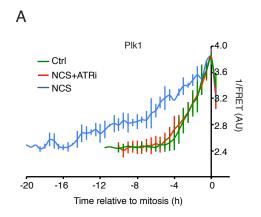
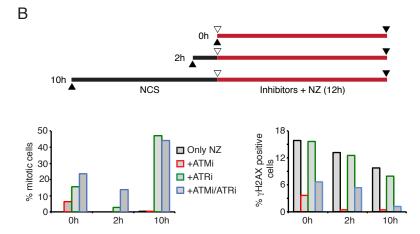
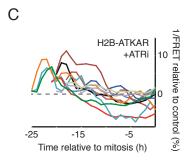
Appendix. Jaiswal et al. ATM/Wip1 activities at chromatin control Plk1 reactivation to determine G2 checkpoint duration

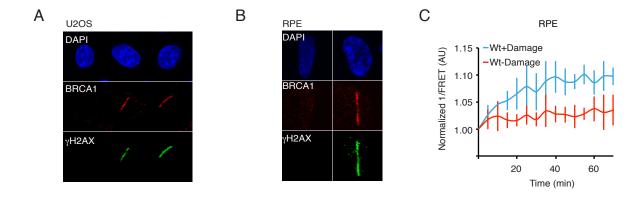

Page 2. Appendix figure S1


Page 4. Appendix figure S2


Appendix Figure S1. ATM inhibits Plk1 during the early phases of a DDR.

- (A) ATR inhibits Plk1 activity during checkpoint recovery in RPE cells. RPE cells expressing a Plk1 FRET-probe were transfected with p53 siRNA. NCS (8 nM) and ATRi (1 uM) were added as indicated. Graph shows average and SD of 15 cells (ATRi and Ctrl) or 2 cells (NCS; spontaneous recovery) synchronized *in silico* in mitosis.
- (**B**) Synergistic effect of ATM and ATR inhibition early after NCS. U2OS cells were treated with NCS (1 nM) for 0, 2, and 10 h, and subsequently incubated for 12 h with nocodazole and inhibitors as indicated. Cells were fixed, stained for pS10-histone H3 and γ H2AX and analyzed by FACS.
- (C) H2B-ATKAR is dephosphorylated before cells enter mitosis in presence of ATR inhibitor. Quantification of 1/FRET of U2OS cells expressing H2B-ATKAR after treatment with VE821 (1 uM, 30 min) and NCS (2 nM). Each line represents a single cell that is synchronized in mitosis *in silico*. The FRET-ratio change of each cell relative to the FRET-ratio before NCS addition is shown.

Appendix Figure S1



Appendix Figure S2. ATM activity is detected throughout chromatin upon localized DNA damage

- (**A, B**) DSBs are restricted to the laser microirradiated area. γ H2AX and BRCA1 remain in laser microirradiated area in U2OS (A) and RPE cells (B). Images show immunofluorescence stainings with indicated antibodies in laser microirradiated and neighbouring non-irradiated cells.
- **(C)** Quantification of spread of H2B-ATKAR FRET-change after laser micro-irradiation in RPE cells. Measurements were performed distal to the laser-micro-irradiated area. Graph shows average and SD of at least 6 cells per condition, performed as in Fig 5B.

Appendix Figure S2

