Supporting Information to accompany:

Behaviour of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation

Ariana Torres-Knoop^{*1}, Ali Poursaeidesfahani², Thijs J. H. Vlugt ² and David Dubbeldam¹

¹Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
²Delft University of Technology, Proicess and Energy Department, Leegwaterstraat 39, 2628CB Delft, The Netherlands

March 14, 2017

 $^{*}A. TorresKnoop@uva.nl$

Table S1: Variables/parameters definition

General parameters		
<i>p</i>	pressure of the system	
p_0	pressure of reference state (perfect gas)	
T^{0}	temperature	
k _P	Boltzmann constant	
ß	$J/k_{\infty}T$	
N	number of adsorbed molecules	
10	number of adsorbed molecules	
0	total energy of the system (nost and adsorbed molecules)	
ΔU	difference in the energy between the old and the new configuration	
V	volume	
R	gas constant $(8.314464919 \text{ J mol}^{-1} \text{ K}^{-1})$	
Λ	thermal de Broglie wavelength	
λ	CFCMC non-bonded interactions scaling parameter	
$u_{\rm LJ}\left(r ight)$	Lennard Jones (LJ)energy	
$u_{\rm Coul}\left(r\right)$	Coulombic energy	
ϵ	LJ strength parameter	
σ	LJ size parameter	
f	fugacity of the system	
11 ⁰	chemical notential of the reference state (ideal gas)	
PIG	dialectric constant in vacuum	
c0 a. a.	atomic charges	
q_i, q_j	atomic trialges	
$\Delta \lambda_{\rm max}$	maximum displacement of the neutriles in the edgewhent	
$\Delta x_{\rm max}$	maximum displacement of the particles in the adsorbent	
Langmur isotnerm parameters		
n	amount adsorbed (equilibrium loading)	
m	Langmuir isotherm model saturation loading	
c	Langmuir isotherm model parameter	
ν	Langmuir-Freundlich isotherm model exponent (heterogeneity factor)	
k_1, k_2, k_3, k_4	arbitrary constants in the temperature dependence of m and ν	
Α	constant in the temperature dependence of c (entropic factor)	
B	constant in the temperature dependance of c (enthalpy factor)	
m1, m2	dual-Langmuir saturation loading parameters	
c1, c2	dual-Langmuir parameters	
ν_1, ν_2	Langmuir-Freundlich isotherm model exponents	
Theoretical model		
φ	the total potential for N particles adsorbed	
$\stackrel{\tau}{r}$	interparticle distance (same for all neighboring particles)	
$\langle N \rangle$	average number of adsorbed particles	
(r)	average internaticle distance	
CFCMC derivation parameters		
/II \ automage enounce of a single value in the ange allocated		
$\langle U_g \rangle$	average energy of the best system	
$\langle O_h \rangle$	average energy of the nost system	
$\langle \cdots \rangle_{\mu}$	average in the grand-canonical ensemble	
(····) _{CFCMC}	average in the grand-canonical CFCMC ensemble	
$Q_{\rm CFCMC}$	partition function CFCMC-ensemble	
$U_{\rm CFCMC}$	total energy of the system (including the fractional particle) obtained using CFCMC algorithm	
$N_{\rm CFCMC}$	total number of particles (including the fractional particle) obtained using the CFCMC algorithm	
$U_{\rm int}$	total energy of the integer particles in CFCMC	
$U_{\rm frac}$	total energy of the fractional particle in CFCMC	
$U_{\rm total}$	total energy of the system (integer + fractional particles), same as U_{CFCMC} ??	
$N_{\rm int}$	total number of integer particles in CFCMC	
$\eta(\lambda)$	biasing in λ -space	
$\delta_{\lambda=0}$	Dirac delta at $\lambda = 0$	
	Thermodynamic parameters	
\overline{Q}	heat of adsorption	
$\Delta \bar{h}$	differential enthalpy of adsorption	
$\Delta h_{\rm ads}$	isosteric enthalpy of adsorption	
ΔH	enthalpy of adsorption	
ΔG	free energy between the fluid phase and the adsorbed phase	
ΔS	entropy of adsorption	
ΔH_{imm}	enthalpy changes associated with isothermal immersion	
ΔH_{\odot}	enthalpy changes associated with isothermal compression	
ΔS	entropy changes associated with isothermal immersion	
ΔS_{imm}	ontropy changes associated with isothermal compression	
$\Delta C_{\rm comp}$	free energy changes associated with isothermal immension	
ΔG_{imm}	free energy changes associated with isothermal millersion	
$\Delta G_{\rm comp}$	ree energy changes associated with isothermal compression	
$\Delta F_{\rm imm}$	nemnoitz iree energy changes associated with isothermal immersion	
$\Delta F_{\rm comp}$	nemnoitz iree energy changes associated with isothermal compression	
52	grand potential, free energy change associated with the isothermal immersion	
μ_s	chemical potential of the adsorbent in its clean state in vacuo (unadsorbed)	