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Supplement Figures S1 and S2 
 

 
 
 
FIG. S1: The average mutant fixation probability (starting with one mutant cell) times ܰ in terms of 
the standard deviation of the bimodal fitness distribution for a complete graph. Calculations are 
performed for the death-birth Moran process. The points in the main figure as well in the small internal 
figure are based on stochastic simulations and error bars are standard error of the mean for a set of 5 
realizations. The solid curves in the main figure are based on fitting the numerical simulation data to 
logarithmic functions. In the small internal figure, curves show the results of exact analytic calculation. 
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FIG. S2: The effective fitness of the mutants as a function of the standard deviation of the bimodal 
fitness distribution. The calculations are performed for the death-birth Moran process and are based on 
data in the panel of figure 2 (for circles) and figure S3 (for complete graphs). 
 
 
Moran process on a complete graph 
 
Consider a set of ܰ spots that are characterized with random (between realizations), constant 
(throughout a given realization) fitness values, which we denote ܽଵ, ܽଶ,⋯ , ܽே for wild type cells and 
ܾ, ܾଶ,⋯ , ܾே for mutant cells. The iterations proceed as follows. Suppose the current state is given by a 
binary sequence  

ܵ ൌ ሺݏଵ, ⋯,ଶݏ , ݏ			,		ேሻݏ ∈ ሼ0,1ሽ		 
 
where 1 stands for a mutant and 0 stands for a wild type cell. Let us denote the probability of fixation 
starting from state ܵ as ௌܲ. These probabilities satisfy the system 
 

	 ௌܲ ൌ  ௌܲ→்	 ்ܲ

்

												ሺ1ሻ 

 
where ܵ and ܶ are all binary sequences of length ܰ, and the boundary conditions are 
 

ௌܲ ൌ ൜
0 : ܵ ൌ ሺ0,⋯ , 0ሻ
1 : ܵ ൌ ሺ1,⋯ , 1ሻ 

 
To set up the transition matrix, suppose that the system state after the update is given by a binary 
sequence 
 

ܶ ൌ ሺݐଵ, ⋯,ଶݐ , ݐ			,		ேሻݐ ∈ ሼ0,1ሽ 
 
Not all transitions are possible in a single update of the Moran process. A transition can happen from 
generation S to generation T only if the Manhattan distance between them satisfies |ܵ െ ܶ|  1. 
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Transition probabilities between states that satisfy this inequality can be calculated, and they are 
different depending on the order of the birth and death events in the Moran updates. Below we examine 
the two implementations of the Moran process, the death-birth and the birth-death processes.  
 
The death-birth process. In this formulation, we first eliminate a cell, such that each cell has the same 
probability 1/ܰ to die. Then another cell proliferates, with the probability proportional to its fitness.  If 
the number of mutants increases at location ݇, that is, if ݐ െ ݏ ൌ 1, then a death of a wild type cell at 
location ݇ is followed by a division of a mutant cell, and  
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where the superscript stands for the increase in mutant number, and the subscript for the death-birth 
process. If the number of mutants increases at location ݇, that is, if ݐ െ ݏ ൌ െ1, then a death of a 
mutant cell at location ݇ is followed by a division of a wild type cell, and  
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Finally, the probability of no change is given by 
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The birth-death process. In this formulation, we first pick a cell for division (again, this is based on 
the cell's fitness), and then this is followed by a death of a randomly (uniformly) chosen cell, after 
which the progeny of the cell that divided replaces the dead cell. We assume that a cell that just divided 
cannot die in the same update.  If the number of mutants increases at location ݇, then a death of a wild 
type cell is followed by a division of a mutant cell, and  
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If the number of mutants increases at location ݇, then a death of a mutant cell is followed by a division 
of a wild type cell, and  
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As before, the probability of no change is given by 
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There are two differences between the transition probabilities in the death-birth and the birth-death 
processes. The first difference is the factor 1/ሺܰ െ 1ሻ instead of a factor 1/ܰ, accounting for the fact 
that in the birth-death process, a newly divided cell cannot be picked for death. It turns out that this 
factor is unimportant, because it cancels out from equation (1). The second difference is that in the 
death-birth process, the cell at site ݇ (where the change occurs) does not participate in divisions 
(because it has died), and in the birth-death process it does. Mathematically it is reflected in the 
exclusion of the site ݇ from the summation in the probability expressions for the death-birth process. It 
turns out that this makes a significant difference in the behavior of the system.  
 
The behavior of the two implementations of the Moran process is illustrated in Figure S1. There, the 
probability of mutant fixation is plotted against standard deviation for both processes, for three 
different population sizes. One can see that the increase in the fixation probability is larger for the 
birth-death process. Interestingly, for the birth-death process, one observes an increase in the fixation 
probability even for ܰ ൌ 3 (recall that in death-birth process the probability of fixation for ܰ ൌ 3 is a 
constant given by 1/ܰ).  
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Supplement Figures S3 

 

 
 
FIG. S3: The average mutant fixation probability (starting from one cell) in terms of the standard 
deviation of the bimodal fitness distribution on a complete graph for ܰ ൌ 3, 4, 5, for the two 
implementations of the Moran process: death-birth and birth-death.  
 
Haploid Wright-Fisher model 
 
Consider a haploid Wright-Fisher model, where again there is ܰ spots that are characterized with 
random (between realizations), constant (throughout a given realization) fitness values, which we 
denote ܽଵ, ܽଶ,⋯ , ܽே for wild type cells and ܾ, ܾଶ,⋯ , ܾே for mutant cells. The iterations proceed as 
follows. The next generation is populated by randomly drawing (with replacement) cell types (mutant 
or wild type) from the current population. As before, let us suppose that the current generation is given 
by a binary sequence 
 

ܵ ൌ ሺݏଵ, ⋯,ଶݏ , ݏ			,		ேሻݏ ∈ ሼ0,1ሽ		 
 
Then the probability to pick a mutant is given by 
 

ݍ ൌ ୦ୟ୮୪ݍ ൌ
∑ ܾݏ
ே
ୀଵ

∑ ሺݏܾ  ሺ1 െ ሻܽሻேݏ
ୀଵ
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Here, the subscript stands for “haploid”. This formula reflects the fact that the probability for an 
individual to be picked is proportional to its fitness, and fitness is defined by the location (and the 
corresponding random fitness value). The probability to create the next generation given by a binary 
sequence 
 

ܶ ൌ ሺݐଵ, ⋯,ଶݐ , ݐ			,		ேሻݐ ∈ ሼ0,1ሽ 
 
is calculated as 
 

ௌܲ→் ൌෑݍ௧ሺ1 െ ሻଵି௧ݍ
ே

ୀଵ

 

 
Let us denote the probability of fixation starting from state ܵ as ௌܲ. These probabilities satisfy the 
system 
 

ௌܲ ൌ  ௌܲ→்	 ்ܲ

்

 

 
where ܵ and ܶ are all binary sequences of length ܰ, and the boundary conditions are 
 
 

ௌܲ ൌ ൜
0 : ܵ ൌ ሺ0,⋯ , 0ሻ
1 : ܵ ൌ ሺ1,⋯ , 1ሻ 

 
It is easy to show that in the ܰ ൌ 2 case, the probability of mutant fixation is equal to 1/ܰ ൌ 1/2. 
Figure S2 illustrates the behavior of this model for ܰ  2. The probability of mutant fixation is plotted 
as a function of the standard deviation (ߪ) for ܰ ൌ 3, 4, 5. We can see that for ߪ ൌ 0, the fixation 
probability is given by 1/ܰ, and it grows with standard deviation, even for the ܰ ൌ 3 case. 
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Supplement Figures S4 
 
 

 
 

FIG. S4: The average mutant fixation probability in terms of the standard deviation of the bimodal 
fitness distribution for the haploid Wright-Fisher model for ܰ ൌ 3, 3, 5. 

 
Supplement Figures S5 - S8 
 
 

 
 
FIG. S5: The average mutant fixation probability in terms of the standard deviation of the bimodal 
fitness distribution for a 2D lattice ܮ ൈ ,ܮ in	the	death െ birth	Moran	process.  
 



8 
 

 
 
FIG. S6: The average mutant fixation probability times ܰ in terms of the mean (or standard deviation) 
of the exponential distribution (death-birth Moran process). The fitnesses at each location are either 
randomly drawn from the same unit mean distribution (uncorrelated) or the fitnesses for A are just 
shuffled with respect to location for a (shuffled). In both cases, the fixation probability is greater than 
1/ܰ. In the shuffled case, we pick ܰ random fitness values and assign them to the wild type. Then we 
shuffle these fitness values and assign them to the mutants. Thus the fitness values for the mutants are 
the same shuffled ܰ values. In the uncorrelated case, the fitness of both wild type individuals and 
mutants are chosen separately at random. Note that in this case there is no dependence on standard 
deviation, because for the exponential distribution, the standard deviation is not independent of the 
mean value. 
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FIG. S7: The average mutant fixation probability times ܰ in terms of the standard deviation of the 

uniform distribution with the mean ߤ ൌ √3 (death-birth Moran process). The shuffled and uncorrelated 
cases are introduced in the previous figure; the difference in results for these two cases can be 
explained as follows. In the shuffled case, the mutant and wild type fitness values are not independent 
(the number of  1 െ values and 1 ߪ   values is preserved). For example, in the special case where all ߪ
wild type fitness values happen to be 1 െ the mutant fitness values will also be 1	,ߪ െ  by ߪ
construction. The largest effect of randomness on the fixation probability of mutants is observed when 
the fitness values are anti-correlated (FIG. 1), and the zero effect is observed when they are completely 
correlated. The uncorrelated case (independent fitness values) is somewhere between these two 
extreme scenarios. The shuffled case is then expected to be between the correlated and uncorrelated 
cases. The effect of randomness there is smaller compared to the uncorrelated case, as seen in this 
figure. 
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FIG. S8: (a) The average mutant fixation probability over the expected probability under neutrality 
(݅/ܰ), and (b) the average fixation probability, in terms of initial number of mutants (for the bimodal 
fitness distribution). Calculations are performed for the death-birth Moran process. 
 


