Supplemental Materials Molecular Biology of the Cell

Guerriero et al.

Supplemental Figure 1. Homology models of Ste6p TMH1 and 2 and NBD2

A) Homology model of Ste6p NBD2, a.a. 1047-1290, using mouse p-glycoprotein, NBD2, 4M1M. The 42 amino acid truncation, a.a. 1249-1290, is colored white for the truncated view (bottom). B)Superimposition of Ste6p TMH1 and 2 (highlighted yellow) on the structure of mouse p-glycoprotein (green), 3G5U, via a homology model. C) Magnified view of

Ste6p helix 1 and 2 (yellow), whereTMH1, a.a. 21-48 and TMH2, 73-99 are highlighted in green, and theside chains are displayed. The image was renderedusing visual molecular dynamics (VMD).

A) Yeast deleted for the drug efflux pump, Pdr5p, were transformed with a Chimera A* expression vector in which protein production is under the control of the PGK promoter. Yeast were then subjected to a cycloheximide chase analysis following a 20 min preincubation with DMSO (closed circles) or 100 μ M MG132 (open circles) for the indicated times. Samples were processed as described in the Materials and Methods. B) Degradation of Chimera A* under the control of the PGK promoter was examined in *SSA1* and *ssa1-45* yeast at 37 °C following a 20 min preincubation at that temperature. Data represent the means from at least 3 independent experiments -/+ SE. *, p<0.04 for *pdr5* and p<0.02 for *ssa1-45*.

Supplemental Table 1 Computational values

Parameter	Value
force field	PARSE
counter ions	±1 e , 0.1 M, 2.0 Å
temperature	298.15 K
grid dimensions	129×129×129
coarse grid size	300×300×300 Å ³
fine grid size	50×50×50 ų
protein dielectric	2
membrane dielectric	2
headgroup dielectric	80
solvent dielectric	80
hydrophobic thickness	28.5 Å

headgroup thickness	8.0 Å	
grid center	origin	
solution method	npbe	
boundary condition	zero	
charge model	spl2	
surface model	mol	
spline width	0.3 Å	
solvent probe radius	1.4 Å	
surface sphere density	10 Å ⁻²	
nonpolar surface tension	23 cal/mol/Å ²	

Supplemental Table 2 Computed free energies for insertion for Chimera A* variants

TMH1 sequence	% retrotranslocation	Phenomenological scale	Physics-based model	Physics-based model (zeroed)
RNDYRLLMIMIIGTVATGLVPAITSILT	35.6	0.31	-48.6	0
GGPGAAAALALALALALAAAAAGGPG	36.4	-0.19	-46.1	2.5
GGPGNAAAALLLLLLLLLLAAANGGPG	31.1	-1.07	-51.3	-2.7
RNDYRLLMIMIIALVALALVLAITSILT	21.9	-4.38	-65.4	-16.8
GGPGLLLLLLLLLLLLLLLGGPG	22.3	-7.15	-62.0	-13.4

* All energies are reported as kcal/mol

Supplemental Table 3Yeast strains used in this study

Strain	Genotype	Reference/Source
BY4742	2 MATα, his3 Δ 1, leu2 Δ 0, lys2 Δ 0 ura3 Δ 3	
pdr5∆	MATα, his3Δ1, leu2Δ0, ura3Δ3 pdr5Δ::KanMX	(Winzeler <i>et al.</i> , 1999)
pep4∆	MATα, his3Δ1, leu2Δ0, ura3Δ3 pep4Δ::KanMX	(Latterich <i>et al.</i> , 1995)
pdr5 Δ pep4 Δ	MATα, met15Δ0, his3Δ1, leu2Δ0, ura3Δ3 pdr5Δ::KanMX, pep4Δ::KanMX	This lab
SSA1	MATα, his3-11,15, leu2-3,112, ura3-52. trp1- Δ1, lys2, ssa2- 1(LEU2), ssa3-1(TRP1), ssa4- 2(LYS2)	(Becker <i>et al.</i> , 1996)
ssa1-45	MATα, his3-11,15, leu2-3,112, ura3-52. trp1- Δ1, lys2, ssa1-45, ssa2-1(LEU2), ssa3- 1(TRP1), ssa4-2(LYS2)	(Becker <i>et al.</i> , 1996)
KAR2	NR2MATa ura3-52, leu2-3,112, ade2-101r2-1MATa, kar2-1, ura3-52, leu2-3,112, ade2-101J1 YDJ1MATα, ade2, his3, leu2, ura3, trp1	
kar2-1		
HLJ1 YDJ1		
hlj1∆ydj1-151	MATα, ade2, his3, leu2 ,ura3, trp1, can1-100, ydj1-2::HIS3 ydj1-151::LEU2 hlj1::TRP1	(Youker <i>et al.</i> , 2004)
DOA10HRD1	MATa, his3-∆200, leu2-3,112, ura3-52, lys2- 801, trp1-1, gal2	(Huyer <i>et al.</i> , 2004)
doa10∆	MATa, his3-Δ200, leu2-3,112, ura3-52, lys2- 801, trp1-1, gal2, doa10Δ::HIS3	(Huyer <i>et al.</i> , 2004)
hrd1∆	MATa, his3-Δ200, leu2-3,112, ura3-52, lys2- 801, trp1-1, gal2, hrd1Δ::LEU2	(Huyer <i>et al.</i> , 2004)
doa10∆hrd1∆	MATa, his3-Δ200, leu2-3,112, ura3-52, lys2- 801, trp1-1, gal2 doa10Δ::HIS3, hrd1Δ::LEU2	(Huyer <i>et al.</i> , 2004)
cdc48-2	Back-crossed 3X to BY4742	(Moir <i>et al.</i> , 1982)

Supplemental Table 4 Primers and Plasmids used in this study

Primer/Plas mid	Sequence/Genotype	Reference
Primer		
oKN53	GCGCCGCGGTTATTCACTATGCGTTAT	This study
oKN54	GATCATCAAGGAAGT	This study
oKN57	GATGTGCATCCAACTTGTTAG	This study
oKN58	CCCGATATAAGTAGAGGCCAA	This study
oKN85	CATACCCGATATAAGTAGA	This study
oCG06	AGGCAAAATTAAAATAGA	This study
oCG07	TCTATTTTAATTTTGCCT	This study
oCG12	CCCCAACTAGTACAGAGGTCAGGTGGTCCAGGTGCTGCTGCTGCT TTGGCTTTGGCTTTGGCTTTGGCTTTGGCTTTGGCTGCTG	This study
oCG13	TATATCGGGTATGATGTGCATACCACCTGGACCAGCAGCAGCAGC CAAAGCCAAAGCCAAAGCCAAAGCCAAAGCCAAAGCAGCA	This study
oCG15	CCCCAACTAGTACAGAGGTCAATGCACATCATACCCGATATA	This study
oCG16	TATATCGGGTATGATGTGCATTGACCTCTGTACTAGTTGGGG	This study
oCG26	ATGGTTATAACGCATAGTGAACAAATGATGAGGTCTTGTAACTCGAT TGCAGTTCTTAAAGATGGTAAAGTGGTTGAGCGAGGTAACTTCGAC ACTTTATATAATAATCGCGGGGGAATTATTCCAAATTGTTTCCAACCA AAGCAGTTAACCGCGGTGGAGCTCCAAT	This study
oCG27	ATTGGAGCTCCACCGCGGTTAACTGCTTTGGTTGGAAACAATTTGG AATAATTCCCCGCGATTATTATATAAAGTGTCGAAGTTACCTCGCTC AACCACTTTACCATCTTTAAGAACTGCAATCGAGTTACAAGACCTCA TCATTTGTTCACTATGCGTTATAACCAT	This study
oCG37	TACGTGAACATACGGAATGACTCTATCCTGACGGGCAGAGTG	This study
oCG38	CACTCTGCCCGTCAGGATAGAGTCATTCCGTATGTTCACGTA	This study
oCG39	TACGTGAACATACGGAATGACGGTGGTCCAGGTGCTGCTGCTGCT TTGGCTTTGGCTTTGGCTTTGGCTTTGGCTGCTGCTGCTG	This study

	GTCCAGGTGGTTCTATCCTGACGGGCAGAGTG	
	CACTCTGCCCGTCAGGATAGAACCACCTGGACCAGCAGCAGCAGC	
oCG40	CAAAGCCAAAGCCAAAGCCAAAGCCAAAGCCAAAGCAGCA	This study
	ACCTGGACCACCGTCATTCCGTATGTTCACGTA	-
	TACGTGAACATACGGAATGACGGTGGTCCAGGTAATGCTGCTGCT	
oCG77	GCTTTATTGTTATTGTTATTGTTATTGGCTGCTGCTAATGGT	This study
	CCAGGTGGTTCTATCCTGACGGGCAGAGTG	
	CACTCTGCCCGTCAGGATAGAACCACCTGGACCATTAGCAGCAGC	
oCG78	CAATAACAATAACAATAACAATAACAATAAAGCAGCAGCAGCATTAC	This study
	CTGGACCACCGTCATTCCGTATGTTCACGTA	
0.070	TACGTGAACATACGGAATGACTACAGGCTGTTAATGATAATGATAAT	-
oCG79	AGCTTTGGTGGCATTAGCTCTAGTGTTAGCAATTACTTCTATCCTGA CGGGCAGAGTG	This study
	CACTCTGCCCGTCAGGATAGAAGTAATTGCTAACACTAGAGCTAAT	
oCG80	GCCACCAAAGCTATTATCATTATCATTAACAGCCTGTAGTCATTCCG	This study
	TATGTTCACGTA	,
	TACGTGAACATACGGAATGACGGTGGTCCAGGTTTATTGTTATTGTT	
oCG81	ATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTAGGTCCA	This study
	GGTGGTTCTATCCTGACGGGCAGAGTG	
	CACTCTGCCCGTCAGGATAGAACCACCTGGACCTAACAATAACAAT	
oCG82	AACAATAACAATAACAATAACAATAACAATAACAATAACAATAACAATAAACCT	This study
	GGACCACCGTCATTCCGTATGTTCACGTA	
Plasmid		
pSM1011	2µ URA3 P-PGK ste6-166-3HA	(Huyer <i>et al.</i> ,
рымтатт		2004)
pKN05	2µ URA3 ste6-166tm1-2NBD2-3HA	This study
pKN31	2µ HIS3 Pcup1-mycUb-Tcyc1	(Nakatsukasa
•		et al., 2008)
pCG11	2µ URA3 ste6-166tm1-2(delete)NBD2-3HA	This study
pCG12	2μ URA3 <i>STE6</i> tm1-2(ΔG=0.31)NBD2-3HA	This study
pCG19	2μ URA3 <i>STE6</i> tm1-2(ΔG=0.31)NBD2-3HA	This study
pCG27	CENADH <i>ste6-166</i> tm1-2(ΔG=0.31)NBD2-3HA	This study
pCG29	CENADH <i>STE6</i> tm1-2(ΔG=0.31)NBD2-3HA	This study
1		1

pCG32	2μ URA3 <i>STE6</i> tm1(delete)-2(ΔG=0.31)NBD2-3HA	This study
pCG45	2μ URA3 <i>STE6</i> tm1(ΔG=-0.19)-2(ΔG=0.063)NBD2-3HA	This study
pCG78	2μ URA3 <i>STE6</i> tm1(ΔG=-1.07)-2(ΔG=0.063)NBD2-3HA	This study
pCG80	2μ URA3 <i>STE6</i> tm1(ΔG=-4.38)-2(ΔG=0.063)NBD2-3HA	This study
pCG82	2μ URA3 <i>STE6</i> tm1(ΔG=-7.15)-2(ΔG=0.063)NBD2-3HA	This study

>Chimera N*

MNFLSFKTTKHYHIFRYVNIRNDYRLLMIMIIGTVATGLVPAITSILTGRVFDLLSVFVANGSHQGLDLGRIFYPYDVPDYAGYPYDVP DYAGSYPYDVPDYAAQCGPDPQLVQRSMAVMALGAASVPVMWLSLTSWMHIPDISRGQRAASWIYRILDEKHNTLEVENNNARTVGIAG HTYHGKEKKPIVSIQNLTFAYPSAPTAFVYKNMNFDMFCGQTLGIIGESGTGKSTLVLLLTKLYNCEVGKIKIDGTDVNDWNLTSLRKE ISVVEQKPLLFNGTIRDNLTYGLQDEILEIEMYDALKYVGIHDFVISSPQGLDTRIDTTLLSGGQAQRLCIARALLRKSKILILDECTS ALDSVSSSIINEIVKKGPPALLTMVITHSE

>Chimera A*_{AG=0.31}

MNFLSFKTTKHYHIFRYVNIRNDYRLLMIMIIGTVATGLVPAITSILTGRVFDLLSVFVANGSHQGLDLGRIFYPYDVPDYAGYPYDVP DYAGSYPYDVPDYAAQCGPDPQLVQRSGGPGAAAALALALALALALAAAAGPGGMHIIPDISRGQRAASWIYRILDEKHNTLEVENNNA RTVGIAGHTYHGKEKKPIVSIQNLTFAYPSAPTAFVYKNMNFDMFCGQTLGIIGESGTGKSTLVLLLTKLYNCEVGKIKIDGTDVNDWN LTSLRKEISVVEQKPLLFNGTIRDNLTYGLQDEILEIEMYDALKYVGIHDFVISSPQGLDTRIDTTLLSGGQAQRLCIARALLRKSKIL ILDECTSALDSVSSSIINEIVKKGPPALLTMVITHSE

>Chimera $A^*_{\Delta G=-0.19}$

MNFLSFKTTKHYHIFRYVNIRNDGGPGAAAALALALALALALALAAAAGPGGSILTGRVFDLLSVFVANGSHQGLDLGRIFYPYDVPDYAG YPYDVPDYAGSYPYDVPDYAAQCGPDPQLVQRSGGPGAAAALALALALALALALAAAAGPGGMHIIPDISRGQRAASWIYRILDEKHNTLE VENNNARTVGIAGHTYHGKEKKPIVSIQNLTFAYPSAPTAFVYKNMNFDMFCGQTLGIIGESGTGKSTLVLLLTKLYNCEVGKIKIDGT DVNDWNLTSLRKEISVVEQKPLLFNGTIRDNLTYGLQDEILEIEMYDALKYVGIHDFVISSPQGLDTRIDTTLLSGGQAQRLCIARALL RKSKILILDECTSALDSVSSSIINEIVKKGPPALLTMVITHSE

>Chimera $A*_{\Delta G=-1.07}$

MNFLSFKTTKHYHIFRYVNIRNDGGPGNAAAALLLLLLLLLLAAANGPGGSILTGRVFDLLSVFVANGSHQGLDLGRIFYPYDVPDYAG YPYDVPDYAGSYPYDVPDYAAQCGPDPQLVQRSGGPGAAAALALALALALALALAAAAGPGGMHIIPDISRGQRAASWIYRILDEKHNTLE VENNNARTVGIAGHTYHGKEKKPIVSIQNLTFAYPSAPTAFVYKNMNFDMFCGQTLGIIGESGTGKSTLVLLLTKLYNCEVGKIKIDGT DVNDWNLTSLRKEISVVEQKPLLFNGTIRDNLTYGLQDEILEIEMYDALKYVGIHDFVISSPQGLDTRIDTTLLSGGQAQRLCIARALL RKSKILILDECTSALDSVSSSIINEIVKKGPPALLTMVITHSE

>Chimera $A*_{\Delta G=-4.38}$

MNFLSFKTTKHYHIFRYVNIRNDYRLLMIMIIALVALALVLAITSILTGRVFDLLSVFVANGSHQGLDLGRIFYPYDVPDYAGYPYDVP DYAGSYPYDVPDYAAQCGPDPQLVQRSGGPGAAAALALALALALALAAAAGPGGMHIIPDISRGQRAASWIYRILDEKHNTLEVENNNA RTVGIAGHTYHGKEKKPIVSIQNLTFAYPSAPTAFVYKNMNFDMFCGQTLGIIGESGTGKSTLVLLLTKLYNCEVGKIKIDGTDVNDWN LTSLRKEISVVEQKPLLFNGTIRDNLTYGLQDEILEIEMYDALKYVGIHDFVISSPQGLDTRIDTTLLSGGQAQRLCIARALLRKSKIL ILDECTSALDSVSSSIINEIVKKGPPALLTMVITHSE

>Chimera A*_{AG=-7.15}

MNFLSFKTTKHYHIFRYVNIRNDGGPGLLLLLLLLLLLLLLLLLLLGPGGILTGRVFDLLSVFVANGSHQGLDLGRIFYPYDVPDYAGY PYDVPDYAGSYPYDVPDYAAQCGPDPQLVQRSGGPGAAAALALALALALALALAAAAGPGGMHIIPDISRGQRAASWIYRILDEKHNTLEV ENNNARTVGIAGHTYHGKEKKPIVSIQNLTFAYPSAPTAFVYKNMNFDMFCGQTLGIIGESGTGKSTLVLLLTKLYNCEVGKIKIDGTD VNDWNLTSLRKEISVVEQKPLLFNGTIRDNLTYGLQDEILEIEMYDALKYVGIHDFVISSPQGLDTRIDTTLLSGGQAQRLCIARALLR KSKILILDECTSALDSVSSSIINEIVKKGPPALLTMVITHSE

>Chimera $A_{\Delta G=0.31}$

MNFLSFKTTKHYHIFRYVNIRNDYRLLMIMIIGTVATGLVPAITSILTGRVFDLLSVFVANGSHQGLDLGRIFYPYDVPDYAGYPYDVP DYAGSYPYDVPDYAAQCGPDPQLVQRSGGPGAAAALALALALALALAAAAGPGGMHIIPDISRGQRAASWIYRILDEKHNTLEVENNNA RTVGIAGHTYHGKEKKPIVSIQNLTFAYPSAPTAFVYKNMNFDMFCGQTLGIIGESGTGKSTLVLLLTKLYNCEVGKIKIDGTDVNDWN LTSLRKEISVVEQKPLLFNGTIRDNLTYGLQDEILEIEMYDALKYVGIHDFVISSPQGLDTRIDTTLLSGGQAQRLCIARALLRKSKIL ILDECTSALDSVSSSIINEIVKKGPPALLTMVITHSEQMMRSCNSIAVLKDGKVVERGNFDTLYNNRGELFQIVSNQSS

>pSM1911 Ste6p*

MNFLSFKTTKHYHIFRYVNIRNDYRLLMIMIIGTVATGLVPAITSILTGRVFDLLSVFVANGSHQGLDLGRIFYPYDVPDYAGYPYDVP DYAGSYPYDVPDYAAQCGPDPQLVQRSMAVMALGAASVPVMWLSLTSWMHIGERQGFRIRSQILEAYLEEKPMEWYDNNEKLLGDFTQI NRCVEELRSSSAEASAITFQNLVAICALLGTSFYYSWSLTLIILCSSPIITFFAVVFSRMIHVYSEKENSETSKAAQLLTWSMNAAQLV RLYCTQRLERKKFKEIILNCNTFFIKSCFFVAANAGILRFLTLTMFVQGFWFGSAMIKKGKLNINDVITCFHSCIMLGSTLNNTLHQIV VLQKGGVAMEKIMTLLKDGSKRNPLNKTVAHQFPLDYATSDLTFANVSFSYPSRPSEAVLKNVSLNFSAGQFTFIVGKSGSGKSTLSNL LLRFYDGYNGSISINGHNIQTIDQKLLIENITVVEQRCTLFNDTLRKNILLGSTDSVRNADCSTNENRHLIKDACQMALLDRFILDLPD GLETLIGTGGVTLSGGQQQRVAIARAFIRDTPILFLDEAVSALDIVHRNLLMKAIRHWRKGKTTIILTHELSQIESDDYLYLMKEGEVV ESGTQSELLADPTTTFSTWYHLQNDYSDAKTIVDTETEEKSIHTVESFNSQLETPKLGSCLSNLGYDETDQLSFYEAIYQKRSNVRTRR VKVEEENIGYALKQQKNTESSTGPQLLSIIQIIKRMIKSIRYKKILILGLLCSLIAGATNPVFSYTFSFLLEGIVPSTDGKTGSSHYLA KWSLLVLGVAAADGIFNFAKGFLLDCCSEYWVMDLRNEVMEKLTRKNMDWFSGENNKASEISALVLNDLRDLRSLVSEFLSAMTSFVTV STIGLIWALVSGWKLSLVCISMFPLIIIFSAIYGGILQKCETDYKTSVAQLENCLYQIVTNIKTIKCLQAEFHFQLTYHDLKIKMQQIA SKRAIATGFGISMTNMIVMCIQAIIYYYGLKLVMIHEYTSKEMFTTFTLLLFTIMSCTSLVSQIPDISRGQRAASWIYRILDEKHNTLE VENNNARTVGIAGHTYHGKEKKPIVSIQNLTFAYPSAPTAFVYKNMNFDMFCGQTLGIIGESGTGKSTLVLLLTKLYNCEVGKIKIDGT DVNDWNLTSLRKEISVVEQKPLLFNGTIRDNLTYGLQDEILEIEMYDALKYVGIHDFVISSPQGLDTRIDTTLLSGGQAQRLCIARALL RKSKILILDECTSALDSVSSSIINEIVKKGPPALLTMVITHSE

Supplemental References

Becker, J., Walter, W., Yan, W., and Craig, E.A. (1996). Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol Cell Biol *16*, 4378-4386.

Brodsky, J.L., Werner, E.D., Dubas, M.E., Goeckeler, J.L., Kruse, K.B., and McCracken, A.A. (1999). The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. Journal of Biological Chemistry *274*, 3453-3460.

Huyer, G., Piluek, W.F., Fansler, Z., Kreft, S.G., Hochstrasser, M., Brodsky, J.L., and Michaelis, S. (2004). Distinct Machinery Is Required in Saccharomyces cerevisiae for the Endoplasmic Reticulum-associated Degradation of a Multispanning Membrane Protein and a Soluble Luminal Protein. Journal of Biological Chemistry *279*, 38369-38378.

Latterich, M., Frohlich, K.U., and Schekman, R. (1995). Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell *82*, 885-893.

Moir, D., Stewart, S.E., Osmond, B.C., and Botstein, D. (1982). COLD-SENSITIVE CELL-DIVISION-CYCLE MUTANTS OF YEAST: ISOLATION, PROPERTIES, AND PSEUDOREVERSION STUDIES. Genetics *100*, 547-563.

Nakatsukasa, K., Huyer, G., Michaelis, S., and Brodsky, J.L. (2008). Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell *132*, 101-112.

Sanders, S.L., Whitfield, K.M., Vogel, J.P., Rose, M.D., and Schekman, R.W. (1992). Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell *69*, 353-365.

Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., Chu, A.M., Connelly, C., Davis, K., Dietrich, F., Dow, S.W., El Bakkoury, M., Foury, F., Friend, S.H., Gentalen, E., Giaever, G., Hegemann, J.H., Jones, T., Laub, M., Liao, H., Liebundguth, N., Lockhart, D.J., Lucau-Danila, A., Lussier, M., M'Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebischung, C., Revuelta, J.L., Riles, L., Roberts, C.J., Ross-MacDonald, P., Scherens, B., Snyder, M., Sookhai-Mahadeo, S., Storms, R.K., Veronneau, S., Voet, M., Volckaert, G., Ward, T.R., Wysocki, R., Yen, G.S., Yu, K., Zimmermann, K., Philippsen, P., Johnston, M., and Davis, R.W. (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science *285*, 901-906.

Youker, R.T., Walsh, P., Beilharz, T., Lithgow, T., and Brodsky, J.L. (2004). Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol Biol Cell 15, 4787-4797.