
ONLINE SUPPLEMENT 

 

1. Path model equations for heritability 

 

 Equation S1 below is used to calculate the heritability of trait one, or objective BMI, in 

all of our bivariate models: 
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 Equation S2 below is used to calculate the heritability of trait 2, or perceived weight 

status, in all of our bivariate models: 
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2. Robustness check for calculating genetic variance unique to perceived weight status 

 

 Another way to determine the residual genetic variance unique to perceived weight status 

(and thus independent of objective BMI) is to residualize the perceived weight status phenotype 

out of the objective BMI phenotype and therefore determine the univariate heritability of those 

residual values. In Table S1 below, we use only monozygotic and same-sex dizygotic twins to 

perform this robustness check. As can be seen in this table, our estimates of this residual 

phenotype are very similar to those calculated in the full Cholesky model (Table 3). 

 

  



Table S1 

Wave 1-4 univariate twin AE parameter estimates for heritability of perceived weight status, 

independent of objective BMI. Fit statistics and 95% confidence intervals for heritability 

estimates included. p > 0.05 indicates ability to drop C parameter from model. 
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Wave 1 0.23 0.77 0.12 0.33 1811.52 0.6 

       Wave 2 0.21 0.8 0.09 0.32 1547.4 0.34 

       Wave 3 0.28 0.72 0.14 0.4 1287.01 1 

       Wave 4 0.25 0.75 0.12 0.36 1452.55 1 

 

  



3. Testing for qualitative and quantitative sex differences in univariate models 

 

 We first formally test for qualitative sex-limitation in our univariate models, or the 

possibility that different genetic influences matter for men and women. (Because these are 

univariate tests, no a21 or e21 paths exist in these models.) To perform this test, we fix the 

correlation between genetic factors for opposite sex DZ twins to be equal to those of same-sex 

DZ twins, and we then compare the 𝜒2
 statistic of this fixed model to that of a model where we 

freely estimate this correlation. As shown by the “Model 1 to 2 Diff. p” column in Table S2 

below, we find some evidence for qualitative sex-limitation across our waves and phenotypes. 

However, the results are mixed and on average, either insignificant or borderline. 

 We next test for quantitative sex-limitation in our univariate models, or the possibility 

that the magnitude of genetic influences differs across gender. This time, we further fix both the 

additive genetic and nonshared environmental pathways across males and females to be equal. 

We compare the 𝜒2
 statistic of this model to the previous model, where we fixed only the 

opposite sex DZ twin genetic correlations. As shown by the “Model 2 to 3 Diff. p” column in 

Table S2 below, we again see mixed but relatively weak evidence that univariate quantitative sex 

differences exist. 

 

 

 

 

 

  



Table S2  

Tests of univariate qualitative and quantitative sex-limitation for objective BMI and perceived 

weight status, by wave. 

 

  UNIVARIATE QUALITATIVE AND QUANTITATIVE SEX LIMITATION 

  

Free 𝜒2
 

(Model 1) 

Qualitative 

Fixed 𝜒2
 

(Model 2) 

Quantitative 

Fixed 𝜒2
 

(Model 3) 

Model 1 to 2 

Diff. p 

Model 2 to 3 

Diff. p 

 
Objective BMI 

Wave 1 28.08 31.48 37.91 0.07 0.09 

      Wave 2 44.14 44.61 45.92 0.49 0.73 

      Wave 3 35.73 39.08 62.79 0.07 0.00 

      Wave 4 28.91 34.73 61.98 0.02 0.00 

            

 
Perceived Weight Status 

Wave 1 10.35 10.42 12.64 0.79 0.53 

      Wave 2 29.94 34.30 41.69 0.04 0.06 

      Wave 3 21.49 23.33 25.86 0.17 0.47 

      Wave 4 19.50 26.84 38.73 0.01 0.01 

Freely estimated model (Model 1) has 18 degrees of freedom; fixed, qualitative model (Model 2) 

has 19; fixed, quantitative model (Model 3) has 22. 

 

 

 

 

 

 

 

  



4. Robustness check for quantitative sex differences in the bivariate model 

 

 Because we found some mild evidence of qualitative sex differences in our phenotypes 

across waves, we want to be certain that these potential qualitative sex differences are not 

confounding our test of quantitative sex differences in our bivariate model. One way to be more 

certain that this is not the case is to drop our opposite sex pairs from our analysis and perform 

our bivariate test again with only MZ and same-sex DZ twin pairs. As reported in Table S3 

below, when we perform this robustness check, we observe very similar patterns in this test as in 

the test with opposite sex DZ twins (Table 4), providing evidence that the quantitative sex 

differences we observe in our bivariate model are not confounded with potential qualitative sex 

differences. 

 

  



Table S3 

Test of quantitative sex-limitation for the bivariate model by wave. Includes only MZ and same-

sex DZ twin pairs.  

 

  BIVARIATE QUANTITATIVE SEX LIMITATION 

    

  

Free parameters across 

gender 𝜒2
 (Model 1) 

Fixed parameters across 

gender 𝜒2
 (Model 2) Model Diff. p 

Wave 1 49.54 66.45 0.03 

    Wave 2 43.19 51.96 0.36 

    Wave 3 58.44 99.95 0.00 

    Wave 4 48.87 89.65 0.00 

Freely estimated model (Model 1) has 40 degrees of freedom; fixed model (Model 2) has 48. 

 

  



5. Considerations of the twin model and molecular genetic data 

 

We recognize that the twin modeling technique is limited by the assumptions implied by 

the model. For instance, a key assumption of these models is that MZ and DZ twins share similar 

environments. While this equal environments assumption has been criticized, the assumption has 

been directly tested and largely upheld (Kendler et al., 1993; Turkheimer, 2011). Further, twin 

models have limited power to estimate additive genetic and dominant genetic effects 

simultaneously, as well as epistatic (GxG) effects. Yet, even as more and more studies begin to 

turn toward molecular genetic data as it becomes more available in well-powered samples (i.e., 

many millions of individuals to estimate epistatic effects), we also note one important continued 

utility of twin- and family-based genetic designs. Unlike single nucleotide polymorphism (SNP)-

based approaches, which can only explain variation in a phenotype related to the SNPs actually 

measured in a given sample, the broad-sense estimates from twin and family studies continue to 

define an “upper threshold” of additive genetic variation that may explain overall variation in a 

phenotype. Twin and family methods also allow for tests of hypotheses that are unavailable to 

molecular methods. For example, we found no evidence of shared environmental effects on 

either BMI or subjective weight perception, a finding only possible when multiple family 

members are assessed. Our study goals—and those of much social science research—align more 

with partitioning variance and identifying patterns of covariation that unfold over development, 

rather than identifying specific polymorphisms. As such, twin models, which maximize power 

for such investigations, remain a key and underused research tool in the social sciences.  

 We also note that, though our twin sample is relatively small, we show consistent results 

across our 4 waves of data, which bolsters the validity of our findings. In well-phenotyped 

datasets like Add Health, using genome-wide molecular methods (as opposed to twin- or family-



based methods) to analyze a phenotype such as subjective weight that is scarcely collected in 

survey datasets can be difficult. This is due to either a lack of molecular data or sample sizes that 

are not highly powered enough to perform genome-wide association studies. In contrast, twin 

and family methods maximize power by leveraging the contrast between genetically identical 

relatives and relatives that share approximately 50% of segregating genetic material. However, 

through consortium-driven efforts (e.g., Okbay et al., 2016), these sorts of datasets are becoming 

increasingly available and well-powered. Thus, while it goes beyond the scope of this paper to 

detail the specific genes and corresponding biological pathways responsible for variation in 

weight identity in the population, we nevertheless encourage future researchers to test specific 

pathways through which genes are differentially associated with different health-related 

phenotypes as a function of gender and biological sex. For instance, a number of researchers 

have used genome-wide methods to investigate genetic contributions to, and gene-environment 

interactions related to, BMI and other objective phenotypes of interest (Boardman et al., 2014; 

Domingue et al., 2016). Using some of these same methods, future researchers might use 

genome-wide complex trait analysis (GCTA, Yang et al., 2010; Yang et al., 2011) and Linkage 

Disequilibrium Score Regression (LDSR, Bulik-Sullivan et al., 2015) to measure the heritability 

of self-perceived weight by sex, and in so doing bypass the assumptions of the twin model by 

relying instead on measured genotypic data to obtain heritability estimates. Further, researchers 

might use a genome-wide association study (GWAS) to search for causal genetic variants related 

to self-perceived weight, or polygenic scores to search for genetic moderation across age, gender, 

and objective weight. 

 

  



 


