for h = 1, . . . , H. First, draw the stick-breaking
weights V1, . . . , VH−1 by

(Vh | C·) ∼ Beta

(
1 +

G∑
g=1

1(Cg = h), α +
G∑

g=1

1(Cg > h)

)
,

with VH = 1. Then set πh = Vh
∏

l<h(1− Vl) for h = 1, . . . , H.

6. Update the atoms θh for h = 1, . . . , H:

(θh | C·, H0,··) ∼ Beta
(
a+ S̃h, b+ M̃h − S̃h

)
,
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where M̃h is the total number of markers in genes allocated to cluster
h, and S̃h is the number of null markers:

M̃h =
∑

{g:Cg=h}

Mg , S̃h =
∑

{g:Cg=h}

Sg.

Set pg = θCg for g = 1, . . . , G.

We use a simple uniform prior for the base distribution of pg (a = b = 1).
For the high-throughput data considered, computing is not trivial, costing

approximately 30 seconds per Gibbs cycle. However, less than 1% of com-
puting time is spent on the draws for the gene-level prior parameters (steps
4-6). We find that draws mix well and converge very quickly to a stationary
posterior. We run two parallel chains, with different initializations, for 1000
cycles, with the first 200 treated as burn-in. Figure 1 shows good agreement
of estimated gene-level prior probabilities between the two chains.

Figure 1: Scatterplot of estimated gene-level prior from two independent
sampling chains.
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Web Appendix B: Simulation ROC Curves

Here we give additional results for the simulation study described in Sec-
tion 4 of the main manuscript. Figure 2 gives receiver operating characteristic
(ROC) curves showing the proportion of markers with false positive or true
positive classification (where ‘positive’ corresponds to the alternative) as the
threshold on the posterior probability, p-value, or FDR is varied. Results are
shown for the bimodal and Beta simulations; the ROC curve for the null sim-
ulation is trivial, as there are no true positives. In both cases the Bayesian
hierarchical model has uniformly better classification performance than al-
ternatives. The ROC curves for separate estimation are close, indicating that
the rank ordering of probabilities are similar despite the improved accuracy
of the hierarchical model.

Figure 2: ROC curves obtained by varying the threshold on the posterior
probability, p-value, or FDR for various methods. Curves are combined for
the joint and simple Bayesian models, and for the uncorrected p-value and
FDR, as the rank ordering of markers between these methods do not change.

Web Appendix C: Hyperparameter

Sensitivity

Here we present the results of a simulation study to assess the sensitivity
and affect of hyperparameters for the hierarchical gene-level prior. Data
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Table 1: Average expected misclassification probability over all markers, for
different hyperparameters

Null Bimodal Beta (1, 0.2)
Beta(1, 1), α = 0.1 0.0001 0.005 0.079
Beta(1, 1), α = 1 0.0003 0.005 0.079
Beta(1, 1), α = 10 0.0004 0.009 0.079
Beta(19, 1), α = 0.1 0.0001 0.014 0.081
Beta(19, 1), α = 1 0.0002 0.014 0.081
Beta(19, 1), α = 10 0.0012 0.015 0.081
Beta(M, 1), α = 0.1 0.00004 0.071 0.086
Beta(M, 1), α = 1 0.00006 0.071 0.087
Beta(M, 1), α = 10 0.00006 0.070 0.085

are simulated exactly as in Section 4 of the main manuscript, using the
likelihood framework of Example 2.1. As in Section 4, we simulate gene-
level probabilities for a global null hypothesis, a bimodal scenario where
markers in 20% of genes are alternative and the other 80% are null, and where
gene-level probabilities are generated from a Beta(1, 0.2) distribution. For
each scenario, we compute the posterior for 9 different choices for the model
hyperparamaters. We use a factorial design with 3 different values of the DP
hyperparameter α (α = 0.1, 1, and 10), and three different parameter values
for the beta base distribution. For the beta base distribution we consider
the default uniform (a = b = 1), a more conservative choice (a = 19, b = 1),
and an even more conservative choice motivated by a prior adjustment for
multiplicity (a = M, b = 1 where M is the total number of markers).

Table 1 gives the results for each set of hyperparameters, summarized
by the average expected misclassification probability over all markers. As
expected, the more conservative choices for the beta base distribution lead
to better performance under a global null, but the effect is minor. The most
conservative base distribution, Beta(M, 1), performs substantially worse for
the bimodal case, where it has less flexibility to detect alternative genes.
For the global null, smaller values of α perform better, as this implies larger
clusters and more similarity between the genes; the effect of α is negligible
for the other scenarios.

Web Appendix D: Shared Kernel Simulation

Here we present a simulation study using continuous data and shared
kernels, as in the methylation application described in Section 5 of the main
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manuscript. Continuous data from 0 to 1 are generated from a mixture
of truncated normal distributions (kernels); for data generation we use the
same 8 kernels that are estimated for the methylation application (see Web
Appendix A). For null markers the mixing weights that characterize the
continuous distribution are the same for two classes, generated from a uni-
form Dirichlet distribution. For alternative markers the mixing weights for
each class are generated independently from uniform distributions. Other as-
pects of the simulation design are analogous to that in Section 4 of the main
manuscript, including the sample size (80 in each group), number of genes
(500), and number of markers per gene (selected uniformly from 2, . . . , 20).
The simulation scenarios follow those in Section 4 of the main manuscript,
with gene-level probabilities for a global null hypothesis, a bimodal scenario
where markers in 20% of genes are alternative and the other 80% are null, and
where gene-level probabilities are generated from a Beta(1, 0.2) distribution.

For each scenario, we compute the posterior using the sampling algorithm
given in Web Appendix A using the gene-level hierarchical model. As in
Section 4, we also consider a model with a separate uniform prior for each
gene, a joint model with a shared prior for all genes, and a simple model with
fixed prior probability 0.5. The results are given in Table 2. The advantages
of the hierarchical model are apparent, but the hypotheses are reasonably
well discriminated even for the simple model. We also consider a smaller
sample size of N = 40 (20 in each group); here, each individual marker
provides less information to discriminate the hypotheses, and the advantages
of the hierarchical approach are more substantial.

Table 2: Average expected misclassification probability over all markers, for
different estimation schemes.

N=160 Null Bimodal Beta (1, 0.2)
Hierarchical 0.01% 0.50% 2.1%
Separate 0.62% 0.99% 2.3%
Joint 0.01% 3.67% 3.1%
Simple 4.1% 4.9% 4.6%
N=40 Null Bimodal Beta (1, 0.2)
Hierarchical 0.10% 0.96% 10.1%
Separate 6.56% 8.11% 13.0%
Joint 0.10% 16.9% 14.7%
Simple 24.0% 25.4% 24.7%
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