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Supplementary Figures
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Supplementary Figure 1: Node properties versus the expression fraction of a node. (A) The indegree of a
node versus its expression fraction. The expression fraction of a node is calculated as the ratio of the number
of tissues in which the node is expressed to the total number of tissues. There is no correlation between the
indegree and the expression fraction (Spearman’s ρ = 0.03824749, p = 0.4795). (B) The outdegree of a node
versus its expression fraction. There is a weak correlation between the outdegree and the expression fraction
(Spearman’s ρ = 0.15365, p = 4.285 ×10−3), however the data cannot provide a statistically significant
linear regression (p = 0.1548, adjusted R-squared = 0.003004). (C ) The number of shortest paths between
an input and an output that includes a node versus its expression fraction. There is a weak correlation
between the number of shortest paths and the expression fraction (Spearman’s ρ = 0.1506653, p = 5.106
×10−3), however the data cannot provide a statistically significant linear regression (p = 0.5059, adjusted
R-squared = 0.005518).
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Supplementary Figure 2: Kernel density plots comparing the normalized I/O map distances of human
subnetworks (blue), random subnetworks (red), and TCS-like networks (green) with two (A) or three (B)
active inputs.
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Supplementary Figure 3: Kernel density plot of target pleiotropy across the 84 expressed subnetworks. The
target pleiotropy is the fraction of the 84 tissues in which inhibiting the node results in a change in output
activity. Note that there are no nodes whose inhibition has an effect in all 84 tissues (Target pleiotropy =
1). Additionally, every node can be targeted in order to have an effect in at least one tissue. On average, an
inhibitor will alter the output activity, and potentially change the phenotypic response of the cell, in about
17 of the 84 tissues (˜20%).
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Supplementary Methods

Evolvable Boolean Networks

The evolvable Boolean networks start out with the same topology: two inputs (blue) that each
activate their associated output (red) (Fig. 4). These networks are randomly altered through one
of three possible modifications: (1) adding an edge, (2) flipping an edge from activating to
inhibiting or vice-versa, or (3) adding an intermediate node to connect two random nodes (See
Fig. 2A of the main text).

1 2

1 2
Supplementary Figure 4: Diagram of the initial TCS-like Boolean network

Following a modification, we run a synchronous Boolean simulation of the network for 100 steps
with one, both or neither of the inputs active throughout the simulation. We then obtain the final
activity of both outputs from each of the four simulations (Table 1). These output activities are
combined to form an 8 digit binary string, the ‘I/O map’ (i.e., the I/O map from Table 1 would
be ‘01110111’).

Input 1 and Input 2 Activity
I1I2 I1I2 I1I2 I1I2
00 10 01 11

Output Activity
O1 0 1 0 1
O2 1 1 1 1

Supplementary Table 1: The final activity of outputs O1 and O2 for a modified network after a 100 step syn-
chronous Boolean simulation. Each of the four rightmost columns represent the four different combinations
of input activity, with neither input, input I1, input I2, or both inputs active throughout the simulation,
respectively. From these results we would obtain the I/O map ‘01110111’, which is the output O1 and O2

activities for each of the input combinations.
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Supplementary Figure 5: Diagrams of each of 8 possible expressed subnetworks for a hypothetical evolved
network with three intermediate nodes. Each subnetwork exhibits a unique expression vector, which is to
say that they have a unique combination of the three intermediate nodes. Beneath each subnetwork is the
associated I/O Map, with different colors representing distinct maps. This example network thus presents 3
unique I/O Maps.
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Supplementary Figure 6: The flow chart for the evolution of the Boolean signaling networks. After a
modification is made to the existing network, the intermediate nodes are variably expressed in every possible
combination. We then count the number of unique I/O maps and keep the modification if it increases the
number of unique maps. Otherwise the modification is removed and the process is started again.

In order to explore the full potential of these systems, if a network has one or more intermediates,
then we obtain the I/O map for every combination of expressed intermediate nodes, which we
term an ‘expression vector’. For example, a network with three intermediate nodes will have
23 = 8 possible expression vectors, depending upon the presence or absence of each of the
intermediates (see Fig. 5). Due to the differences in network architecture, the network resulting
from an expression vector has the potential to produce a unique I/O map. For a system with two
inputs and two outputs, there is a maximum of 256 unique I/O maps possible. After each
modification, we obtain the I/O map for each expression vector and count the number of unique
I/O maps produced by the network. The number of unique maps is used to determine whether
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the modification is accepted: if the number of unique maps is increased by the modification, it is
kept. New modifications are attempted until the network has 16 intermediate nodes. See Fig. 6
for the flow chart of the evolutionary algorithm.

Boolean Simulations

We ran synchronous Boolean simulations of the networks presented in this work to determine the
functional impact of the complexity of the network on the activity of the output nodes. Input
nodes are assumed to be either constantly active or constantly inactive throughout a simulation.
The activity of the intermediate nodes are updated each step according to:

Inti = ((Activatora ∨Activatorb ∨ ... ∨ActivatorN )

∧ ¬(Repressora ∨Repressorb ∨ ... ∨RepressorM ))

∧ Expressioni

Where Inti is an intermediate node with N upstream nodes that stimulate its activity and M
upstream nodes that repress its activity. Expressioni is the expression state of node i; if the node
is expressed, that state is 1, otherwise it is 0. Biologically, this means that a node will be active
at step k + 1 of the simulation if it is expressed in the cell and if at least one of its activators is
active, and none of its repressors are active, at step k. Otherwise the node will be inactive. The
one exception to this is the scenario in which the intermediate node is only acted upon by
repressors, in which case the logical expression becomes:

Intj = (¬(Repressora ∨Repressorb ∨ ... ∨RepressorM ) ∧ Expressionj

The activity of the outputs is determined in a similar fashion with the exception being that they
are assumed to be constitutively expressed.

For each simulation, the activity of the intermediate nodes and outputs nodes are initialized to 0,
and the inputs are initialized to 0 or 1 depending on the inputs being activated in that particular
simulation. Simulations are run for 10,000 synchronous updates, meaning that the state of every
node for step i+ 1 is updated based upon the state of the network for step i.

Average Fraction of Overlap

To address the problem of quantifying the “degree of crosstalk” within a network, we propose a
more principled definition. To do this, we first define something we call a “pathset”, which is the
set of all nodes that are “in between” any given receptor (i.e. input) and transcription factor (i.e.
output). More formally, we first defined Di as the set of intermediate nodes in the downstream
connected component for each input i. Note that here we use “downstream connected
component” to indicate that, when we define this component, we start at input node i and find
all nodes that can be reached only when following the directed edges in the graph in the forward
direction. Similarly, we define Uj as the set of intermediate nodes in the upstream connected
component for each output j. The pathset Pij defined by any pair of inputs and outputs is then
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defined as the intersection of these two sets, Pij ≡ Di ∩ Uj . Any intermediate node in Pij is on at
least one path linking input i to output j; this allows us to define the nodes in each input and
output without restricting this set to be some linear pathway.

To quantify the level of crosstalk in a given network, we focused on the overlap between a pair of
distinct pathsets Pij and Pxy, where i could be the same as x or j could be the same as y, but not
both simultaneously. Specifically, we define the overlap between two such pathsets as the size of
the intersection of Pij and Pxy divided by the union of Pij and Pxy; this is just the Jaccard index
between the two sets. The average of this overlap indicates the extent to which the interactions
that determine input/output relations are largely shared, or largely distinct, between pairs of
inputs and outputs in the network.

One concern with the average fraction of overlap is that long cascades of proteins shared between
multiple pathsets may cause the metric to overestimate the crosstalk within the network. Take,
for example, the networks:
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Both Networks A and B represent two cascades with a single interaction between them. The
average fraction of overlap for these two networks are 0.08 and 0.17; these networks have different
values quantifying “crosstalk” even though the amount of crosstalk seems very similar. This
suggests that the average fraction of overlap might not be an ideal method for quantifying
crosstalk. It is important to not that, while Networks A and B look similar at first glance, they
are not functionally equivalent. These networks do not produce the same number of unique I/O
maps, with Network A demonstrating 6 unique maps while Network B demonstrates only 4,
dependent on which of the intermediate nodes (2-4, 7-9) are expressed. This highlights the fact
that intuitive notions of crosstalk can have difficulty capturing relevant functional details, which
is perhaps one of the reasons that developing a universally accepted quantification of crosstalk in
biological networks has so far proved elusive.

For a second example, take the networks:
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Networks C and D represent either two cascades of the same (C) or different lengths (D) with
similar crosstalk connecting the cascades. The average fractions of overlap for these networks are
0.656 and 0.751. Unlike Networks A and B, Networks C and D are functionally equivalent from
the standpoint of each demonstrating the same set of unique I/O maps.

The above examples suggest that applying the average fraction overlap directly to a network
topology might result in spurious differences in the measured amount of crosstalk. This problem
largely stems from isolated successions of interacting nodes in a cascade (e.g.nodes 3a, 3b and 3c
in Network D). To address this issue, we developed an algorithm to “compress” the network -
that is, to shorten instances of isolated cascades of interactions to a single node so that they do
not have a strong impact on our calculation of the overlap between pathsets.

The compression algorithm first identifies the set of compressible nodes. These nodes have an in
degree of 1, out degree of 1, are not directly acted upon by an input, and are not directly acted
upon by an output. The last two criteria were included to make sure that there remains at least
one node that would be considered an intermediate node in between any given input and any
output. Since intermediate nodes are the only nodes that we allow to be differentially expressed
when calculating I/O maps, this criterion minimizes the impact of the compression step on the
number of unique I/O maps a particular topology can generate. Each compressible node is then
replaced in the network by an interaction between the node directly upstream of the compressible
node and the node directly downstream. In other words, we “cut” nodes that are found along
pathways out of the network. The resultant network is then used in the calculation of the average
fraction of overlap.

Nodes 3 and 8 (green) in Networks A and B are compressible - their removal leaves us with the
networks:
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After the compression, the average fractions of overlap for Networks A’ and B’ are 0.1 and 0.17,
which is closer than those for the original Networks A and B. However, we note that the average
of fraction overlap, even with compression of the networks, is not a perfect metric of crosstalk.
We should note that, in this case, Networks B and B’ have higher average fractions of overlap
despite having a smaller number of unique I/O maps. While we find a general increase in average
fraction overlap with increasing I/O map diversity (e.g.Fig.2D in the main text), this correlation
is clearly not perfect, even after compression. Considerable future work will be clearly be
necessary to fully understand the relationship between network topology and function.

Networks C and D also have nodes that are compressible (green):
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We can clearly see that the average fractions of overlap for the compressed networks C’ and D’
are the same as they are the same network (0.667). The compression algorithm deals with cases
in which long, isolated cascades might result in spurious fraction overlap differences (as with
Networks C and D) while still preserving sufficient topological information to capture functional
differences (Networks A and B). As such, we applied this compression to all of the networks we
consider before calculating the fraction overlap.

The Complete KEGG Signaling Network

We compiled the complete KEGG signaling network from the contents of the KGML files of 29
canonical pathways found in the KEGG Pathways database [1] (Table 2). These pathways
included node entries such as:

<entry id =”6” name=”hsa :4790 hsa :5970” type=”gene ”
l i n k=”http ://www. kegg . jp /dbget−bin /www bget? hsa :4790+ hsa :5970”>
<graph i c s name=”NFKB1, EBP−1, KBF1, NF−kB1 , NF−kappa−B, NF−kappaB ,

NFKB−p105 , NFKB−p50 , NFkappaB , p105 , p50 . . . ”
f g c o l o r =”#000000” bgco lo r=”#BFFFBF”
type=”r e c t a n g l e ” x=”984” y=”311” width=”46” he ight =”17”/>

</entry>

where the ‘name’ attribute includes the KEGG entry for different isoforms of the same protein, in
this case for NFκB1 and NFκB3. Each of these node entries are separated so that each KEGG
entry becomes its own node, with each of these daughter nodes participating in the same
incoming and outgoing edges. Once the nodes and edges from each of the canonical pathways
were added, we collapsed the network by combining similar nodes. If two nodes had the same
incoming and outgoing edges, these nodes were then combined into a single node. This process
was done iteratively until there were no more nodes that could be combined.

For each of the nodes, we used the KEGG entries from each node to obtain the associated
UniProt and ENSEMBL accession numbers. These were used to look up the expression data for
the proteins included within each node from the Human Protein Atlas dataset [2]. The expression
of any node in each of the tissues is dependent upon the expression of the genes associated the
the node. If all of the associated genes are not expressed in a particular tissue, then the node is
counted as not being expressed. However, if any of the genes are expressed, then the node is
counted as being expressed in the tissue. This resulted in 84 expression vectors for the complete
KEGG signaling network, generating 84 ‘expressed subnetworks’, which represent the signaling
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Pathway URL

Rap1 http://www.kegg.jp/kegg-bin/show pathway?map=hsa04015
RAS http://www.kegg.jp/kegg-bin/show pathway?map=hsa04014

MAPK http://www.kegg.jp/kegg-bin/show pathway?map=hsa04010
ErbB http://www.kegg.jp/kegg-bin/show pathway?map=hsa04012
WNT http://www.kegg.jp/kegg-bin/show pathway?map=hsa04310

TGF-β http://www.kegg.jp/kegg-bin/show pathway?map=hsa04350
VEGF http://www.kegg.jp/kegg-bin/show pathway?map=hsa04370
TNF http://www.kegg.jp/kegg-bin/show pathway?map=hsa04668
HIF-1 http://www.kegg.jp/kegg-bin/show pathway?map=hsa04066
NFκB http://www.kegg.jp/kegg-bin/show pathway?map=hsa04064

Jak-STAT http://www.kegg.jp/kegg-bin/show pathway?map=hsa04630
FoxO http://www.kegg.jp/kegg-bin/show pathway?map=hsa04068

Calcium http://www.kegg.jp/kegg-bin/show pathway?map=hsa04020
PI3K - Akt http://www.kegg.jp/kegg-bin/show pathway?map=hsa04151

mTOR http://www.kegg.jp/kegg-bin/show pathway?map=hsa04150
Toll-like Receptor http://www.kegg.jp/kegg-bin/show pathway?map=hsa04620

NOD-like Receptor http://www.kegg.jp/kegg-bin/show pathway?map=hsa04621
T-cell receptor http://www.kegg.jp/kegg-bin/show pathway?map=hsa04660
B-cell Receptor http://www.kegg.jp/kegg-bin/show pathway?map=hsa04662

Fcε RI http://www.kegg.jp/kegg-bin/show pathway?map=hsa04664
Fcγ R http://www.kegg.jp/kegg-bin/show pathway?map=hsa04666

Chemokine http://www.kegg.jp/kegg-bin/show pathway?map=hsa04062
Insulin http://www.kegg.jp/kegg-bin/show pathway?map=hsa04910

Adipocytokine http://www.kegg.jp/kegg-bin/show pathway?map=hsa04920
GnRH http://www.kegg.jp/kegg-bin/show pathway?map=hsa04912

Prolactin http://www.kegg.jp/kegg-bin/show pathway?map=hsa04917
Estrogen http://www.kegg.jp/kegg-bin/show pathway?map=hsa04915
Oxytocin http://www.kegg.jp/kegg-bin/show pathway?map=hsa04921

Neurotrophin http://www.kegg.jp/kegg-bin/show pathway?map=hsa04722

Supplementary Table 2: The list of 29 canonical pathways in the KEGG Pathways database that were
compiled to create the complete signaling network
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network as it is expressed in each of the tissues. We then used the associated UniProt accession
numbers to potentially annotate a node as an input (One UniProt entry includes the keyword
‘Receptor’) or as an output (One UniProt entry includes the keyword ‘Transcription
regulation’) [3].

One of the metrics we use to compare subnetworks is the I/O map distance. To obtain the map
distance we run each network in a synchronous Boolean simulation for 10000 steps with a set of
N inputs active throughout the simulation. This is then done either for each of the inputs being
activated individually (Fig. 3C of the main text) or for 50 combinations of N inputs (Fig. 3D of
the main text). The activity of each output is averaged over the final 1000 steps to account for
any oscillations in activity. This results in a matrix where each row is the average activity for all
67 outputs in response to a combination of active inputs. These respective elements in each of the
matrices generated by the two subnetworks were then compared: the I/O map distance is the
number of elements in the matrices that do not match.
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