1 Supplementary Materials

2 3

9

4 Transcriptional Regulation of Cellulose Biosynthesis during the Early Phase of Nitrogen 5 Deprivation in *Nannochloropsis salina*

1

- Seok Won Jeong¹, Seung Won Nam², Kwon HwangBo³, Won Joong Jeong³, Byeong-ryool Jeong⁴,
 Yong Keun Chang^{4,5} & Youn-Il Park^{1,*}
- ¹Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
- ²Bioresources Culture Collection Division, Nakdonggang National Institute of Biological Resources,
 Sangju 37242, Korea
- ¹³ ³Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- ⁴Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and
- 15 Technology, Daejeon 34141, Korea
- ⁵Advanced Biomass R&D Center (ABC), Korea Advanced Institute of Science and Technology,
- 17 Daejeon 34141, Korea
- 18
- 19
- 20 *Corresponding author: Youn-Il Park
- 21 E-mail: yipark@cnu.ac.kr; Phone: +82-42-8215493; FAX: +82-42-8229690
- 22
- 23
- 24

1 2 **Supplementary Figure Legends**

3 4 5 6 7 Figure S1. Cell growth (a) and culture images (b) of N. salina cells grown under N+ and Nconditions for 2 days. Each data point represents the mean \pm SE of three biological and technical triplicate culture flasks.

Figure S2. Transcript levels of chloroplast fatty acid synthesis genes in N. salina cells grown under

N+ and N- conditions for 2 days. Each data point represents the mean \pm SE of three biological and technical triplicate culture flasks.

Figure S3. Transcript levels of laminarin (*Bs* and *Bgt*) synthesis genes in *N. salina* cells. Cells were under N+ and N– conditions for 2 days. The transcription inhibitor actinomycin D (AD, 100 μ g ml⁻¹) was included in N– media for 2 days before the onset of N– growth. Absolute copy numbers of the mRNA transcripts (number of copies/ng of total RNA) were determined by qRT-PCR analysis. Each data point represents the mean ± SE of three biological and technical triplicate culture flasks.

9 10

8

Figure S4. Carbon partitioning in N-deprived N. salina. Under N-deficient conditions, total fatty acid and neutral lipid contents increase due to conversion of photosynthate assimilates via transcriptional activation of putative cytoplasmic fatty acid synthase (Fas1), Δ 12-desaturase (Fad2), and diglyceride acyltransferase (Dgat). Partitioning of hexose phosphate pools into cellulose biosynthesis appears to be transcriptionally regulated by the upregulation of UDP-glucose (Glc) pyrophosphorylase (Upp) and cellulose synthase (CesA) activities. N-deficiency increases laminarin biosynthesis in N. oceanica. Repression of 1,3- β -glucan synthase (Bs) and β -1,3-glucosyltransferase (Bgt) transcript levels by the transcription inhibitor actinomycin D in N. salina indicated the concerted regulation of photoassimilate partitioning into storage and structural carbohydrates in response to N status.

Supplementary Table S1. Effect of the transcription inhibitor actinomycin D on neutral lipid and cellulose content in <i>N. salina</i> cells
under nitrogen-depleted (N-) conditions. Neutral lipid and cellulose contents were estimated by Nile Red fluorescence amplitude at 580 nm
(F580) and calcofluor white amplitude at 420 nm (F420) relative to those before N- induction, respectively. Data are expressed as the average of
three biological replicates ± SD. Each sample was significantly different from the other (independent two-tailed <i>t</i> -test, <i>p</i> -value <0.05).

	Neutral lipid (F ₅₈₀)	Cellulose (F ₄₂₀)
N-	12.18 ± 0.67	1.50 ± 0.08
N-+ actinomycin D	9.48 ± 0.68	0.79 ± 0.07

Gene	Description	Primer forward (5' to 3')	Primer reverse (5' to 3')	Reference (GenBank)
Bgt	β-1,3-glucosyltransferase	ATGTCTTGGAGGCCATGGAG	TTTGCTCGTGGTCGTCAGC	AFGQ01002665.1
Bs	1,3-β-glucan synthase	GGCGTGGTAATAAGCGAC	GTTCAGTAAAGCTGATGCC	AFGQ01002722.1
Bcdh	Branched-chain α-keto acid	CTGATCACGCCCACCCTC	CGTTTCTCCTGCGCTTTC	AFGQ01001567.1
	dehydrogenase subunit E2			
CesA8	Cellulose synthase	ATTCAACACTTGTTTAGC	CGGTAGCTGATATTCATG	AFGQ01004415.1
CesA122-1	Cellulose synthase	CCCAAGCTGTATTTGATG	GAGAGGATGTAGTAGAGC	AFGQ01001844.1
Dgat-2	Diacylglycerol acyltransferase type 2-	5 GATGATGAGCTGGTACTACC	GCTTCCTCCAGAATGTATTCG	AFGQ01000682.1
Fad2	$\Delta 12$ desaturase	CACCCTTGCTGACATCAAAG	CGCATTCATGGGCAATCAC	AFGQ01000627.1
Fadl	$\Delta 5$ desaturase	CTACATGCTGCGAGACTTTG	GGTTCTCGAGCAAGGCTTG	AFGQ01001226.1
Fasla	Type I fatty acid synthase	ACACGGCGTGCTCGTCATC	GCATCAAGCATAAGATTCAC	KK037387.1
Fas1b	Type I fatty acid synthase	TTGCAGCGTGTAGTGCTG	AAGCATCTCCCAAAAAGCC	KK037387.1
Hadl	3-hydroxy acyl ACP dehydratase	ATGGAGGTGGAACTGGTC	CTTGATTTCGACGGCCAC	AFGQ01000652.1
Karl	3-ketoacyl-ACP reductase 1	GACGGCATTAAGAAGGCG	TAGCAATGCCTCCATCGAC	AFGQ01000162.1
Mct	Malonyl-CoA:ACP transacylase	CGAATGACAGTGCGTCTG	GAACTCTGTCTTGGCCAAC	AFGQ01000324.1
Pksa	Type I fatty acid synthase-like	CTTGAGGTTGGGTATACTGC	GAATATACCAACGTTTCGCG	KK037387.1
Pksb	Type I fatty acid synthase-like	ACTGCTTTTGTTGCCCTCGC	GAATGACTTGCATTTACCATC	AFGQ01003363.1
Pksc	Type I fatty acid synthase-like	CCGAGTATATTTTCGACGAC	ATATTGCACGGCAGCAAGGC	AFGQ01000753.1
Pkse	Type I fatty acid synthase-like	GATCGAACGCAGTCTTCG	TTGAATCTTTGTCTCCTTGC	AFGQ01000951.1
Ubq	Ubiquitin	GGCAAGACGATCACACTGGA	AAAGCGCGTCTCCACCAC	AFGQ01000799.1
Upp	UDP-glucose pyrophosphorylase	CGCATACCAAATGGGGTC	TTTAGCGTCACATTCGCG	AFGQ01003838.1

Supplementary Table S2. Primer sequences for qRT-PCR analysis.