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ABSTRACT

Diagnostic testing often assesses the cardiovascular or respiratory systems in isolation, ignoring the major pathophysiologic
interactions between the systems in many diseases. When both systems are assessed currently, multiple different modalities
are utilized in costly fashion with burdensome logistics and decreased accessibility. Thus, we have developed a new acquisition
and reconstruction paradigm using the flexibility of magnetic resonance imaging (MRI) to enable a comprehensive exam from a
single 5–15 min scan. We constructed a compressive-sensing approach to pseudo-randomly acquire highly undersampled,
multi-dimensionally-encoded and time-stamped data from which we reconstruct entire volumetric cardiac and respiratory motion
phases, contrast-agent dynamics, and blood flow velocity fields. The proposed method, named XD flow, is demonstrated
for (a) evaluating congenital heart disease, where the impact of bulk motion is reduced in a non-sedated neonatal patient
and (b) where the observation of the impact of respiration on flow is necessary for diagnostics; (c) cardiopulmonary imaging,
where cardiovascular flow, function, and anatomy information is needed along with pulmonary perfusion quantification; and
finally in (d) renal function imaging, where blood velocities and glomerular filtration rates are simultaneously measured, which
highlights the generality of the technique. XD flow has the ability to improve quantification and to provide additional data for
patient diagnosis for comprehensive evaluations.

Supplementary Materials

Supplementary Methods: Weighted reconstruction with repeated data points

When constructing the data matrix from acquired k-space data, more than one data point can correspond to the same k-space
location, temporal bin, cardiac phase, and respiratory phase. The repeated data point can be the result of the acquisition design:
in the variable-density sampling and radial view-ordering (VDRad) scheme for Cartesian imaging, increased motion-robustness
is achieved by re-sampling the k-space center. The repeated data point can also be the result of discretizing the continuous
dimensions of time, cardiac phase, and respiratory phase. These duplicate data points can be included in the reconstruction with
minimal modification to the optimization reconstruction problem in equation 1. For simplicity, we will consider data points in
one-dimensional space. The concepts are easily extended to higher dimensions.

Let y be an M-element vector where each element corresponds to a measurement of an element in x, an N-element vector.
Since y contains repeated measurements of x, the i-th element in x (denoted as xi) may correspond to multiple elements in y.
Let S[i] be the set of all indices of y that corresponds to xi. Weighting w j is derived based on the confidence in the measurement
of the j-th element of y, denoted as y j. These weights can also be represented as a diagonal matrix W of size M×M. The j-th
row and j-th column of W is denoted as Wj j = w j.

Though x can be estimated easily as a weighted average of elements in y, the recovery of x is formulated here as an
optimization problem. In this way, the results can be easily applied to equation 1. As a least-squares minimization problem, the
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recovery of x as x̂ can be written as:

x̂ = argmin
x
‖W (Dx− y)‖2

2 (S1)

= argmin
x

xT DTW TWDx−2xT DTW TWy+ yTW TWy. (S2)

Since W is a diagonal matrix, W TW is also a diagonal matrix of size M×M where (W TW ) j j = w2
j . Matrix D maps each

element of x to y. Matrix DT takes each element of y, maps them back to the corresponding locations in x, and sums the
repeated measurements.

In the first component of equation S2, DTW TWD becomes a diagonal matrix of size N×N where the nonzero elements are(
DTW TWD

)
ii = ∑

j∈S[i]
w2

j . (S3)

In the second component of equation S2, DTW T y becomes an N-element vector where

(DTW TWy)i = ∑
j∈S[i]

w2
jy j. (S4)

Lastly,

yTW TWy = ∑
j

w2
jy

2
j . (S5)

Let diagonal matrix W̄ of size N×N be defined with the nonzero elements:

W̄ii =

√
∑

j∈S[i]
w2

j . (S6)

Additionally, let the i-th element in the N-element vector ȳ be defined as

ȳi =

(
∑

j∈S[i]
w2

jy j

)
/

(
∑

j∈S[i]
w2

j

)
. (S7)

Then, the quantities of equations S3–S5 can be rewritten in terms of W̄ and ȳ:(
DTW TWD

)
ii = ∑

j∈S[i]
w2

j =
(
W̄ TW̄

)
(S8)

(
DTW TWy

)
i = ∑

j∈S[i]
w2

jy j =
(
W̄ TW̄ ȳ

)
(S9)

yTW TWy = ∑
j

w2
jy

2
j = ȳTW̄ TW̄ ȳ+C. (S10)

Equation S10 has a constant C that is in terms of wi and yi, and it is independent from the unknown vector x. Thus, C can be
ignored in the optimization problem, and x̂ can be estimated with the following equation:

x̂ = argmin
x
‖W̄ (x− ȳ)‖2

2 . (S11)

Solving either equation S2 or equation S11 will yield exactly the same solution.
Equations S6 and S7 are directly applied to the proposed equation 1. In equation 1, the diagonal entries in W̄ are the

square-root of the sum of squares of corresponding soft-gating weights. The acquired k-space vector y of equation 1 is replaced
by a weighted average of the repeated data samples with weights corresponding to the square of the soft-gating weights.
Typically, M is larger than N since the acquisition repeats samples. Thus, this substitution avoids expanding the data to larger
vectors and matrices. This formulation takes into account the duplicate samples without modifying the underlying solver and
reduces computation memory.
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#S1
(Supplementary Fig. 1)

Age 3 years
Gender F
Heart rate 94 bpm
TE/TR 1.8 ms / 3.8 ms
Resolution (1.1, 1.1, 2.0) mm
Bandwidth ± 83.33 kHz
VENC 250 cm/s
Coil 32ch cardiac
Contrast Gadobutrol
Scan time 6:13 min
Scanner 3T (GE MR750)

Supplementary Table S1. Summary of scan parameters for supplementary figure.

t = 0:00–2:04 min 2:04–4:09 min 4:09–6:13 min

#S1
(Supplementary
Fig. 1)

Conventional (PI only) (±11.1, ±10.7, ±10.7) cm/2
Nearest-neighbor (PI only) (±23.4, ±28.7, ±27.8) (±11.4, ±12.1, ±11.6) (±10.2, ±9.4, ±9.5)
Weighted (PI only) (±17.5, ±20.2, ±19.8) (±9.6, ±9.9, ±10.3) (±8.5, ±8.9, ±9.1)
Conventional (PI & CS) (±6.5, ±6.2, ±6.5)
Nearest-neighbor (PI & CS) (±9.3, ±10.8, ±9.3) (±5.3, ±4.9, ±5.4) (±5.1, ±4.8, ±5.4)
Weighted (PI & CS) (±8.1, ±8.8, ±8.3) (±4.9, ±4.5, ±5.0) (±4.7, ±4.4, ±5.0)

t = 0:00–2:39 min 2:39–5:17 min 5:17–8:56 min 8:56–10:34 min

#1 (Fig. 2)
Conventional (±6.2, ±6.2, ±6.1)
XD flow (±4.8, ±4.7, ±4.6) (±4.7, ±4.6, ±4.5) (±4.7, ±4.6, ±4.5) (±5.2, ±5.1, ±5.0)

t = 0:00–2:48 min 2:48–5:35 min 5:35–8:23 min

#2 (Fig. 4)
Conventional (±11.2, ±11.3, ±11.4)
XD flow (no temporal TV) (±16.0, ±15.6, ±15.9) (±11.8, ±11.8, ±12.0) (±11.0, ±11.0, ±11.2)
XD flow (w/ temporal TV) (±12.1, ±11.5, ±12.0) (±8.3, ±8.3, ±8.4) (±8.1, ±8.1, ±8.2)

Supplementary Table S2. Standard deviation of velocity measurements in cm/s for the normalized cardiac phase of 0.75
listed as (right/left, anterior/posterior, superior/inferior) where PI = parallel imaging and CS = compressed sensing.
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Supplementary Figure S1. Impact of weighting with data binning for XD flow imaging. Gadobutrol was administered
during the data acquisition of the 3-year-old female. The dataset was reconstructed with 20 cardiac phases and flow
information. The data were divided into 3 temporal bins for the XD flow reconstruction (left) and a single temporal bin for the
conventional 4D flow reconstruction (right). For (a) and (c), data were binned based on the nearest-neighbor bin. In (b) and (d),
a weighted reconstruction was used with weights computed based on the distance of each data point to the center of each bin.
The data inconsistencies from the contrast dynamics are emphasized in the highly-accelerated parallel-imaging-only
reconstruction in (a) and (b) where residual artifacts are most apparent in (a) (yellow arrow and white arrowhead). This can be
best seen in the first phase during which the contrast was administered. The de-noising effect from the compressed sensing
reconstruction in (c) and (d) is able to remove much of the artifacts from data inconsistencies. Reduction of the apparent noise
in (d) is attributed to reducing data inconsistencies.

4/4


