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Abstract 14 

Mounting evidence supports a mechanistic link between inflammation and cancer, especially 15 

colon cancer. ALOX15 (15-lipoxygenase-1) plays an important role in the formation of key lipid 16 

mediators (e.g., lipoxins and resolvins) to terminate inflammation. ALOX15 expression is 17 

downregulated in colorectal cancer (CRC). Intestinally-targeted transgenic expression of 18 

ALOX15 in mice inhibited dextran sodium sulfate-induced colitis from promoting azoxymethane- 19 

induced colorectal tumorigenesis, demonstrating that ALOX15 can suppress inflammation-20 

driven promotion of carcinogen-induced colorectal tumorigenesis and therefore ALOX15 21 

downregulation during tumorigenesis is likely to enhance the link between colitis and colorectal 22 

tumorigenesis. ALOX15 suppressed the TNF-α, IL-1β/NF-κB, and IL-6/STAT3 signaling 23 

pathways, which play major roles in promotion of colorectal cancer by chronic inflammation. 24 

Defining ALOX15’s regulatory role in colitis-associated colorectal cancer could identify important 25 

molecular regulatory events that could be targeted to suppress promotion of tumorigenesis by 26 

chronic inflammation. 27 

 28 
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 30 

Highlights 31 

• ALOX15 plays an important role in the formation of key lipid mediators (e.g., lipoxins and 32 

resolvins) to terminate inflammation. 33 

• ALOX15 expression is downregulated in colon cancer. 34 

• ALOX15 most likely plays an important regulatory role in suppressing signaling pathways 35 

(e.g., NF-κB and STAT3) that promote colitis-associated colonic tumorigenesis. 36 

  37 
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Introduction 38 

Evidence is mounting that a mechanistic link exists between inflammation and cancer 39 

[1], especially colonic cancer [2]. Colitis induced chemically in mice by dextran sodium sulfate 40 

strongly enhances colorectal carcinogenesis [3]. Similarly, mouse models of genetically-induced 41 

colitis, e.g., through IL-10 knock-out [4] or glutathione peroxidase-1 and peroxidase-2 isozyme 42 

knock-out [5], also show enhanced colorectal carcinogenesis [6]. In humans, inflammatory 43 

bowel diseases (ulcerative colitis and Crohn’s disease) markedly increase colorectal cancer risk 44 

[6, 7], and colon cancer accounts for an estimated 15% of deaths in patients with ulcerative 45 

colitis [8]. Although differences in molecular pathogenesis exist between colitis-associated 46 

colorectal cancer and the more common sporadic colorectal cancer  [2], some chronic 47 

inflammatory mechanisms (e.g., cyclooxygenase-2 overexpression) contribute significantly to 48 

both [6]. Thus, studying the mechanisms by which chronic inflammation promotes colonic 49 

tumorigenesis could also provide insights into the pathogenesis of sporadic colorectal 50 

tumorigenesis. 51 

The development and maintenance of chronic inflammation is strongly influenced by 52 

oxidative metabolism of polyunsaturated fatty acids (PUFAs) [9]. PUFA oxidative metabolism is 53 

enzymatically regulated in cells via several groups of enzymes, the best known of which are the 54 

cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome p450s (CYP450s) [10]. The 55 

roles of cyclooxygenases and cytochrome p450 enzymes in inflammation and cancer have been 56 

studied extensively in the literature [10, 11].  The current review will focus on the role of LOXs, 57 

especially ALOX15 (human 15-lipoxygenase-1; mouse 12/15-lipoxygenase), in chronic 58 

inflammation and cancer. 59 

 60 

LOXs metabolize PUFAs and thereby regulate inflammation and its resolution 61 

LOXs are dioxygenase enzymes that incorporate oxygen into PUFAs (e.g., arachidonic 62 

acid (AA) or linoleic acid (LA)) to form biologically-active peroxide products (e.g., 63 
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hydroperoxyeicosatetraenoic acids (HpETEs) or hydroperoxyoctadecadienoic acid HpODEs) 64 

[12, 13]. LOXs are named according to the specific location in the arachidonic acid carbon chain 65 

where the enzyme catalyzes lipid peroxidation (e.g., ALOX12 oxygenates arachidonic acid at 66 

the 12th carbon). Human LOX genes include ALOX5, ALOXE3, ALOX12, ALOX12B, ALOX15, 67 

and ALOX15B; mice share these 6 genes, and an additional skin-specific 12-LOX (Alox12e), 68 

which is a pseudogene in humans [12, 14].  69 

While products of LOX-mediated AA metabolism (e.g., 5-HETE and leukotriene B4 70 

(LTB4) from 5-LOX-mediated metabolism) contribute to the initiation of acute inflammation [15],  71 

other products of LOX-mediated metabolism of PUFAs (lipoxins (from AA), resolvins (from 72 

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), protectins (DHA), and maresins 73 

(DHA)) are critical to the active process of inflammation resolution, failure of which allows for the 74 

development of chronic inflammation [9]. 75 

 76 

ALOX15 regulates inflammation through multiple pathways 77 

Mammalian ALOX15 is an inducible and highly regulated enzyme in normal cells and 78 

evidence reveals it can counterregulate pro-inflammatory signaling via multiple mechanisms 79 

[16]. ALOX15 is most commonly known as the rate-limiting enzyme for production of 13-S-80 

HODE from LA [17, 18]. 13-S-HODE is an activating ligand of peroxisome proliferator-activated 81 

receptor gamma (PPARγ) and suppressor of PPAR delta (PPARδ) [19-21]. PPARγ inhibits 82 

inflammation [22], while PPARδ promotes inflammation, especially colitis [23]. Studies with 83 

12/15-LOX, the mouse homolog of human ALOX15, have suggested that 12/15-LOX plays both 84 

pro-inflammatory and anti-inflammatory roles due to its higher ratio of 12- to 15-lipoxygenase 85 

activity, and therefore higher levels of the pro-inflammatory mediator 12-S-HETE [24]. In 86 

humans, however, several lines of evidence suggest that ALOX15 plays an anti-inflammatory 87 

role. Overexpression of human ALOX15  inhibits polymorphonuclear-cell-mediated tissue 88 

destruction in rabbits [25] and glomerulonephritis in rats [26]. ALOX15 activates PPARγ through 89 
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13-S-HODE [20, 27]. PPARγ activation inhibits colitis [22] and colitis-associated colonic 90 

tumorigenesis [28]. Further evidence of an anti-inflammatory role of human ALOX15 comes 91 

from studies of its impact on interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α). 92 

These molecules are major pro-inflammatory cytokines that contribute to the pathogenesis of 93 

human colitis; TNF-α-blocking agents are used to treat ulcerative colitis [29, 30]. Downregulation 94 

of ALOX15 expression in human colorectal cancer cells is associated with upregulation of IL-1β, 95 

and re-expression of ALOX15 in colon cancer cells suppresses IL-1β expression [31]. 96 

Furthermore, transgenic expression of human ALOX15 in mouse colonic epithelial cells inhibits 97 

TNF-α and nuclear factor kappa B (NF-κB) signaling [32].  98 

While the role of 13-S-HODE in inhibiting inflammation is less established, resolvins and 99 

lipoxins, which are products of ALOX15-mediated metabolism of EPA or DHA and AA, 100 

respectively, have been demonstrated to play critical roles in resolution of inflammation [9]. 101 

Termination of the acute inflammatory phase has been shown to involve lipid mediator class 102 

switching of arachidonic acid metabolites from pro-inflammatory eicosanoids (e.g., 103 

prostaglandin E2 and leukotriene B4) to pro-resolving mediators such as lipoxins (e.g., lipoxin A4 104 

and lipoxin B4) [9]. This shift in eicosanoid biosynthesis is dependent upon upregulation of 105 

ALOX15, which is critical to lipoxin biosynthesis [33, 34].   106 

ALOX15 also contributes to the generation of resolvins, which are among the best-107 

known pro-resolving mediators. The resolvins are oxidative metabolites of docosahexaenoic 108 

acid (DHA) and eicosapentaenoic acid (EPA): the D-series resolvins (e.g., RvD1) are derived 109 

from DHA; the E-series resolvins (e.g., RvE1) are derived from EPA [35] (Figure 1). ALOX15 110 

enzymatic function is critical to the generation of the RvD precursor 17-S-HpDHA from DHA [36, 111 

37]. 15-LOX-like function of aspirin-acetylated COX-2 catalyzes generation of the RvE precursor 112 

18-HEPE from EPA [37, 38].  Resolvins have demonstrated strong anti-inflammatory impacts 113 

(picomolar to nanomolar range) in various in vivo preclinical models of chronic inflammatory 114 

disease, including colitis [39, 40]. For example, RvE1, RvD1, and RvD2 inhibit chemically-115 
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induced colitis in mice [41, 42]. RvD1 markedly reduces IL-6, IL-1β, and TNF-α expression in 134 

various experimental models [36].  135 

While ALOX15 is known to be expressed in the epithelial compartment, it is also present 136 

in other cells types, including leukocytes (e.g., neutrophils, macrophages) and vascular 137 

endothelial cells (reviewed in [43, 44]). Macrophages show a great deal of heterogeneity in 138 

terms of their biomarkers and actions within different tissues, dependent upon host status 139 

(healthy, injured, malignant, etc.) [45, 46], and the role of ALOX15 has been investigated in the 140 

context of macrophage phenotype [47-49]. The subsets of macrophages involved in resolution 141 

of acute inflammatory responses actively remove apoptotic cells and debris, and promote repair 142 

of damaged tissues [45, 50, 51]. Resolution-phase macrophages from resolving murine 143 

peritonitis were described as “M2-like”, expressing high IL-10, TGF-β, and arginase-1, low IL-12, 144 

and increased 12/15-LOX [50, 52]. Additional work using the peritonitis model uncovered 145 

distinctions between early and late resolution-phase macrophages [47]. Here, populations of 146 

F4/80+ macrophages from resolving exudates were distinguished in part on the basis of CD11b 147 

expression; CD11bhigh macrophages had low levels of M1 markers, moderate expression of pro-148 

inflammatory cytokines and chemokines, and low 12/15-LOX, while CD11blow macrophages 149 

showed reduced pro-inflammatory cytokines/ chemokines, low IL-10, and higher 12/15-LOX and 150 

TGFβ. In addition to differences in markers, CD11bhigh macrophages were efficient phagocytic 151 

cells, whereas CD11blow macrophages ceased phagocytosing apoptotic PMN, and were 152 

described as “satiated”. Satiated macrophages were also more likely to emigrate to draining 153 

lymph nodes, where they are involved in modulation or termination of adaptive immune 154 

responses [47][49]. Interestingly, satiated efferocytosis was promoted in the peritonitis model by 155 

addition of resolvins E1 and D1 (a 12/15-LOX metabolite). ALOX15 expression can be induced 156 

in macrophages through interactions with/ engulfment of apoptotic cells; it is also inducible by 157 

IL-4 and IL-13 [52-54], and galectin-1 [55]. Interestingly, mouse ALOX15 (12/15-LOX) has been 158 

shown to control uptake of apoptotic cells by different macrophage subsets, helping to limit 159 
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inappropriate immune responses [56]. Alterations in the IL-10 signaling pathway have also been 170 

implicated in development of chronic inflammatory states in the colon [57];reviewed in [58, 59]. 171 

IL-10 is considered an important anti-inflammatory mediator and macrophage-specific deficits in 172 

IL-10 signaling can lead to severe inflammation in the colon [58, 60, 61]. Evidence has shown 173 

that specialized pro-resolving mediators (e.g., RvD1) requiring ALOX15 for biosynthesis have 174 

been shown to increase IL-10 levels in models of acute inflammation [36, 62]. More specifically, 175 

both DHA and RvD1 have been shown to drive adipose tissue macrophages towards an M2-like 176 

phenotype [63]. Given the accumulating data on ALOX15 expression, SPM biosynthesis and/or 177 

responsiveness in macrophage subpopulations, more attention should be placed on how 178 

ALOX15/SPMs may influence IL-10 signaling in the intestine under normal and pathological 179 

states.  180 

 181 

 Under homeostatic conditions, gut macrophages have an anti-inflammatory or M2 182 

polarization, playing a key role in maintaining a tolerogenic environment [64, 65]. In the setting 183 

of chronic inflammatory disease (UC, Crohn’s) or neoplastic progression, macrophage 184 

phenotype can be altered [65]. Although tumor-associated macrophages (TAMs) are considered 185 

to act in a protumorigenic manner, in part through proangiogenic and immunosuppressive 186 

mechanisms [66], there is controversy over whether macrophages in CRC represent a good 187 

prognostic indicator or not [65, 67, 68]. Many issues still surround TAMs, for example, the 188 

precise origin (e.g., tissue resident or monocyte-derived) of these cells at earlier stages of tumor 189 

development is unclear, and whether these cells can act to control early stages of cancer 190 

(preneoplastic lesions) remains to be determined [66]. In the context of CRC, macrophage 191 

populations may differ depending on whether the cancer arose in a chronically inflamed tissue 192 

or represents a sporadic lesion. To date, the ALOX15 status of macrophages (and other stromal 193 

cell types) associated with tumor development in colon has not been studied in depth, but given 194 

that M2-like or pro-resolving macrophages express ALOX15 and M2-like macrophages are key 195 
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in regulating the intestinal microenvironment, there is support for the concept that ALOX15+ 196 

macrophages have regulatory functions limiting colitis and subsequent promotion of colorectal 197 

tumorigenesis.  Mechanistic studies to clearly confirm this role are needed.   198 

 199 

ALOX15 inhibits colorectal tumorigenesis 200 

ALOX15 expression is lost early in colorectal tumorigenesis, starting at the premalignant 201 

adenoma phase [69-72]. In contrast, other LOXs do not appear to be significantly altered during 202 

colonic tumorigenesis [31, 73, 74]. Downregulation of ALOX15 expression has also been 203 

reported in various other human cancers, including lung [75], esophageal [76], breast [77], 204 

endometrial [78], urinary bladder [79] and pancreatic cancer [80]. Additionally, screening of 128 205 

different human cancer cell lines representing 20 different human cancers, including all common 206 

human cancers, showed that ALOX15 expression was markedly repressed [75].  Loss of 207 

ALOX15 expression is transcriptionally mediated [81] and independent of substrate availability 208 

[31]. While some earlier studies suggested that ALOX15 might have a procarcinogenic role, 209 

several lines of evidence, including more recent evidence [32, 82] have demonstrated that 210 

ALOX15 has a tumor-suppressing role, especially in colorectal tumorigenesis [74, 83]. ALOX15 211 

re-expression in human colorectal cancer cells via pharmaceutical agents [21, 84, 85] or 212 

plasmid or adenoviral vectors [20 , 70, 73] inhibits the growth of those cells in vitro and in vivo 213 

[86]. Transgenic expression of human ALOX15 in mouse colonocytes (ALOX15-Gut mice) 214 

inhibits colorectal tumorigenesis [32]. ALOX15 expression in ALOX15-Gut mice inhibits NF-κB 215 

activation and azoxymethane-induced colorectal tumorigenesis [32] and colitis-associated 216 

colorectal tumorigenesis  [82]. 217 

 218 

ALOX15 inhibits colitis-driven promotion of colorectal tumorigenesis 219 

NF-κB and STAT3 cooperate to promote colitis-associated colorectal cancer [87]. We 220 

studied whether ALOX15 influenced STAT3 signaling in colitis-promoted colorectal 221 
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tumorigenesis. We found that the acceleration of azoxymethane-induced colorectal 222 

tumorigenesis by dextran sodium sulfate-driven colitis was inhibited by ALOX15 transgenic 223 

expression in colonic epithelial cells [82]. Inhibition of tumor development/progression in this 224 

model was associated with suppression of both IL-6 expression and subsequent STAT3 225 

phosphorylation and signaling, thereby limiting expression of protumorigenic STAT3-driven 226 

genes Notch3 and Muc1. Similarly, in human colon cancer cells, re-expression of ALOX15 227 

downregulated IL-6/STAT3 signaling [82], thus demonstrating the translational relevance of the 228 

ALOX15 transgenic mouse model results to human colonic tumorigenesis. 229 

ALOX15 exerts important modulatory effects on PPARγ and PPARδ, which are lipid 230 

nuclear receptors that function as master regulators of various important cellular events [e.g. 231 

metabolism [88], inflammation [89], and tumorigenesis[90]]. While PPARγ is considered to have 232 

an antitumorigenic role, the role of PPARδ in tumorigenesis was felt to be controversial [90].  233 

Nevertheless, PPARδ can play an antagonistic role to PPARγ during tumorigenesis [20], and 234 

mounting data are confirming the strong protumorigenic role for PPARδ [23, 91, 92]. As 235 

mentioned earlier, ALOX15, via 13-S-HODE production, downregulates PPARδ [21]. PPARδ 236 

promotes colitis and IL-6 expression [23]. However, prior results regarding the role of PPARδ in 237 

intestinal tumorigenesis were contradictory: Ppard germline knock-out in APCmin mice increased 238 

intestinal tumorigenesis in one mouse model [93] but inhibited it in another [94]. In contrast, in 239 

the azoxymethane-induced intestinal carcinogenesis model, which better simulates human 240 

colonic tumorigenesis, intestinally-targeted Ppard genetic deletion profoundly inhibited colonic 241 

tumorigenesis [95]. Moreover, intestinally-targeted Ppard overexpression resulted in strong 242 

promotion of azoxymethane-induced tumorigenesis [91]. Cross-breeding of mice with 243 

intestinally-targeted Ppard overexpression with ALOX15 transgenic mice confirmed in vivo the 244 

ability of ALOX15-mediated signaling to suppress PPARδ and downstream signaling through IL-245 

6/STAT3 , thereby limiting the development of colitis-associated colon cancer [82]. ALOX15 246 

suppression of PPARδ/IL-6/STAT3 signaling also strongly inhibited expression of MUC1 [82], 247 
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which activates proinflammatory, protumorigenic pathways in colon cancer (e.g., NF-κB) [96] 248 

and promotes colitis-associated colon cancer [97]. 249 

On the basis of these findings and our prior findings of ALOX15 repression of TNF-α and 250 

IL-1β as drivers of NF-κB signaling [32], we propose a theoretical model in which ALOX15 251 

interrupts positive feedback cycles between proinflammatory factors and NF-κB and STAT3 to 252 

inhibit tumorigenesis (Figure 2).  These findings support the concept that ALOX15 253 

downregulation during tumorigenesis further augments colitis promotion of colonic 254 

tumorigenesis, thus strengthening the link between these two pathological processes.   255 

 256 

Future questions to be answered 257 

The literature to date regarding the contribution of ALOX15 to colonic tumorigenesis has 258 

been focused on the role of ALOX15 in colonic epithelial cells. The likely reason for this focus is 259 

that ALOX15 loss has been observed in epithelial but not in stromal cells in cancer [69]. Given 260 

the demonstration that ALOX15 expression in leukocytes is critical in mediating the lipid 261 

mediator class switching to resolve acute inflammation, it is important to address the role of 262 

ALOX15 activity in populations of cells that make up the tumor microenvironment.  It is currently 263 

unknown whether ALOX15 suppression in various leukocyte subclasses is involved in the tumor 264 

promotion by chronic inflammation or conversely, whether increasing ALOX15 expression or 265 

activity in these cells might help limit tumor development. Further studies to determine 266 

ALOX15’s expression and actions in classes of tumor-associated leukocytes are therefore 267 

warranted. As the biosynthesis of many specialized pro-resolving mediators (e.g. lipoxins, 268 

resolvins) from PUFA precursors requires multiple enzymatic steps, and can involve 269 

transcellular mechanisms of biosynthesis, it will be important to address potential relationships 270 

between cell populations in order to fully understand ALOX15’s roles in tumor biology.  271 

Additional studies are also needed to determine whether the regulatory role of ALOX15 in 272 
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suppressing inflammation-driven tumorigenesis is specific to colon cancer or also applies to 273 

other cancers.  274 

 275 

Conclusion 276 

Emerging data show that ALOX15 is an important regulator of major signaling pathways 277 

(e.g., TNF-α, IL-1β/NF-κB, and IL-6/STAT3) that promote colitis-associated colon cancer. 278 

Further defining this role of ALOX15 could identify important molecular regulatory events that 279 

could be targeted to suppress colitis-associated colonic tumorigenesis in particular and possibly 280 

inflammation-driven promotion of tumorigenesis in general. 281 

  282 
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Legends 289 

Figure 1. Role of lipoxygenases in generation of resolvins (Rvs) and lipoxins (LXs). 290 

Multiple PUFA can be metabolized by lipoxygenases, including ALOX15. Shown here are the 291 

known pathways involved in biosynthesis of several key classes of SPMs from arachidonic acid 292 

(AA), docoahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). Note that the generation 293 

of bioactive mediators can involve multiple enzymatic steps and transcellular modes of 294 

biosynthesis have been described for SPM [35].  295 

 296 

Figure 2. Proposed theoretical model in which ALOX15 inhibits cytokine-driven NF-κB 297 

and STAT3 enhancement of IL-6, IL-1β, MUC1 and TNF-α transcription and tumorigenesis 298 

promotion.  As shown here and discussed in the text, ALOX15 impacts pro-tumorigenic 299 

signaling via multiple pathways including suppression of IL-6, IL-1β, TNF-α, STAT3 and NFκB 300 

signaling. STAT3 and NFκB are both key transcription factors associated with promotion of 301 

inflammation-driven tumorigenesis in the gut [87]. NFκB activity is enhanced by a number of 302 

cytokines, such IL-1β, TNF-α, as well as the glycoprotein MUC1. IL-6, an NFκB- responsive 303 

gene, can lead to upregulation of STAT3 signaling. In epithelial cancer cells as well as in the 304 

tumor microenvironment, dysregulation of these pathways leads to sustained inflammation 305 

through feed-forward mechanisms. While detailed mechanisms involved in ALOX15’s ability to 306 

act as a brake on colorectal tumorigenesis by suppressing these pathways have not been 307 

worked out, they likely involve pro-resolving ALOX15 metabolites (e.g., lipoxins, resolvins, etc.) 308 

signaling. 309 
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