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1 Optimal estimation with signal-dependent noise

Consider the situation where a number of stimulus features, xxx = (x1,x2, . . . ,xnx), activate a
population of receptors, sss = (s1,s2, . . . ,sns). We assume that the goal of sensory systems is to
estimate the stimulus features, x̂xxML, for which the probability of the received sensory input, sss,
is maximal. Mathematically, this means:

x̂xxML = argmax
x̂xx

log p(sss|x̂xx) (1)

We can find x̂xxML using a simple gradient-descent algorithm, so that each estimate is updated in
time according to:

∂ x̂i

∂ t
= η

∂ log p(sss|x̂xx)
∂ x̂i

, (2)

where η is a free parameter that determines how quickly estimates are updated. If p(sss|xxx) ∝

∏ j p(s j|xxx) this expression can be written:

∂ x̂i

∂ t
= η ∑

j

∂ log p(s j|x̂xx)
∂ x̂i

(3)

The dynamics of this algorithm depend on the generative model, p(s j|xxx), describing how
stimulus features in the world activate the sensory receptors. Here, we consider the case where
the variance of each sensory input, σ (xxx)2, is proportional to the mean, µ (xxx). The ratio between
the variance and mean, F = σ2

µ
, is called the Fano-factor. By chain rule, equation 3 can be

written:
∂ x̂i

∂ t
= η ∑

j

∂ µ j (x̂xx)
∂xi

∂ log p(s j|µ j (x̂xx) ,F)

∂ µ j (x̂xx)
. (4)

In the following sections we show that, for a large class of distributions with constant Fano-
factor, internal estimates are updated in time according to a function of the the ratio between
the received input, s j, and the expected input, µ j (x̂xx).

1.1 Poisson distribution

In the main text, we consider a Poisson noise, described by the probability distribution:

ppoiss (s|µ) =
1
s!

µ
se−µ . (5)

Note that for simplicity, we use simplified notation, where µ ≡ µ j (x̂xx) and s≡ s j.
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For a Poisson distribution, the gradient of the log-likelihood can be written:

∂ log ppoiss (s|µ)
∂ µ

= g
(

s
µ

)
, (6)

where g(x) = x−1. In other words, the gradient is equal to the ratio between the received input,
s, and the predicted input, µ , minus 1.

1.2 Negative binomial distribution

A generalization of the Poisson distribution, called the negative binomial distribution, allows
for Fano-factors greater than 1.The negative binomial distribution can be written in the form:

pneg−bin (s|µ) =
1
s!

Γ
(

µ

F−1 + s
)

Γ
(

µ

F−1

) 1

F
µ

F−1

(
F−1

F

)s

. (7)

When F → 1, this distribution converges to a Poisson distribution.
If F−1� µ the gradient of the log-likelihood is closely approximated by:

∂ log pneg−bin (s|µ)
∂ µ

≈ g
(

s
µ

)
+

1
µ

h
(

s
µ

)
, (8)

where g(x) and h(x) are the monotonically increasing functions: g(x)= 1
F−1 [ln(1+(F−1)x)− lnF ]

and h(x) = F−1
2F x. When F → 1, then h(x)→ 0 and g(x)→ x−1, so that equation 8 becomes

equivalent to equation 6, obtained with the Poisson distribution

1.3 Gaussian distribution with constant Fano-factor

We now consider a gaussian distribution, with variance equal to the mean:

p(s|µ) = 1√
2πµ

e−
(s−µ)2

2Fµ (9)

The gradient of the log-likelihood is:

∂ log p(s|µ)
∂ µ

= g
(

s
µ

)
− 1

2µ
(10)

where g(x) = 1
2F

(
x2−1

)
.

When µ is large, F ≈ 1 and x is close to 1, then equation 10 becomes equivalent to equa-
tion 6, obtained with the Poisson distribution.

1.4 Gamma distribution

Finally, we consider a gamma distribution, with variance equal to the mean:

p(s|µ) = 1
Γ(µ)

s
µ

F−1e−
s
F (11)

The gradient of the log-likelihood is:
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∂ log p(s|µ)
∂ µ

= w ji

[
g
(

s
µ

)
+

1
2µ

+C
]

(12)

where g(x) = 1
F logx and C = 1

F logF . As before, when µ is large, F ≈ 1 and x is close to 1,
then equation 12 becomes equivalent to equation 6, obtained with the Poisson distribution.

2 Correlated input noise

In the main text, we assumed that input noise correlations were negligible. To see how input
noise correlations could influence our results, we now consider the case where the feed-forward
input to the network is described by a Gaussian distribution, with signal-dependent covariance
matrix Σ(µ):

log p(sss|µµµ)≈−1
2
(sss−µµµ)T

Σ(µµµ)−1 (sss−µµµ)− 1
2

log |Σ(µµµ) |+ const. (13)

We consider a covariance matrix that comprises a signal-dependent part, D(µµµ), and a signal-
independent part, Q: Σ(µµµ) = D(µµµ)+αQ. The signal-dependent covariance, D(µµµ), is a diag-
onal matrix, with diagonal elements, di = 1/µi.

If noise correlations are small, the log-likelihood can be approximated by a first order Taylor
expansion around α = 0:

log p(sss|µµµ) ≈ −1
2

[
(sss−µµµ)T D(µµµ)−1 (sss−µµµ)+ log |D(µµµ) |

]
−α

1
2

[
(sss−µµµ)T D(µµµ)−1 QD(µµµ)−1 (sss−µµµ)+qqqT

µµµ

]
(14)

where qqq is a vector consisting of the diagonal elements of Q.
The derivative is thus:

∂ log p(sss|µµµ)
∂ µi

=
1
2
(
z2

i −1
)
− 1

2µi

+α

(
1
µi

ziqqqT
i (zzz−1)− 1

2
qii

)
+O

(
α

2) (15)

where zzz is a vector denoting the divisively normalized input (zi = si/µi), qqqi is the ith column of
element of Q, and qii is the ith diagonal element.

Note that the first line in equation 15 is identical to the case where there are no noise corre-
lations (equation 10). The next line consists of a ‘correction’ term due to the noise correlations.
In common with the first term, this term also depends on the ratio between the predicted and
received feed-forward inputs, si/µi.

Thus, while input noise correlations result in quantitative changes to the steady state so-
lution, our main result, that each feed-forward input needs to be divisively normalized by its
top-down prediction, is unchanged.

3 Two-layer neural network

Here, we consider a hierarchical model in which high-level features, yyy =
(
y1,y2, . . . ,yny

)
,

generate low-level features, xxx = (x1,x2, . . . ,xnx), which in turn generate a sensory input, sss =
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(
s1,s2, . . . ,sny

)
. For simplicity, we assume that stimulus features combine linearly, so that the

mean predicted values of xi and s j are given by:

〈s j (xxx)〉 = w0 +
nx

∑
k=1

w jkxk (16)

〈x j (yyy)〉 = v0 +
ny

∑
k=1

v jkyk, (17)

We assume that the goal of the neural network is to find maximum likelihood estimates of x̂xx
and ŷyy:

{x̂xxML, ŷyyML} = max
x̂xx,ŷyy

log p(sss|x̂xx, ŷyy)

= max
x̂xx,ŷyy

[log p(sss|x̂xx)+ log p(x̂xx|ŷyy)] (18)

If p(xxx|yyy) ∝ ∏ j p(x j|yyy), and p(sss|xxx) ∝ ∏ j p(s j|yyy), then x̂xxML and ŷyyML can be obtained numeri-
cally, by applying the following updates1:

∂ x̂i

∂ t
= η

(
∂ log p(x̂xx|ŷyy)

∂ x̂i
+

ns

∑
j=1

∂ log p(s j|x̂xx)
∂ x̂i

)
(19)

∂ ŷi

∂ t
= η

nx

∑
j=1

∂ log p(x̂ j|ŷyy)
∂ ŷi

(20)

If features, xxx, are generated via a Poisson process (i.e. p(x j|yyy) ∝ 〈x j (yyy)〉x j e〈x j(yyy)〉x j ), then
equation 20 can be written:

∂ ŷi

∂ t
= η

nx

∑
j=1

w ji

(
x̂ j

〈x j (ŷyy)〉
−1
)

(21)

which is identical to the gradient descent algorithm that we obtained with the one-layer network.
If sensory inputs, sss, are generated via a Poisson process (i.e. p(s j|xxx) ∝ 〈s j (xxx)〉s j e〈s j(xxx)〉s j ),

then equation 19 can be written:

∂ x̂i

∂ t
= ∑

j
w ji

(
s j

〈s j (x̂xx)〉
−1
)
+

(
x̂i

〈xi (yyy)〉
−1
)

(22)

The first term in this expression is the same as in the one-layer network. The second-term is
the fractional prediction error between the current estimate of x̂i, and the top-down prediction
〈xi (yyy)〉.

3.1 Neural implementation

The single-layer network described in the main text can easily be extended to a two-layer net-
work, to implement equations 21 & 22. As with the single-layer network, each layer consists
of two populations of neurons: excitatory neurons that encode the ratio between the received
and predicted input ( s j

s j(x̂xx)
and x̂ j

x j(ŷyy)
), and inhibitory that encode the estimated stimulus features,

(x̂i and ŷi).

1Note that, strictly speaking xi discrete, and thus the gradient ∂ log p(x̂ j |ŷyy)
∂ ŷi

is undefined. However, when xi is large,
it can be treated as a continuous variable with a negligible effect on inference.
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The responses of neurons in the second layer are described by the following differential
equations:

τexc
drexc

j2

dt
= I j−

(
v0 +∑

k
v jkrinh

k2

)
rexc

j2 (23)

τinh
drinh

i2
dt

= ∑
j

v ji
(
rexc

j2 −1
)
, (24)

where I j represents the input to the jth excitatory neuron in the 2nd-layer, which evolves in time
according to equation 26 (so that I j = rinh

j1 ). The response of each neuron is labelled with two
indices: for example, rexc

jk corresponds to the response of the jth excitatory neuron in the kth

layer of the network.
The responses of neurons in the first layer of the network are described by the following

differential equations:

τexc
drexc

j1

dt
= s j−

(
w0 +∑

k
w jkrinh

k1

)
rexc

j1 (25)

τinh
drinh

i1
dt

= ∑
j

w ji
(
rexc

j1 −1
)
− (rexc

i2 −1) . (26)

These equations are very similar to the one layer network, described in the main text (main
text, equations 5 & 6), with the addition of a second term in equation 26, that denotes feed-back
from downstream neurons.

4 Analytical expression for neural firing rates

In this section, we show that the canonical normalization model of Heeger et al. emerges as a
special case of our model.

In the steady state, the response of the jth excitatory neuron is given by:

rexc
j =

s j

w0 +∑w jkrinh
k

. (27)

Substituting this into the equation 6 in the main text, and setting ∂ rint
i

∂ t = 0, we obtain:

0 = ∑
j

w ji

(
s j

w0 +∑k w jkrinh
k
−1
)
. (28)

In the general case where there are many excitatory and inhibitory neurons, equation 28
cannot be solved exactly. However, in the special case where, for all k 6= i, either ∑ j w jiw jks j = 0
or rint

k = 0, equation 28 simplifies to:

0 = ∑
j

w ji

(
s j

w0 +w jirinh
l
−1
)
. (29)

If w0� w jirinh
l , the above equation can be solved, to give,

rinh
i ≈

∑ j (s j−w0)

∑ j w ji
. (30)
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Substituting this expression for rinh
i back into equation 27, we obtain a closed-form expression

for the excitatory neuron response:

rexc
j =

s j

|w̃ ji ∑ j s j|
, (31)

where w̃ ji =
1

∑ j w jl
w jl , |x|= max(x,w0), and i = argmaxk ∑ j s j log

(
w̃ jk
)
.

Equation 31 is of a very similar form to the canonical normalization model proposed by
Heeger et al., in which neural responses are described by the equation:

rexc
j = γ

In
j

σn
j +∑ j In

j
, (32)

where I j is the jthinput to the network, and γ , n & σ are free parameters that determine the
shape of the contrast response curve.

One can show that in order for neural responses to be well approximated by equation 31,
the stimulus should not drive the inputs to more than one competing interneuron too strongly.
Mathematically, we require that for all k 6= i,

∑
j

w̃ jk

w̃ ji
s̃ j < 1 or ∑

j
w̃ jkw̃ jis j = 0, (33)

where s̃ j =
1

∑ j s j
s j and w̃ ji =

1
∑ j w ji

w ji.
Supplementary figure 1 shows the response of a single excitatory neuron versus the strength

of input to the network, with the excitatory response computed numerically (solid lines) or using
equation 31 (see figure legend for simulation details). As can be seen in this figure, equation 31
provides a good description of the neuron’s response.
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Figure 1: Comparison between simulation and analytic results. The network consists of 30
inhibitory and 30 excitatory neurons. Connection strengths between inhibitory and excitatory
neurons are chosen from a uniform distribution between 0 and 40. In the ‘no mask’ condition
one of the sensory inputs varies between 10−1Hz and 104Hz, while all the other inputs are set
to the background input of w0 = 1Hz. In the ‘mask condition’ all sensory inputs are activated
at 10Hz. Solid lines plot the steady-state response of the maximally driven excitatory neuron,
in the ‘no mask’ and ‘mask’ conditions. Dashed curves show the response of the neuron,
approximated using supplementary equation 31.

5 Comparison to a global divisive inhibition model

In figures 2-5 of the main text, we compared the divisive-input model (predicted by optimal
estimation with signal-dependent noise) to an LN model, where responses are obtained by
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inhibitory responsebFigure 2: Predictions of global divisive inhibition model. The figure is the same as figure 2c-d
and in the main text, but with a global divisive inhibition model (with responses described by
supplementary equation 34).
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Figure 3: Effect of varying exicitatory/inhibitory timescales. The figure is the same to figure
7a-b in the main text, with the exception that the timescale of inhibition has been increased by
a factor of 40, relative to excitation.

linearly integration of inputs followed by non-linear rescaling of responses. This LN model is
a simple generalisaion of a subtractive inhibition model (predicted by optimal estimation with
gaussian noise), which predicts linear responses. It is straight-forward to show that such an LN
model is incapable of producing contextual tuning curve shifts, regardless of the form of the
non-linearity.

In addition, we compared our model to a global-divisive model, with responses were de-
scribed by the following equation:

ri =
∑ j U jis j

∑Vjis j +C
(34)

where U ji and Vji are positive input and divisive filters, and | · | is a rectifying non-linearity.
As with the LN model shown in the main text, linear filters, U ji and Vji, were learned in each
case so as to minimise the mean squared difference between the responses obtained with the
input-targeted inhibition model in the main text and the above global divisive inhibition model.

Supplementary figures 2a & b show the responses obtained with global divisive inhibition,
with paramaters trained to reproduce the tuning curves shown in figure 2c-d in the main text.
As can be seen, global divisive inhibition was unable to produce contextual shifts in tuning
curves.
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6 Temporal dynamics of neural responses

In figure 7 we plotted the temporal response profiles of excitatory and inhibitory neurons in
our model, in response to a constant input. To investigate how our results depended on the
relative timescale of excitation and inhibition, we ran an additional simulations with the relative
timescale of excitation increased by a factor of 40, relative to the timescale of inhibibion (i.e.
determined ratio between a and b in equations 5-6 in the main text; Supp. fig. 3)

Increasing the relative speed of excitation resulted in more pronounced input-dependent
variations in the time that excitory responses took to reach their peak (Supp. fig. 3a). Also,
inhibitory responses were quicker to arrive at steady-state, and in some cases showed a transient
overshoot (Supp fig 3b). Overall, however we observed qualitatively similar results to figure
7a-b, in the main text.
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